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Last time

• moment of inertia volume integral example
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Overview

• kinetic energy, work, and power of rotation

• Rolling motion

• Examples
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Rolling Motion

A combination of translation and rotation.
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Figure 10.23  Two points on a 
rolling object take different paths 
through space.

One light source at the center of a 
rolling cylinder and another at one 
point on the rim illustrate the 
different paths these two points take. 

The point on the 
rim moves in the 
path called a cycloid 
(red curve).

The center 
moves in a 
straight line 
(green line). 
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moves a linear distance s 5 Ru (see Eq. 10.1a). Therefore, the translational speed of 
the center of mass for pure rolling motion is given by

 vCM 5
ds
dt

5 R 
du

dt
5 Rv (10.28)

where v is the angular speed of the cylinder. Equation 10.28 holds whenever a cyl-
inder or sphere rolls without slipping and is the condition for pure rolling motion. 
The magnitude of the linear acceleration of the center of mass for pure rolling 
motion is

 aCM 5
dvCM 

dt
5 R 

dv

dt
5 Ra (10.29)

where a is the angular acceleration of the cylinder.
 Imagine that you are moving along with a rolling object at speed vCM, staying 
in a frame of reference at rest with respect to the center of mass of the object. As 
you observe the object, you will see the object in pure rotation around its center 
of mass. Figure 10.25a shows the velocities of points at the top, center, and bottom 
of the object as observed by you. In addition to these velocities, every point on the 
object moves in the same direction with speed vCM relative to the surface on which 
it rolls. Figure 10.25b shows these velocities for a nonrotating object. In the refer-
ence frame at rest with respect to the surface, the velocity of a given point on the 
object is the sum of the velocities shown in Figures 10.25a and 10.25b. Figure 10.25c 
shows the results of adding these velocities.
 Notice that the contact point between the surface and object in Figure 10.25c 
has a translational speed of zero. At this instant, the rolling object is moving in 
exactly the same way as if the surface were removed and the object were pivoted at 
point P and spun about an axis passing through P. We can express the total kinetic 
energy of this imagined spinning object as

 K 5 1
2IP v2 (10.30)

where IP is the moment of inertia about a rotation axis through P.
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Figure 10.25 The motion of a 
rolling object can be modeled as 
a combination of pure translation 
and pure rotation.
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Figure 10.24 For pure rolling 
motion, as the cylinder rotates 
through an angle u its center 
moves a linear distance s 5 Ru.

Pitfall Prevention 10.6
Equation 10.28 Looks Familiar  
Equation 10.28 looks very similar 
to Equation 10.10, so be sure to 
be clear on the difference. Equa-
tion 10.10 gives the tangential 
speed of a point on a rotating 
object located a distance r from 
a fixed rotation axis if the object 
is rotating with angular speed v. 
Equation 10.28 gives the trans-
lational speed of the center of 
mass of a rolling object of radius R 
rotating with angular speed v.

The CM is translated at velocity vCM.

Notice that instantaneously P is the pivot point of the rotation.



Rolling Motion

The pivot point of the rotation changes as different parts of the
wheel contact the surface.
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Pitfall Prevention 10.6
Equation 10.28 Looks Familiar  
Equation 10.28 looks very similar 
to Equation 10.10, so be sure to 
be clear on the difference. Equa-
tion 10.10 gives the tangential 
speed of a point on a rotating 
object located a distance r from 
a fixed rotation axis if the object 
is rotating with angular speed v. 
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vCM =
ds

dt
= Rω



Kinetic Energy of a Rolling Object

The kinetic energy of a rolling object is just the sum of the
rotational KE and translational KE. Can see this by considering

just an instantaneous rotation about the point P:

K =
1

2
IPω

2

Using the parallel axis theorem: IP = ICM +mR2.

K =
1

2
(ICM +mR2)ω2

=
1

2
ICMω

2 +
1

2
mv2CM

= KCM,rot + KCM,trans



Rolling down an incline
A sphere starts from rest at the top of an incline and rolls down.
Find the (translational) velocity of the center of mass at the
bottom of the incline.

318 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

 Because the motion of the imagined spinning object is the same at this instant as 
our actual rolling object, Equation 10.30 also gives the kinetic energy of the rolling 
object. Applying the parallel-axis theorem, we can substitute IP 5 ICM 1 MR 2 into 
Equation 10.30 to obtain

K 5 1
2ICMv2 1 1

2MR2v2

Using vCM 5 Rv, this equation can be expressed as

 K 5 1
2 ICMv2 1 1

2MvCM
2 (10.31)

The term 1
2ICMv2 represents the rotational kinetic energy of the object about its 

center of mass, and the term 12MvCM
2 represents the kinetic energy the object would 

have if it were just translating through space without rotating. Therefore, the total 
kinetic energy of a rolling object is the sum of the rotational kinetic energy about 
the center of mass and the translational kinetic energy of the center of mass. This 
statement is consistent with the situation illustrated in Figure 10.25, which shows 
that the velocity of a point on the object is the sum of the velocity of the center of 
mass and the tangential velocity around the center of mass.
 Energy methods can be used to treat a class of problems concerning the roll-
ing motion of an object on a rough incline. For example, consider Figure 10.26, 
which shows a sphere rolling without slipping after being released from rest at the 
top of the incline. Accelerated rolling motion is possible only if a friction force 
is present between the sphere and the incline to produce a net torque about the 
center of mass. Despite the presence of friction, no loss of mechanical energy 
occurs because the contact point is at rest relative to the surface at any instant. 
(On the other hand, if the sphere were to slip, mechanical energy of the sphere–
incline–Earth system would decrease due to the nonconservative force of kinetic 
friction.)
 In reality, rolling friction causes mechanical energy to transform to internal 
energy. Rolling friction is due to deformations of the surface and the rolling object. 
For example, automobile tires flex as they roll on a roadway, representing a trans-
formation of mechanical energy to internal energy. The roadway also deforms a 
small amount, representing additional rolling friction. In our problem-solving 
models, we ignore rolling friction unless stated otherwise.
 Using vCM 5 Rv for pure rolling motion, we can express Equation 10.31 as

  K 5 1
2ICM avCM 

R
b2

 1 1
2MvCM

2

  K 5 1
2 aICM 

R2  1 MbvCM
2 (10.32)

For the sphere–Earth system in Figure 10.26, we define the zero configuration of 
gravitational potential energy to be when the sphere is at the bottom of the incline. 
Therefore, Equation 8.2 gives

DK 1 DU 5 0

 c1
2 aICM 

R2  1 MbvCM
2 2 0 d 1 10 2 Mgh 2 5 0 

  vCM 5 c 2gh
1 1 1ICM /MR2 2  d 1/2

 (10.33)

Q uick Quiz 10.7  A ball rolls without slipping down incline A, starting from rest. 
At the same time, a box starts from rest and slides down incline B, which is iden-
tical to incline A except that it is frictionless. Which arrives at the bottom first? 
(a) The ball arrives first. (b) The box arrives first. (c) Both arrive at the same 
time. (d) It is impossible to determine.

Total kinetic energy X
of a rolling object

x

M

u

v
h

vCM
S

R

Figure 10.26 A sphere roll-
ing down an incline. Mechanical 
energy of the sphere–Earth system 
is conserved if no slipping occurs.

∆K + ∆U = 0(
1

2
ICMω

2 +
1

2
Mv2CM − 0

)
+ (0 −Mgh) = 0

vCM =

√
2gh

1 + (ICM/MR2))
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For the sphere–Earth system in Figure 10.26, we define the zero configuration of 
gravitational potential energy to be when the sphere is at the bottom of the incline. 
Therefore, Equation 8.2 gives
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2 aICM 

R2  1 MbvCM
2 2 0 d 1 10 2 Mgh 2 5 0 

  vCM 5 c 2gh
1 1 1ICM /MR2 2  d 1/2

 (10.33)

Q uick Quiz 10.7  A ball rolls without slipping down incline A, starting from rest. 
At the same time, a box starts from rest and slides down incline B, which is iden-
tical to incline A except that it is frictionless. Which arrives at the bottom first? 
(a) The ball arrives first. (b) The box arrives first. (c) Both arrive at the same 
time. (d) It is impossible to determine.
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Question

Quick Quiz 10.71 A ball rolls without slipping down incline A,
starting from rest. At the same time, a box starts from rest and
slides down incline B, which is identical to incline A except that it
is frictionless. Which arrives at the bottom first?

(A) The ball arrives first.

(B) The box arrives first.

(C) Both arrive at the same time.

(D) It is impossible to determine.

1Serway & Jewett, page 318.
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Example 10.14 - Pulling a Spool

A cylindrically symmetric spool of mass m and radius R, and
moment of inertia I, sits at rest on a horizontal table with friction.
You pull on on a light string wrapped around the axle (radius r) of
the spool with a constant horizontal force of magnitude T to the
right. As a result, the spool rolls without slipping a distance L
along the table with no rolling friction.

Find the final translational speed of the center of mass of the spool.

 10.9 Rolling Motion of a Rigid Object 319

3Example 10.14 was inspired in part by C. E. Mungan, “A primer on work–energy relationships for introductory physics,” The Physics Teacher, 43:10, 2005.

 

Example 10.13   Sphere Rolling Down an Incline 

For the solid sphere shown in Figure 10.26, calculate the translational speed of the center of mass at the bottom of the 
incline and the magnitude of the translational acceleration of the center of mass.

Conceptualize  Imagine rolling the sphere down the incline. Compare it in your mind to a book sliding down a fric-
tionless incline. You probably have experience with objects rolling down inclines and may be tempted to think that the 
sphere would move down the incline faster than the book. You do not, however, have experience with objects sliding 
down frictionless inclines! So, which object will reach the bottom first? (See Quick Quiz 10.7.)

Categorize  We model the sphere and the Earth as an isolated system in terms of energy with no nonconservative forces 
acting. This model is the one that led to Equation 10.33, so we can use that result.

AM

S O L U T I O N

Analyze  Evaluate the speed of the center of mass of the 
sphere from Equation 10.33:

(1)   vCM 5 c 2gh

1 1 12
5MR 2/MR 2 2  d 1/2

5 110
7 gh 21/2

 This result is less than !2gh, which is the speed an object would have if it simply slid down the incline without rotat-
ing. (Eliminate the rotation by setting ICM 5 0 in Eq. 10.33.)
 To calculate the translational acceleration of the center of mass, notice that the vertical displacement of the sphere 
is related to the distance x it moves along the incline through the relationship h 5 x sin u.

Use this relationship to rewrite Equation (1): vCM 2 5 10
7 gx sin u

Write Equation 2.17 for an object starting from rest and 
moving through a distance x under constant acceleration:

vCM
2 5 2aCMx

Equate the preceding two expressions to find aCM: aCM 5 5
7g sin u

Finalize Both the speed and the acceleration of the center of mass are independent of the mass and the radius of the 
sphere. That is, all homogeneous solid spheres experience the same speed and acceleration on a given incline. Try to 
verify this statement experimentally with balls of different sizes, such as a marble and a croquet ball.
 If we were to repeat the acceleration calculation for a hollow sphere, a solid cylinder, or a hoop, we would obtain 
similar results in which only the factor in front of g sin u would differ. The constant factors that appear in the expres-
sions for vCM and aCM depend only on the moment of inertia about the center of mass for the specific object. In all 
cases, the acceleration of the center of mass is less than g sin u, the value the acceleration would have if the incline were 
frictionless and no rolling occurred.

Example 10.14   Pulling on a Spool3 

A cylindrically symmetric spool of mass m and radius R sits at rest on a horizontal 
table with friction (Fig. 10.27). With your hand on a light string wrapped around 
the axle of radius r, you pull on the spool with a constant horizontal force of mag-
nitude T to the right. As a result, the spool rolls without slipping a distance L 
along the table with no rolling friction.

(A) Find the final translational speed of the center of mass of the spool.

Conceptualize  Use Figure 10.27 to visualize the motion of the spool when you 
pull the string. For the spool to roll through a distance L, notice that your hand 
on the string must pull through a distance different from L.

AM

S O L U T I O N

R
T
S

L

r

Figure 10.27  (Example 10.14)  
A spool rests on a horizontal table. 
A string is wrapped around the axle 
and is pulled to the right by a hand.

continued
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Example 10.13   Sphere Rolling Down an Incline 

For the solid sphere shown in Figure 10.26, calculate the translational speed of the center of mass at the bottom of the 
incline and the magnitude of the translational acceleration of the center of mass.

Conceptualize  Imagine rolling the sphere down the incline. Compare it in your mind to a book sliding down a fric-
tionless incline. You probably have experience with objects rolling down inclines and may be tempted to think that the 
sphere would move down the incline faster than the book. You do not, however, have experience with objects sliding 
down frictionless inclines! So, which object will reach the bottom first? (See Quick Quiz 10.7.)

Categorize  We model the sphere and the Earth as an isolated system in terms of energy with no nonconservative forces 
acting. This model is the one that led to Equation 10.33, so we can use that result.

AM

S O L U T I O N

Analyze  Evaluate the speed of the center of mass of the 
sphere from Equation 10.33:

(1)   vCM 5 c 2gh

1 1 12
5MR 2/MR 2 2  d 1/2

5 110
7 gh 21/2

 This result is less than !2gh, which is the speed an object would have if it simply slid down the incline without rotat-
ing. (Eliminate the rotation by setting ICM 5 0 in Eq. 10.33.)
 To calculate the translational acceleration of the center of mass, notice that the vertical displacement of the sphere 
is related to the distance x it moves along the incline through the relationship h 5 x sin u.

Use this relationship to rewrite Equation (1): vCM 2 5 10
7 gx sin u

Write Equation 2.17 for an object starting from rest and 
moving through a distance x under constant acceleration:

vCM
2 5 2aCMx

Equate the preceding two expressions to find aCM: aCM 5 5
7g sin u

Finalize Both the speed and the acceleration of the center of mass are independent of the mass and the radius of the 
sphere. That is, all homogeneous solid spheres experience the same speed and acceleration on a given incline. Try to 
verify this statement experimentally with balls of different sizes, such as a marble and a croquet ball.
 If we were to repeat the acceleration calculation for a hollow sphere, a solid cylinder, or a hoop, we would obtain 
similar results in which only the factor in front of g sin u would differ. The constant factors that appear in the expres-
sions for vCM and aCM depend only on the moment of inertia about the center of mass for the specific object. In all 
cases, the acceleration of the center of mass is less than g sin u, the value the acceleration would have if the incline were 
frictionless and no rolling occurred.

Example 10.14   Pulling on a Spool3 

A cylindrically symmetric spool of mass m and radius R sits at rest on a horizontal 
table with friction (Fig. 10.27). With your hand on a light string wrapped around 
the axle of radius r, you pull on the spool with a constant horizontal force of mag-
nitude T to the right. As a result, the spool rolls without slipping a distance L 
along the table with no rolling friction.

(A) Find the final translational speed of the center of mass of the spool.

Conceptualize  Use Figure 10.27 to visualize the motion of the spool when you 
pull the string. For the spool to roll through a distance L, notice that your hand 
on the string must pull through a distance different from L.
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Figure 10.27  (Example 10.14)  
A spool rests on a horizontal table. 
A string is wrapped around the axle 
and is pulled to the right by a hand.
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Figure 10.27  (Example 10.14)  
A spool rests on a horizontal table. 
A string is wrapped around the axle 
and is pulled to the right by a hand.
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First, the string unrolls from the spool, so the point of application
of the force

#»

F (the hand) moves a distance L+ L r
R .

Alternatively, there is work done translating the spool: W = TL,
plus work done rotating the spool: W = τ∆θ = (rT )
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L
R
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A spool rests on a horizontal table. 
A string is wrapped around the axle 
and is pulled to the right by a hand.
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 Problems 333

top end. Suddenly, a horizontal impulsive force 14.7 î N  
is applied to it. (a) Suppose the force acts at the bot-
tom end of the rod. Find the acceleration of its center 
of mass and (b) the horizontal force the hinge exerts. 
(c) Suppose the force acts at the midpoint of the rod. 
Find the acceleration of this point and (d) the horizon-
tal hinge reaction force. (e)  Where can the impulse 
be applied so that the hinge will exert no horizontal 
force? This point is called the center of percussion.

 85. A thin rod of length h and mass M is held vertically 
with its lower end resting on a frictionless, horizon-
tal surface. The rod is then released to fall freely.  
(a) Determine the speed of its center of mass just 
before it hits the horizontal surface. (b) What If? 
Now suppose the rod has a fixed pivot at its lower end. 
Determine the speed of the rod’s center of mass just 
before it hits the surface.

 86. Review. A clown balances a small spherical grape at 
the top of his bald head, which also has the shape of 
a sphere. After drawing sufficient applause, the grape 
starts from rest and rolls down without slipping. It will 
leave contact with the clown’s scalp when the radial 
line joining it to the center of curvature makes what 
angle with the vertical?

Challenge Problems
 87. A plank with a mass M 5 6.00 kg rests on top of two 

identical, solid, cylindrical rollers that have R 5 5.00 cm  
and m 5 2.00 kg (Fig. P10.87). The plank is pulled by a  
constant horizontal force F

S
 of magnitude 6.00 N 

applied to the end of the plank and perpendicular to 
the axes of the cylinders (which are parallel). The cyl-
inders roll without slipping on a flat surface. There is 
also no slipping between the cylinders and the plank. 
(a) Find the initial acceleration of the plank at the 
moment the rollers are equidistant from the ends of 
the plank. (b) Find the acceleration of the rollers at 
this moment. (c) What friction forces are acting at this 
moment?

M

R
m m

F
S

R

Figure P10.87

 88. As a gasoline engine operates, a flywheel turning with 
the crankshaft stores energy after each fuel explosion, 
providing the energy required to compress the next 
charge of fuel and air. For the engine of a certain lawn 
tractor, suppose a flywheel must be no more than  
18.0 cm in diameter. Its thickness, measured along its 
axis of rotation, must be no larger than 8.00 cm. The 
flywheel must release energy 60.0  J when its angular 
speed drops from 800 rev/min to 600 rev/min. Design 
a sturdy steel (density 7.85 3 103 kg/m3) flywheel to 
meet these requirements with the smallest mass you 
can reasonably attain. Specify the shape and mass of 
the flywheel.

S

(b) Assuming the board is 1.00 m long and is sup-
ported at this limiting angle, show that the cup must be 
18.4 cm from the moving end.

 81. A uniform solid sphere of radius r is placed on the 
inside surface of a hemispherical bowl with radius R. 
The sphere is released from rest at an angle u to the 
vertical and rolls without slipping (Fig. P10.81). Deter-
mine the angular speed of the sphere when it reaches 
the bottom of the bowl.

u
R

r

Figure P10.81

 82. Review. A spool of wire of mass M and radius R is 
unwound under a constant force F

S
 (Fig. P10.82). Assum-

ing the spool is a uniform, solid cylinder that doesn’t 
slip, show that (a) the acceleration of the center of mass 
is 4 F

S
/3M  and (b) the force of friction is to the right and 

equal in magnitude to F/3. (c) If the cylinder starts from 
rest and rolls without slipping, what is the speed of its 
center of mass after it has rolled through a distance d?

M

R

F
S

Figure P10.82

 83. A solid sphere of mass m and radius r rolls without slip-
ping along the track shown in Figure P10.83. It starts 
from rest with the lowest point of the sphere at height h 
above the bottom of the loop of radius R, much larger 
than r. (a) What is the minimum value of h (in terms of 
R) such that the sphere completes the loop? (b) What 
are the force components on the sphere at the point P 
if h 5 3R?

h R

Solid sphere of mass m 
and radius r !! R.

P

Figure P10.83

 84. A thin rod of mass 0.630 kg and length 1.24 m is at 
rest, hanging vertically from a strong, fixed hinge at its 

S

S

S
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Energy conservation:

∆K + ∆U = 0(
1

2
Iω2 +

1

2
mv2 − 0

)
+ (0 −mg(R − r)(1 − cos θ)) = 0

v = rω

(
1

2
(

2

5
mr2)ω2 +

1

2
m(rω)2

)
+mg(R − r)(cos θ− 1) = 0

7mr2ω2 + 10mg(R − r)(cos θ− 1) = 0

ω =

√
10g(R − r)(1 − cos θ)

7r2



Reminder about Force and Torque

Torque is a rotational extension of force, in the sense that it can
cause an acceleration / change in momentum:

#»τ = #»r × #»

F

We can write Newton’s Second Law in its more general form:

#»

Fnet =
d #»p

dt

This relates force to momentum.

Is there some similar rotational quantity that would relate torque
to a change in motion?

Yes!
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Angular Momentum

A new quantity, angular momentum:

#»

L = #»r × #»p

where

• #»r is the displacement vector of a particle relative to some axis
of rotation, and

• #»p is the momentum of the particle

Units: kg m2 s−1
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Angular Momentum

#»

L = #»r × #»p

 11.2 Analysis Model: Nonisolated System (Angular Momentum) 339

tional motion that pS plays in translational motion. We call this combination the 
angular momentum of the particle:

The instantaneous angular momentum L
S

 of a particle relative to an axis 
through the origin O is defined by the cross product of the particle’s instanta-
neous position vector rS and its instantaneous linear momentum pS:

 L
S

; rS 3 pS  (11.10)

We can now write Equation 11.9 as

 a tS 5
d L

S

dt
 (11.11)

which is the rotational analog of Newton’s second law, g  F
S

5 d pS/dt. Torque 
causes the angular momentum L

S
 to change just as force causes linear momentum 

pS to change.
 Notice that Equation 11.11 is valid only if g  tS and L

S
 are measured about the 

same axis. Furthermore, the expression is valid for any axis fixed in an inertial frame.
 The SI unit of angular momentum is kg ? m2/s. Notice also that both the mag-
nitude and the direction of L

S
 depend on the choice of axis. Following the right-

hand rule, we see that the direction of L
S

 is perpendicular to the plane formed by 
rS and pS. In Figure 11.4, rS and pS are in the xy plane, so L

S
 points in the z direction. 

Because pS 5 m vS, the magnitude of L
S

 is

 L 5 mvr sin f (11.12)

where f is the angle between rS and pS. It follows that L is zero when rS is parallel to 
pS (f 5 0 or 1808). In other words, when the translational velocity of the particle is 
along a line that passes through the axis, the particle has zero angular momentum 
with respect to the axis. On the other hand, if rS is perpendicular to pS (f 5 908), 
then L 5 mvr. At that instant, the particle moves exactly as if it were on the rim of a 
wheel rotating about the axis in a plane defined by rS and pS.

Q uick Quiz 11.2  Recall the skater described at the beginning of this section.  
Let her mass be m. (i) What would be her angular momentum relative to the 
pole at the instant she is a distance d from the pole if she were skating directly 
toward it at speed v? (a) zero (b) mvd (c) impossible to determine (ii) What 
would be her angular momentum relative to the pole at the instant she is a dis-
tance d from the pole if she were skating at speed v along a straight path that is 
a perpendicular distance a from the pole? (a) zero (b) mvd (c) mva (d) impos-
sible to determine

�W  Angular momentum  
of a particle

Figure 11.4 The angular 
momentum L

S
 of a particle is a  

vector given by L
S

5 rS 3 pS.

O

z

m
y

x
f

The angular momentum L of a 
particle about an axis is a vector 
perpendicular to both the 
particle’s position r relative to 
the axis and its momentum p.

rS

S

rS

pS

S

pS

L
S

S

! !

Pitfall Prevention 11.2
Is Rotation Necessary for Angular 
Momentum? We can define angu-
lar momentum even if the particle 
is not moving in a circular path.  
A particle moving in a straight 
line has angular momentum 
about any axis displaced from  
the path of the particle.

Example 11.3   Angular Momentum of a Particle in Circular Motion

A particle moves in the xy plane in a circular path of radius r as shown in Figure 
11.5. Find the magnitude and direction of its angular momentum relative to an axis 
through O when its velocity is vS.

Conceptualize  The linear momentum of the 
particle is always changing in direction (but not 
in magnitude). You might therefore be tempted 
to conclude that the angular momentum of the 
particle is always changing. In this situation, 
however, that is not the case. Let’s see why.

S O L U T I O N
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rS 
Figure 11.5  (Example 11.3) A 
particle moving in a circle of radius r 
has an angular momentum about an 
axis through O that has magnitude 
mvr. The vector L

S
5 rS 3 pS points 

out of the page.

continued



Angular Momentum

#»

L = #»r × #»p is a vector equation.

If we only need to know the magnitude of L, then we can use the
following expression:

L = mvr sinφ

where we used p = mv , and φ is the angle between #»r and #»p .



Angular Momentum of a Particle in Circular Motion

A particle has mass, m, velocity v , and travels in a circular path of
radius r about a point O. What is the magnitude of its angular
momentum relative to the axis O?
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where f is the angle between rS and pS. It follows that L is zero when rS is parallel to 
pS (f 5 0 or 1808). In other words, when the translational velocity of the particle is 
along a line that passes through the axis, the particle has zero angular momentum 
with respect to the axis. On the other hand, if rS is perpendicular to pS (f 5 908), 
then L 5 mvr. At that instant, the particle moves exactly as if it were on the rim of a 
wheel rotating about the axis in a plane defined by rS and pS.

Q uick Quiz 11.2  Recall the skater described at the beginning of this section.  
Let her mass be m. (i) What would be her angular momentum relative to the 
pole at the instant she is a distance d from the pole if she were skating directly 
toward it at speed v? (a) zero (b) mvd (c) impossible to determine (ii) What 
would be her angular momentum relative to the pole at the instant she is a dis-
tance d from the pole if she were skating at speed v along a straight path that is 
a perpendicular distance a from the pole? (a) zero (b) mvd (c) mva (d) impos-
sible to determine
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Pitfall Prevention 11.2
Is Rotation Necessary for Angular 
Momentum? We can define angu-
lar momentum even if the particle 
is not moving in a circular path.  
A particle moving in a straight 
line has angular momentum 
about any axis displaced from  
the path of the particle.

Example 11.3   Angular Momentum of a Particle in Circular Motion

A particle moves in the xy plane in a circular path of radius r as shown in Figure 
11.5. Find the magnitude and direction of its angular momentum relative to an axis 
through O when its velocity is vS.

Conceptualize  The linear momentum of the 
particle is always changing in direction (but not 
in magnitude). You might therefore be tempted 
to conclude that the angular momentum of the 
particle is always changing. In this situation, 
however, that is not the case. Let’s see why.

S O L U T I O N
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rS 
Figure 11.5  (Example 11.3) A 
particle moving in a circle of radius r 
has an angular momentum about an 
axis through O that has magnitude 
mvr. The vector L

S
5 rS 3 pS points 

out of the page.

continuedA particle has mass, m, velocity v , and travels in a circular path of
radius r about a point O. What is the magnitude of its angular
momentum relative to the axis O?

L = mrv

What is the direction of the angular momentum vector
#»

L?

(A) +k̂

(B) −k̂
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tional motion that pS plays in translational motion. We call this combination the 
angular momentum of the particle:

The instantaneous angular momentum L
S

 of a particle relative to an axis 
through the origin O is defined by the cross product of the particle’s instanta-
neous position vector rS and its instantaneous linear momentum pS:

 L
S

; rS 3 pS  (11.10)

We can now write Equation 11.9 as

 a tS 5
d L

S

dt
 (11.11)

which is the rotational analog of Newton’s second law, g  F
S

5 d pS/dt. Torque 
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S
 to change just as force causes linear momentum 

pS to change.
 Notice that Equation 11.11 is valid only if g  tS and L

S
 are measured about the 

same axis. Furthermore, the expression is valid for any axis fixed in an inertial frame.
 The SI unit of angular momentum is kg ? m2/s. Notice also that both the mag-
nitude and the direction of L

S
 depend on the choice of axis. Following the right-

hand rule, we see that the direction of L
S

 is perpendicular to the plane formed by 
rS and pS. In Figure 11.4, rS and pS are in the xy plane, so L

S
 points in the z direction. 

Because pS 5 m vS, the magnitude of L
S

 is

 L 5 mvr sin f (11.12)

where f is the angle between rS and pS. It follows that L is zero when rS is parallel to 
pS (f 5 0 or 1808). In other words, when the translational velocity of the particle is 
along a line that passes through the axis, the particle has zero angular momentum 
with respect to the axis. On the other hand, if rS is perpendicular to pS (f 5 908), 
then L 5 mvr. At that instant, the particle moves exactly as if it were on the rim of a 
wheel rotating about the axis in a plane defined by rS and pS.

Q uick Quiz 11.2  Recall the skater described at the beginning of this section.  
Let her mass be m. (i) What would be her angular momentum relative to the 
pole at the instant she is a distance d from the pole if she were skating directly 
toward it at speed v? (a) zero (b) mvd (c) impossible to determine (ii) What 
would be her angular momentum relative to the pole at the instant she is a dis-
tance d from the pole if she were skating at speed v along a straight path that is 
a perpendicular distance a from the pole? (a) zero (b) mvd (c) mva (d) impos-
sible to determine

�W  Angular momentum  
of a particle

Figure 11.4 The angular 
momentum L

S
 of a particle is a  

vector given by L
S

5 rS 3 pS.

O

z

m
y

x
f

The angular momentum L of a 
particle about an axis is a vector 
perpendicular to both the 
particle’s position r relative to 
the axis and its momentum p.

rS

S

rS

pS

S

pS

L
S

S

! !

Pitfall Prevention 11.2
Is Rotation Necessary for Angular 
Momentum? We can define angu-
lar momentum even if the particle 
is not moving in a circular path.  
A particle moving in a straight 
line has angular momentum 
about any axis displaced from  
the path of the particle.

Example 11.3   Angular Momentum of a Particle in Circular Motion

A particle moves in the xy plane in a circular path of radius r as shown in Figure 
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through O when its velocity is vS.

Conceptualize  The linear momentum of the 
particle is always changing in direction (but not 
in magnitude). You might therefore be tempted 
to conclude that the angular momentum of the 
particle is always changing. In this situation, 
however, that is not the case. Let’s see why.

S O L U T I O N

x

y

m

O

vS

rS 
Figure 11.5  (Example 11.3) A 
particle moving in a circle of radius r 
has an angular momentum about an 
axis through O that has magnitude 
mvr. The vector L

S
5 rS 3 pS points 

out of the page.

continuedA particle has mass, m, velocity v , and travels in a circular path of
radius r about a point O. What is the magnitude of its angular
momentum relative to the axis O?

L = mrv

What is the direction of the angular momentum vector
#»

L?

(A) +k̂ ←
(B) −k̂



Angular Momentum of Rigid Object

342 Chapter 11 Angular Momentum

Finalize  When we evaluated the net torque about the axle, we did not include the forces that the cord exerts on the 
objects because these forces are internal to the system under consideration. Instead, we analyzed the system as a 
whole. Only external torques contribute to the change in the system’s angular momentum. Let M S 0 in Equation (3) 
and call the result Equation A. Now go back to Equation (5) in Example 5.10, let u S 0, and call the result Equation B.  
Do Equations A and B match? Looking at Figures 5.15 and 11.6 in these limits, should the two equations match?

Substitute this expression and the total external torque 
into Equation 11.13, the mathematical representation of 
the nonisolated system model for angular momentum:

a text 5
dL
dt

m1gR 5
d
dt

 3 1m1 1 m2 1 M 2vR 4
(2)   m1gR 5 1m1 1 m2 1 M 2R 

dv
dt

Recognizing that dv/dt 5 a, solve Equation (2) for a : (3)   a 5 
m1g

m1 1 m2 1 M

11.3 Angular Momentum of a Rotating Rigid Object
In Example 11.4, we considered the angular momentum of a deformable system of 
particles. Let us now restrict our attention to a nondeformable system, a rigid object. 
Consider a rigid object rotating about a fixed axis that coincides with the z axis of a 
coordinate system as shown in Figure 11.7. Let’s determine the angular momentum 
of this object. Each particle of the object rotates in the xy plane about the z axis with 
an angular speed v. The magnitude of the angular momentum of a particle of mass 
mi about the z axis is miviri . Because vi 5 ri v (Eq. 10.10), we can express the magni-
tude of the angular momentum of this particle as

Li 5 miri
2v

The vector L
S

i for this particle is directed along the z axis, as is the vector vS.
 We can now find the angular momentum (which in this situation has only a z 
component) of the whole object by taking the sum of Li over all particles:

Lz 5 a
i

Li 5 a
i

m iri
 2v 5 aa

i
m iri 2bv

 Lz 5 Iv (11.14)

where we have recognized oi miri
2 as the moment of inertia I of the object about the 

z axis (Eq. 10.19). Notice that Equation 11.14 is mathematically similar in form to 
Equation 9.2 for linear momentum: pS 5 mvS.
 Now let’s differentiate Equation 11.14 with respect to time, noting that I is con-
stant for a rigid object:

 
dLz

dt
5 I 

dv

dt
5 Ia (11.15)

y

z

x

mi
vi
S

L
S

rS 

v
S

Figure 11.7  When a rigid object 
rotates about an axis, the angu-
lar momentum L

S
 is in the same 

direction as the angular velocity 
v
S according to the expression 
L
S

5 I v
S .

Write an expression for the total angular momentum of 
the system:

(1)   L 5 m1vR 1 m2vR 1 MvR 5 (m1 1 m2 1 M)vR

acting on the block is balanced by the gravitational force m2gS, so these forces do not contribute to the torque. The 
gravitational force m1gS acting on the sphere produces a torque about the axle equal in magnitude to m1gR, where R 
is the moment arm of the force about the axle. This result is the total external torque about the pulley axle; that is, g  text 5 m1gR.

 

▸ 11.4 c o n t i n u e d

All parts of the object have the same angular velocity #»ω.



Angular Momentum of Rigid Object
Consider a rotating rigid object. Let the z-axis point along the axis
of rotation, #»ω = ωk̂.
For one particle in the object, mass mi , at radius ri :

#»

L = mivi ri k̂

= mi (ωri )ri k̂

= mi r
2
i

#»ω

For a rigid object made of many particles:

#»

L tot =
∑
i

#»

L i

=

(∑
i

mi r
2
i

)
#»ω

= I #»ω
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Angular Momentum of Rigid Object

For a rigid object:

#»

L = I #»ω

where I is the moment of inertia and #»ω is the angular velocity.



Question

Quick Quiz 11.32 A solid sphere and a hollow sphere have the
same mass and radius. They are rotating with the same angular
speed. Which one has the higher angular momentum?

(A) the solid sphere

(B) the hollow sphere

(C) both have the same angular momentum

(D) impossible to determine

2Serway & Jewett, page 343.
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speed. Which one has the higher angular momentum?
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Summary

• energy of rotation

• rolling motion

• examples

3rd Assignment due tomorrow.

(Uncollected) Homework Serway & Jewett,

• Ch 10, rolling motion, CQ 13; Probs: 59, 61, 65.


