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• rolling motion



Overview

• Definition of angular momentum

• angular momentum of rigid objects

• relation to Newton’s 2nd law

• angular impulse



Reminder about Force and Torque

Torque is a rotational extension of force, in the sense that it can
cause an acceleration / change in momentum:

#»τ = #»r × #»

F

We can write Newton’s Second Law in its more general form:

#»

Fnet =
d #»p

dt

This relates force to momentum.

Is there some similar rotational quantity that would relate torque
to a change in motion?

Yes!



Reminder about Force and Torque

Torque is a rotational extension of force, in the sense that it can
cause an acceleration / change in momentum:

#»τ = #»r × #»

F

We can write Newton’s Second Law in its more general form:

#»

Fnet =
d #»p

dt

This relates force to momentum.

Is there some similar rotational quantity that would relate torque
to a change in motion?

Yes!



Reminder about Force and Torque

Torque is a rotational extension of force, in the sense that it can
cause an acceleration / change in momentum:

#»τ = #»r × #»

F

We can write Newton’s Second Law in its more general form:

#»

Fnet =
d #»p

dt

This relates force to momentum.

Is there some similar rotational quantity that would relate torque
to a change in motion?

Yes!



Angular Momentum

A new quantity, angular momentum:

#»

L = #»r × #»p

where

• #»r is the displacement vector of a particle relative to some axis
of rotation, and

• #»p is the momentum of the particle

Units: kg m2 s−1
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Angular Momentum and Newton’s Second Law

This is a more general form of Newton’s second law for rotations!

#»τ net =
d

#»

L

dt

⇒ torques cause changes in angular momentum,
#»

L .

Compare:
#»

Fnet =
d #»p
dt
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Angular Momentum

#»

L = #»r × #»p

 11.2 Analysis Model: Nonisolated System (Angular Momentum) 339

tional motion that pS plays in translational motion. We call this combination the 
angular momentum of the particle:

The instantaneous angular momentum L
S

 of a particle relative to an axis 
through the origin O is defined by the cross product of the particle’s instanta-
neous position vector rS and its instantaneous linear momentum pS:

 L
S

; rS 3 pS  (11.10)

We can now write Equation 11.9 as

 a tS 5
d L

S

dt
 (11.11)

which is the rotational analog of Newton’s second law, g  F
S

5 d pS/dt. Torque 
causes the angular momentum L

S
 to change just as force causes linear momentum 

pS to change.
 Notice that Equation 11.11 is valid only if g  tS and L

S
 are measured about the 

same axis. Furthermore, the expression is valid for any axis fixed in an inertial frame.
 The SI unit of angular momentum is kg ? m2/s. Notice also that both the mag-
nitude and the direction of L

S
 depend on the choice of axis. Following the right-

hand rule, we see that the direction of L
S

 is perpendicular to the plane formed by 
rS and pS. In Figure 11.4, rS and pS are in the xy plane, so L

S
 points in the z direction. 

Because pS 5 m vS, the magnitude of L
S

 is

 L 5 mvr sin f (11.12)

where f is the angle between rS and pS. It follows that L is zero when rS is parallel to 
pS (f 5 0 or 1808). In other words, when the translational velocity of the particle is 
along a line that passes through the axis, the particle has zero angular momentum 
with respect to the axis. On the other hand, if rS is perpendicular to pS (f 5 908), 
then L 5 mvr. At that instant, the particle moves exactly as if it were on the rim of a 
wheel rotating about the axis in a plane defined by rS and pS.

Q uick Quiz 11.2  Recall the skater described at the beginning of this section.  
Let her mass be m. (i) What would be her angular momentum relative to the 
pole at the instant she is a distance d from the pole if she were skating directly 
toward it at speed v? (a) zero (b) mvd (c) impossible to determine (ii) What 
would be her angular momentum relative to the pole at the instant she is a dis-
tance d from the pole if she were skating at speed v along a straight path that is 
a perpendicular distance a from the pole? (a) zero (b) mvd (c) mva (d) impos-
sible to determine

�W  Angular momentum  
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Pitfall Prevention 11.2
Is Rotation Necessary for Angular 
Momentum? We can define angu-
lar momentum even if the particle 
is not moving in a circular path.  
A particle moving in a straight 
line has angular momentum 
about any axis displaced from  
the path of the particle.

Example 11.3   Angular Momentum of a Particle in Circular Motion

A particle moves in the xy plane in a circular path of radius r as shown in Figure 
11.5. Find the magnitude and direction of its angular momentum relative to an axis 
through O when its velocity is vS.

Conceptualize  The linear momentum of the 
particle is always changing in direction (but not 
in magnitude). You might therefore be tempted 
to conclude that the angular momentum of the 
particle is always changing. In this situation, 
however, that is not the case. Let’s see why.

S O L U T I O N
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Figure 11.5  (Example 11.3) A 
particle moving in a circle of radius r 
has an angular momentum about an 
axis through O that has magnitude 
mvr. The vector L

S
5 rS 3 pS points 

out of the page.

continued



Angular Momentum

#»

L = #»r × #»p is a vector equation.

If we only need to know the magnitude of L, then we can use the
following expression:

L = mvr sinφ

where we used p = mv , and φ is the angle between #»r and #»p .



Angular Momentum of a Particle in Circular Motion

A particle has mass, m, velocity v , and travels in a circular path of
radius r about a point O. What is the magnitude of its angular
momentum relative to the axis O?
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continuedA particle has mass, m, velocity v , and travels in a circular path of
radius r about a point O. What is the magnitude of its angular
momentum relative to the axis O?

L = mrv

What is the direction of the angular momentum vector
#»

L?

(A) +k̂

(B) −k̂
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342 Chapter 11 Angular Momentum

Finalize  When we evaluated the net torque about the axle, we did not include the forces that the cord exerts on the 
objects because these forces are internal to the system under consideration. Instead, we analyzed the system as a 
whole. Only external torques contribute to the change in the system’s angular momentum. Let M S 0 in Equation (3) 
and call the result Equation A. Now go back to Equation (5) in Example 5.10, let u S 0, and call the result Equation B.  
Do Equations A and B match? Looking at Figures 5.15 and 11.6 in these limits, should the two equations match?

Substitute this expression and the total external torque 
into Equation 11.13, the mathematical representation of 
the nonisolated system model for angular momentum:

a text 5
dL
dt

m1gR 5
d
dt

 3 1m1 1 m2 1 M 2vR 4
(2)   m1gR 5 1m1 1 m2 1 M 2R 

dv
dt

Recognizing that dv/dt 5 a, solve Equation (2) for a : (3)   a 5 
m1g

m1 1 m2 1 M

11.3 Angular Momentum of a Rotating Rigid Object
In Example 11.4, we considered the angular momentum of a deformable system of 
particles. Let us now restrict our attention to a nondeformable system, a rigid object. 
Consider a rigid object rotating about a fixed axis that coincides with the z axis of a 
coordinate system as shown in Figure 11.7. Let’s determine the angular momentum 
of this object. Each particle of the object rotates in the xy plane about the z axis with 
an angular speed v. The magnitude of the angular momentum of a particle of mass 
mi about the z axis is miviri . Because vi 5 ri v (Eq. 10.10), we can express the magni-
tude of the angular momentum of this particle as

Li 5 miri
2v

The vector L
S

i for this particle is directed along the z axis, as is the vector vS.
 We can now find the angular momentum (which in this situation has only a z 
component) of the whole object by taking the sum of Li over all particles:

Lz 5 a
i

Li 5 a
i

m iri
 2v 5 aa

i
m iri 2bv

 Lz 5 Iv (11.14)

where we have recognized oi miri
2 as the moment of inertia I of the object about the 

z axis (Eq. 10.19). Notice that Equation 11.14 is mathematically similar in form to 
Equation 9.2 for linear momentum: pS 5 mvS.
 Now let’s differentiate Equation 11.14 with respect to time, noting that I is con-
stant for a rigid object:

 
dLz

dt
5 I 

dv

dt
5 Ia (11.15)

y

z

x

mi
vi
S

L
S

rS 

v
S

Figure 11.7  When a rigid object 
rotates about an axis, the angu-
lar momentum L

S
 is in the same 

direction as the angular velocity 
v
S according to the expression 
L
S

5 I v
S .

Write an expression for the total angular momentum of 
the system:

(1)   L 5 m1vR 1 m2vR 1 MvR 5 (m1 1 m2 1 M)vR

acting on the block is balanced by the gravitational force m2gS, so these forces do not contribute to the torque. The 
gravitational force m1gS acting on the sphere produces a torque about the axle equal in magnitude to m1gR, where R 
is the moment arm of the force about the axle. This result is the total external torque about the pulley axle; that is, g  text 5 m1gR.

 

▸ 11.4 c o n t i n u e d

All parts of the object have the same angular velocity #»ω.



Angular Momentum of Rigid Object
Consider a rotating rigid object. Let the z-axis point along the axis
of rotation, #»ω = ωk̂.
For one particle in the object, mass mi , at radius ri :

#»

L = mivi ri k̂

= mi (ωri )ri k̂

= mi r
2
i

#»ω

For a rigid object made of many particles:

#»

L tot =
∑
i

#»

L i

=

(∑
i

mi r
2
i

)
#»ω

= I #»ω
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Angular Momentum of Rigid Object

For a rigid object:

#»

L = I #»ω

where I is the moment of inertia and #»ω is the angular velocity.



Question

Quick Quiz 11.31 A solid sphere and a hollow sphere have the
same mass and radius. They are rotating with the same angular
speed. Which one has the higher angular momentum?

(A) the solid sphere

(B) the hollow sphere

(C) both have the same angular momentum

(D) impossible to determine

1Serway & Jewett, page 343.
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Example 11.6 - Rigid Object Angular Momentum
A father of mass mf and his daughter of mass md sit on opposite
ends of a seesaw at equal distances from the pivot at the center.
The seesaw is modeled as a rigid rod of mass M and length `, and
is pivoted without friction. At a given moment, the combination
rotates in a vertical plane with an angular speed ω.

Find an expression for the magnitude of the system’s angular
momentum.

344 Chapter 11 Angular Momentum

Example 11.6   The Seesaw 

A father of mass mf  and his daughter of mass md sit on 
opposite ends of a seesaw at equal distances from the 
pivot at the center (Fig. 11.9). The seesaw is modeled as 
a rigid rod of mass M and length , and is pivoted without 
friction. At a given moment, the combination rotates in a 
vertical plane with an angular speed v.

(A)  Find an expression for the magnitude of the system’s 
angular momentum.

Conceptualize  Identify the z axis through O as the axis of rotation in Figure 11.9. The rotating system has angular 
momentum about that axis.

Categorize  Ignore any movement of arms or legs of the father and daughter and model them both as particles. The 
system is therefore modeled as a rigid object. This first part of the example is categorized as a substitution problem.
 The moment of inertia of the system equals the sum of the moments of inertia of the three components: the seesaw 
and the two individuals. We can refer to Table 10.2 to obtain the expression for the moment of inertia of the rod and 
use the particle expression I 5 mr 2 for each person.

AM

S O L U T I O N
mf

!

O

y

xu

mdgS 

gS 

Figure 11.9  (Example 
11.6) A father and 
daughter demonstrate 
angular momentum on 
a seesaw.

Find the total moment of inertia of the system about the 
z axis through O :

I 5 1
12M,2 1 mf a,

2
b2

1 mda,

2
b2

5
,2

4
aM

3
1 mf 1 mdb

Find the magnitude of the angular momentum of the 
system:

L 5 Iv 5 
,2

4
aM

3
1 mf 1 mdbv

(B)  Find an expression for the magnitude of the angular acceleration of the system when the seesaw makes an angle u 
with the horizontal.

Conceptualize  Generally, fathers are more massive than daughters, so the system is not in equilibrium and has an 
angular acceleration. We expect the angular acceleration to be positive in Figure 11.9.

Categorize  The combination of the board, father, and daughter is a rigid object under a net torque because of the external 
torque associated with the gravitational forces on the father and daughter. We again identify the axis of rotation as the 
z axis in Figure 11.9.

Analyze  To find the angular acceleration of the system at any angle u, we first calculate the net torque on the system 
and then use o text 5 Ia from the rigid object under a net torque model to obtain an expression for a.

S O L U T I O N

Evaluate the torque due to the gravitational force on the 
father:

tf 5 mf g  
,

2
  cos u 1 tSf out of page 2

Evaluate the torque due to the gravitational force on the 
daughter:

td 5 2mdg  
,

2
  cos u   1 tSd into page 2

Evaluate the net external torque exerted on the system: a text 5 tf 1 td 5 1
2 1mf 2 md 2g , cos u

Use Equation 11.16 and I from part (A) to find a: a 5
a text

I
5  

2 1mf 2 md 2g cos u

, 3 1M/3 2 1 mf 1 md 4
Finalize  For a father more massive than his daughter, the angular acceleration is positive as expected. If the seesaw 
begins in a horizontal orientation (u 5 0) and is released, the rotation is counterclockwise in Figure 11.9 and the 
father’s end of the seesaw drops, which is consistent with everyday experience.

Imagine the father moves inward on the seesaw to a distance d from the pivot to try to balance the two 
sides. What is the angular acceleration of the system in this case when it is released from an arbitrary angle u?
WHAT IF ?



Example 11.6 - Rigid Object Angular Momentum

Magnitude of the system’s angular momentum?

Use: L = Iω

I =
1

12
M`2 +mf

(
`

2

)2

+md

(
`

2

)2

So,

L =
`2

4

(
1

3
M +mf +md

)
ω
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Angular Momentum and Newton’s Second Law

Once again:

#»τ net =
d

#»

L

dt

⇒ torques cause changes in angular momentum,
#»

L .

Compare:
#»

Fnet =
d #»p
dt
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Angular Momentum and Newton’s Second Law
Confirming d

#»
L
dt = τnet:

d
#»

L

dt
=

d( #»r × #»p )

dt

= #»r × d #»p

dt
+

d #»r

dt
× #»p

= #»r × d #»p

dt
+���

�:0#»v × #»p

because, #»v and #»p are always parallel. Noting
#»

Fnet =
d #»p
dt :

d
#»

L

dt
= #»r × #»

Fnet

By definition #»τ net =
#»r × #»

Fnet, so

d
#»

L

dt
= #»τ net X
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Angular Impulse

We have:

#»τ net =
d

#»

L

dt

We can now define the angular impulse on a system as

#   »

∆L =

∫
#»τ net dt

A torque applied over time changes the angular momentum.

• Angular impulse is a vector

• Units: kg m2 s−1



Newton’s Second Law for Rotations
We said

#»τ net =
d

#»

L

dt

is the more general form of Newton’s second law for rotations.

What about our previous version of Newton’s second law for
rotations ( #»τ net = I #»α)? Suppose I is constant:

#»τ net =
d

#»

L

dt
=

d(I #»ω)

dt

=
�
�
��
0

dI

dt
#»ω+ I

d #»ω

dt

If we consider a fixed rigid object and fixed axis of rotation, dI
dt = 0:

#»τ net = I #»α
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Summary

• introducing angular momentum

• angular momentum of rigid objects

• Newton’s second law again

• angular impulse

Assignment 4 due Friday, Mar 20.

(Uncollected) Homework Serway & Jewett:

• Ch 11, onward from page 355. Probs: 1, 3, 11, 13, 17, 25


