

Rotation Rolling Motion Angular Momentum

Lana Sheridan

De Anza College

Mar 12, 2020

Last time

- moment of inertia volume integral example
- applications of moments of inertia
- Atwood machine with massive pulley

Overview

- kinetic energy, work, and power of rotation
- Rolling motion
- Examples

Work-Kinetic Energy Theorem

$$W = \int \tau d\theta$$
$$= \int (I\alpha) d\theta$$

Work-Kinetic Energy Theorem

$$W = \int \tau d\theta$$

= $\int (I\alpha) d\theta$
= $\int I \frac{d\omega}{dt} d\theta$
= $\int I \left(\frac{d\omega}{d\theta} \frac{d\theta}{dt}\right) d\theta$
= $\int I\omega d\omega$

Work-Kinetic Energy Theorem

$$W = \int \tau d\theta$$

= $\int (I\alpha) d\theta$
= $\int I \frac{d\omega}{dt} d\theta$
= $\int I \left(\frac{d\omega}{d\theta} \frac{d\theta}{dt}\right) d\theta$
= $\int I\omega d\omega$
= $\Delta \left(\frac{1}{2}I\omega^2\right)$

 $W = \Delta K$

Rolling Motion

A combination of translation and rotation.

The CM is translated at velocity v_{CM} .

Notice that instantaneously P is the pivot point of the rotation.

Rolling Motion

The pivot point of the rotation changes as different parts of the wheel contact the surface.

$$v_{\rm CM} = \frac{{\rm ds}}{{
m dt}} = R\omega$$

Kinetic Energy of a Rolling Object

The kinetic energy of a rolling object is just the sum of the rotational KE and translational KE. Can see this by considering

just an instantaneous rotation about the point P:

$$K = \frac{1}{2}I_P\omega^2$$

Using the parallel axis theorem: $I_P = I_{CM} + mR^2$.

$$K = \frac{1}{2}(I_{CM} + mR^2)\omega^2$$
$$= \frac{1}{2}I_{CM}\omega^2 + \frac{1}{2}mv_{CM}^2$$
$$= K_{CM,rot} + K_{CM,trans}$$

A sphere starts from rest at the top of an incline and rolls down. Find the (translational) velocity of the center of mass at the bottom of the incline.

A sphere starts from rest at the top of an incline and rolls down. Find the (translational) velocity of the center of mass at the bottom of the incline.

$\Delta K + \Delta U = 0$

A sphere starts from rest at the top of an incline and rolls down. Find the (translational) velocity of the center of mass at the bottom of the incline.

$$\Delta K + \Delta U = 0$$
$$\left(\frac{1}{2}I_{\rm CM}\omega^2 + \frac{1}{2}Mv_{\rm CM}^2 - 0\right) + (0 - Mgh) = 0$$

A sphere starts from rest at the top of an incline and rolls down. Find the (translational) velocity of the center of mass at the bottom of the incline.

Question

Quick Quiz 10.7¹ A ball rolls without slipping down incline A, starting from rest. At the same time, a box starts from rest and slides down incline B, which is identical to incline A except that it is frictionless. Which arrives at the bottom first?

- (A) The ball arrives first.
- (B) The box arrives first.
- (C) Both arrive at the same time.
- (D) It is impossible to determine.

¹Serway & Jewett, page 318.

Question

Quick Quiz 10.7¹ A ball rolls without slipping down incline A, starting from rest. At the same time, a box starts from rest and slides down incline B, which is identical to incline A except that it is frictionless. Which arrives at the bottom first?

- (A) The ball arrives first.
- (B) The box arrives first. ←
- (C) Both arrive at the same time.
- (D) It is impossible to determine.

¹Serway & Jewett, page 318.

A cylindrically symmetric spool of mass m and radius R, and moment of inertia I, sits at rest on a horizontal table with friction. You pull on on a light string wrapped around the axle (radius r) of the spool with a constant horizontal force of magnitude T to the right. As a result, the spool rolls without slipping a distance Lalong the table with no rolling friction.

Find the final translational speed of the center of mass of the spool.

Can use: $W = \Delta K$.

Can use: $W = \Delta K$.

$$W = TL\left(1 + \frac{r}{R}\right)$$

This can be thought of in two ways.

First, the string unrolls from the spool, so the point of application of the force \vec{F} (the hand) moves a distance $L + L\frac{r}{R}$.

Alternatively, there is work done translating the spool: W = TL, plus work done rotating the spool: $W = \tau \Delta \theta = (rT) \left(\frac{L}{R}\right)$.

Can use: $W = \Delta K$.

$$W = TL\left(1 + \frac{r}{R}\right)$$
$$v_{\rm CM} = \sqrt{\frac{2TL\left(1 + r/R\right)}{m + I/R^2}}$$

Example: Rolling, pg333, # 81

81. A uniform solid sphere of radius r is placed on the inside surface of a hemispherical bowl with radius R. The sphere is released from rest at an angle θ to the vertical and rolls without slipping (Fig. P10.81). Determine the angular speed of the sphere when it reaches the bottom of the bowl.

Example: Rolling, pg333, # 81

Energy conservation:

$$\Delta K + \Delta U = 0$$
$$\left(\frac{1}{2}I\omega^2 + \frac{1}{2}mv^2 - 0\right) + \left(0 - mg(R - r)(1 - \cos\theta)\right) = 0$$

 $v = r\omega$

$$\left(\frac{1}{2}(\frac{2}{5}mr^2)\omega^2 + \frac{1}{2}m(r\omega)^2\right) + mg(R-r)(\cos\theta - 1) = 0$$

$$7mr^2\omega^2 + 10mg(R-r)(\cos\theta - 1) = 0$$

$$\omega = \sqrt{\frac{10g(R-r)(1-\cos\theta)}{7r^2}}$$

Reminder about Force and Torque

Torque is a rotational extension of force, in the sense that it can cause an acceleration / change in momentum:

$$\vec{\tau} = \vec{r} \times \vec{F}$$

We can write Newton's Second Law in its more general form:

$$\vec{\mathbf{F}}_{net} = \frac{d\vec{\mathbf{p}}}{dt}$$

This relates **force** to **momentum**.

Reminder about Force and Torque

Torque is a rotational extension of force, in the sense that it can cause an acceleration / change in momentum:

$$\vec{\tau} = \vec{r} \times \vec{F}$$

We can write Newton's Second Law in its more general form:

$$\vec{\mathbf{F}}_{net} = \frac{d\vec{\mathbf{p}}}{dt}$$

This relates **force** to **momentum**.

Is there some similar rotational quantity that would relate torque to a change in motion?

Reminder about Force and Torque

Torque is a rotational extension of force, in the sense that it can cause an acceleration / change in momentum:

$$\vec{\tau} = \vec{r} \times \vec{F}$$

We can write Newton's Second Law in its more general form:

$$\vec{\mathbf{F}}_{net} = \frac{d\vec{\mathbf{p}}}{dt}$$

This relates **force** to **momentum**.

Is there some similar rotational quantity that would relate torque to a change in motion?

Yes!

A new quantity, angular momentum:

$$\vec{L}=\vec{r}\times\vec{p}$$

where

- \vec{r} is the displacement vector of a particle relative to some axis of rotation, and
- \vec{p} is the momentum of the particle

A new quantity, angular momentum:

$$\vec{L}=\vec{r}\times\vec{p}$$

where

- \vec{r} is the displacement vector of a particle relative to some axis of rotation, and
- \vec{p} is the momentum of the particle

Units: kg m 2 s $^{-1}$

$$\vec{L} = \vec{r} \times \vec{p}$$

The angular momentum $\vec{\mathbf{L}}$ of a particle about an axis is a vector perpendicular to both the particle's position $\vec{\mathbf{r}}$ relative to the axis and its momentum $\vec{\mathbf{p}}$.

 $\vec{L} = \vec{r} \times \vec{p}$ is a vector equation.

If we only need to know the magnitude of L, then we can use the following expression:

 $L = mvr \sin \phi$

where we used p = mv, and ϕ is the angle between \vec{r} and \vec{p} .

Angular Momentum of a Particle in Circular Motion

A particle has mass, m, velocity v, and travels in a circular path of radius r about a point O. What is the magnitude of its angular momentum relative to the axis O?

Angular Momentum of a Particle in Circular Motion

A particle has mass, m, velocity v, and travels in a circular path of radius r about a point O. What is the magnitude of its angular momentum relative to the axis O?

$$L = mrv$$

What is the direction of the angular momentum vector \vec{L} ?

$$(A) + \hat{k}$$
$$(B) - \hat{k}$$

Angular Momentum of a Particle in Circular Motion

A particle has mass, m, velocity v, and travels in a circular path of radius r about a point O. What is the magnitude of its angular momentum relative to the axis O?

$$L = mrv$$

What is the direction of the angular momentum vector \vec{L} ?

$$\begin{array}{ll} (\mathsf{A}) & +\hat{\mathsf{k}} & \longleftarrow \\ (\mathsf{B}) & -\hat{\mathsf{k}} & \end{array}$$

All parts of the object have the same angular velocity $\vec{\omega}$.

Consider a rotating rigid object. Let the z-axis point along the axis of rotation, $\vec{\omega} = \omega \hat{\mathbf{k}}$.

For one particle in the object, mass m_i , at radius r_i :

$$\vec{\mathbf{L}} = m_i v_i r_i \, \hat{\mathbf{k}} = m_i (\omega r_i) r_i \, \hat{\mathbf{k}} = m_i r_i^2 \vec{\omega}$$

For a rigid object made of many particles:

Consider a rotating rigid object. Let the z-axis point along the axis of rotation, $\vec{\omega} = \omega \hat{\mathbf{k}}$.

For one particle in the object, mass m_i , at radius r_i :

$$\vec{\mathbf{L}} = m_i v_i r_i \, \hat{\mathbf{k}} = m_i (\omega r_i) r_i \, \hat{\mathbf{k}} = m_i r_i^2 \, \vec{\omega}$$

For a rigid object made of many particles:

$$\vec{\mathbf{L}}_{\text{tot}} = \sum_{i} \vec{\mathbf{L}}_{i}$$
$$= \left(\sum_{i} m_{i} r_{i}^{2}\right) \vec{\boldsymbol{\omega}}$$
$$= I \vec{\boldsymbol{\omega}}$$

For a rigid object:

$\vec{\mathbf{L}} = I\vec{\boldsymbol{\omega}}$

where I is the moment of inertia and $\vec{\omega}$ is the angular velocity.

Question

Quick Quiz 11.3² A solid sphere and a hollow sphere have the same mass and radius. They are rotating with the same angular speed. Which one has the higher angular momentum?

(A) the solid sphere

- (B) the hollow sphere
- (C) both have the same angular momentum
- (D) impossible to determine

²Serway & Jewett, page 343.

Question

Quick Quiz 11.3² A solid sphere and a hollow sphere have the same mass and radius. They are rotating with the same angular speed. Which one has the higher angular momentum?

 \leftarrow

(A) the solid sphere

- (B) the hollow sphere
- (C) both have the same angular momentum
- (D) impossible to determine

²Serway & Jewett, page 343.

Summary

- energy of rotation
- rolling motion
- examples

3rd Assignment due tomorrow.

(Uncollected) Homework Serway & Jewett,

• Ch 10, rolling motion, CQ 13; Probs: 59, 61, 65.