Rotation
 Angular Momentum
 Conservation of Angular Momentum

Lana Sheridan
De Anza College
Mar 16, 2020

Last time

- Definition of angular momentum
- angular momentum of rigid objects
- relation to Newton's 2nd law

Overview

- angular impulse
- angular momentum of an object moving in a straight line
- conservation of angular momentum
- applying conservation of momentum

Angular Momentum and Newton's Second Law

More general form of Newton's second law for rotations:

$$
\vec{\tau}_{\text {net }}=\frac{\mathrm{d} \overrightarrow{\mathrm{~L}}}{\mathrm{dt}}
$$

\Rightarrow torques cause changes in angular momentum, $\overrightarrow{\mathbf{L}}$.

Compare: $\overrightarrow{\mathbf{F}}_{\text {net }}=\frac{\mathrm{d} \overrightarrow{\mathbf{p}}}{\mathrm{dt}}$

Angular Impulse

We have:

$$
\overrightarrow{\boldsymbol{\tau}}_{\text {net }}=\frac{\mathrm{d} \overrightarrow{\mathbf{L}}}{\mathrm{dt}}
$$

We can now define the angular impulse on a system as

$$
\overrightarrow{\boldsymbol{\Delta} \boldsymbol{L}}=\int \overrightarrow{\boldsymbol{\tau}}_{\mathrm{net}} \mathrm{dt}
$$

A torque applied over time changes the angular momentum.

- Angular impulse is a vector
- Units: $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$

Newton's Second Law for Rotations

We said

$$
\overrightarrow{\boldsymbol{\tau}}_{\text {net }}=\frac{\mathrm{d} \overrightarrow{\mathbf{L}}}{\mathrm{dt}}
$$

is the more general form of Newton's second law for rotations.

What about our previous version of Newton's second law for rotations $\left(\vec{\tau}_{\text {net }}=I \vec{\alpha}\right)$? Suppose I is constant:

$$
\overrightarrow{\boldsymbol{\tau}}_{\mathrm{net}}=\frac{\mathrm{d} \overrightarrow{\mathbf{L}}}{\mathrm{dt}}=\frac{\mathrm{d}(I \overrightarrow{\boldsymbol{\omega}})}{\mathrm{dt}}
$$

Newton's Second Law for Rotations

We said

$$
\overrightarrow{\boldsymbol{\tau}}_{\text {net }}=\frac{\mathrm{d} \overrightarrow{\mathbf{L}}}{\mathrm{dt}}
$$

is the more general form of Newton's second law for rotations.

What about our previous version of Newton's second law for rotations $\left(\overrightarrow{\boldsymbol{\tau}}_{\text {net }}=I \vec{\alpha}\right)$? Suppose I is constant:

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\tau}}_{\mathrm{net}} & =\frac{\mathrm{d} \overrightarrow{\mathbf{L}}}{\mathrm{dt}}=\frac{\mathrm{d}(I \overrightarrow{\boldsymbol{\omega}})}{\mathrm{dt}} \\
& =\frac{\mathrm{d} \overrightarrow{f^{\prime}}}{\mathrm{dt}} \overrightarrow{\mathbf{\omega}}+I \frac{\mathrm{~d} \overrightarrow{\boldsymbol{\omega}}}{d t}
\end{aligned}
$$

If we consider a fixed rigid object and fixed axis of rotation, $\frac{\mathrm{d} I}{\mathrm{dt}}=0$:

$$
\overrightarrow{\boldsymbol{\tau}}_{\mathrm{net}}=I \overrightarrow{\boldsymbol{\alpha}}
$$

Angular Momentum of a Falling Object

A rock, mass m, is dropped near the surface of the Earth at the north pole from a height h. After a time t its velocity is v. Let $R_{\text {Earth }}$ be the radius of the Earth.

What is the magnitude of angular momentum of the rock about the center of the Earth?
(A) $m g h$
(B) $m v h$
(C) $m v R_{\text {Earth }}$
(D) 0

Angular Momentum of a Falling Object

A rock, mass m, is dropped near the surface of the Earth at the north pole from a height h. After a time t its velocity is v. Let $R_{\text {Earth }}$ be the radius of the Earth.

What is the magnitude of angular momentum of the rock about the center of the Earth?
(A) $m g h$
(B) $m v h$
(C) $m v R_{\text {Earth }}$
(D) 0

Angular mtm of an object moving in a Straight Line

Suppose a particle is in motion relative to an axis O and no forces act on it. $(\Delta \overrightarrow{\mathbf{p}}=0)$

The distance of closest approach of the particle to the axis is R.

What is the angular momentum of the particle about O ?

Isolated Object moving in a Straight Line

First consider the particle at point $f . \overrightarrow{\mathbf{p}}$ is perpendicular to $\overrightarrow{\mathbf{r}}_{f}$.

$$
\begin{aligned}
\overrightarrow{\mathbf{L}}_{f} & =\overrightarrow{\mathbf{r}}_{f} \times \overrightarrow{\mathbf{p}} \\
& =(R)(m v) \sin \left(90^{\circ}\right)(-\hat{\mathbf{k}}) \\
& =m v R(-\hat{\mathbf{k}})
\end{aligned}
$$

Isolated Object moving in a Straight Line

First consider the particle at point $f . \overrightarrow{\mathbf{p}}$ is perpendicular to $\overrightarrow{\mathbf{r}}_{f}$.

$$
\begin{aligned}
\overrightarrow{\mathbf{L}}_{f} & =\overrightarrow{\mathbf{r}}_{f} \times \overrightarrow{\mathbf{p}} \\
& =(R)(m v) \sin \left(90^{\circ}\right)(-\hat{\mathbf{k}}) \\
& =m v R(-\hat{\mathbf{k}})
\end{aligned}
$$

Does this agree with what $\overrightarrow{\mathbf{L}}$ is at point i ?

$$
\overrightarrow{\mathbf{L}}_{i}=\overrightarrow{\mathbf{r}}_{i} \times \overrightarrow{\mathbf{p}}=\left(r_{i}\right)(m v) \sin \theta_{i}(-\hat{\mathbf{k}})
$$

But, $r_{i} \sin \theta_{i}=R$, so

$$
\overrightarrow{\mathbf{L}}_{i}=m v R(-\hat{\mathbf{k}})
$$

so yes, $\overrightarrow{\mathbf{L}}_{i}=\overrightarrow{\mathbf{L}}_{f}$.

Angular mtm of an object moving in a Straight Line

The magnitude of the angular momentum of an object, of mass m and velocity v, traveling in a straight line about an axis O is

$$
L=m v R
$$

where R is the distance of closest approach of the axis O.

Conservation of Angular Momentum

For an isolated system, ie. a system with no external torques, total angular momentum is conserved.

${ }^{1}$ Figures from Serway \& Jewett.

Conservation of Angular Momentum

For zero net external torque:

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\sum_{i} \overrightarrow{\mathrm{~L}}_{i}\right)=0
$$

Conservation of Angular Momentum

For zero net external torque:

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\sum_{i} \overrightarrow{\mathbf{L}}_{i}\right)=0
$$

This corresponds to a rotational symmetry in the equations of motion.
(And now "isolated" means no external torques act on the system.)

Conservation of Angular Momentum

Suppose we have a collection of massive particles, which together have some moment of inertia I_{i} at time $t=t_{i}$, and an angular velocity $\overrightarrow{\boldsymbol{\omega}}_{i}$.

Then $\overrightarrow{\mathbf{L}}_{i}=I_{i} \overrightarrow{\boldsymbol{w}}_{i}$

Conservation of Angular Momentum

Suppose we have a collection of massive particles, which together have some moment of inertia I_{i} at time $t=t_{i}$, and an angular velocity $\overrightarrow{\boldsymbol{\omega}}_{i}$.

Then $\overrightarrow{\mathbf{L}}_{i}=I_{i} \overrightarrow{\boldsymbol{w}}_{i}$
If the system is isolated, $\overrightarrow{\mathbf{L}}_{i}=\overrightarrow{\mathbf{L}}_{f}$.

Conservation of Angular Momentum

Suppose we have a collection of massive particles, which together have some moment of inertia I_{i} at time $t=t_{i}$, and an angular velocity $\overrightarrow{\boldsymbol{\omega}}_{i}$.

Then $\overrightarrow{\mathbf{L}}_{i}=I_{i} \overrightarrow{\boldsymbol{\omega}}_{i}$
If the system is isolated, $\overrightarrow{\mathbf{L}}_{i}=\overrightarrow{\mathbf{L}}_{f}$.

Then, even if the arrangement of the particles is changing $(I(t))$:

$$
I_{i} \overrightarrow{\boldsymbol{w}}_{i}=I_{f} \overrightarrow{\boldsymbol{w}}_{f}
$$

Example 11.7 - Conservation of Angular Momentum

A star rotates with a period of 30 days about an axis through its center. The period is the time interval required for a point on the star's equator to make one complete revolution around the axis of rotation. After the star undergoes a supernova explosion, the stellar core, which had a radius of $1.0 \times 10^{4} \mathrm{~km}$, collapses into a neutron star of radius 3.0 km .

Determine the period of rotation of the neutron star.

Example 11.7 - Conservation of Angular Momentum

Period of rotation of neutron star?
Use: $I_{i} \overrightarrow{\boldsymbol{w}}_{i}=I_{f} \overrightarrow{\boldsymbol{w}}_{f}$ and $\omega=\frac{2 \pi}{T}$

Example 11.7 - Conservation of Angular Momentum

Period of rotation of neutron star?
Use: $I_{i} \overrightarrow{\boldsymbol{w}}_{i}=I_{f} \overrightarrow{\boldsymbol{w}}_{f}$ and $\omega=\frac{2 \pi}{T}$

$$
I_{i}=\frac{2}{5} M\left(1.0 \times 10^{7} \mathrm{~m}\right)^{2} ; \quad I_{f}=\frac{2}{5} M\left(3.0 \times 10^{3} \mathrm{~m}\right)^{2}
$$

Example 11.7 - Conservation of Angular Momentum

Period of rotation of neutron star?
Use: $I_{i} \overrightarrow{\boldsymbol{w}}_{i}=I_{f} \overrightarrow{\boldsymbol{w}}_{f}$ and $\omega=\frac{2 \pi}{T}$

$$
\begin{aligned}
& I_{i}=\frac{2}{5} M\left(1.0 \times 10^{7} \mathrm{~m}\right)^{2} ; \quad I_{f}=\frac{2}{5} M\left(3.0 \times 10^{3} \mathrm{~m}\right)^{2} \\
& \begin{aligned}
I_{i} \frac{2 \pi}{T_{i}} & =I_{f} \frac{2 \pi}{T_{f}} \\
T_{f} & =\frac{I_{f}}{I_{i}} T_{i} \\
& =\frac{\left(3.0 \times 10^{3} \mathrm{~m}\right)^{2}}{\left(1.0 \times 10^{7} \mathrm{~m}\right)^{2}}(30 \times 24 \times 3600 \mathrm{~s}) \\
& =0.23 \mathrm{~s}
\end{aligned}
\end{aligned}
$$

Another Example

A bullet of mass m_{b} is fired into a block of mass M attached to the end of a uniform rod of mass m_{r} and length ℓ. The block-rod-bullet system then rotates in the plane of the figure, about a fixed axis at A. Treat the block as a particle.
(a) What is the rotational inertia of the block-rod-bullet system, when the bullet is lodged in the block, about point A ?
(b) If the angular speed of the system about A

[^0]
Another Example

Let $r=0.6 \mathrm{~m}$ be the length of the rod.
(a) rotational inertia about A with bullet embedded?

$$
\begin{aligned}
I_{A} & =I_{\mathrm{bullet}}+I_{\mathrm{block}}+I_{\mathrm{rod}} \\
& =m_{b} \ell^{2}+M \ell^{2}+\frac{1}{3} m_{r} \ell^{2} \\
& =\left(m_{b}+M+\frac{m_{r}}{3}\right) \ell^{2}
\end{aligned}
$$

Another Example

Let $r=0.6 \mathrm{~m}$ be the length of the rod.
(a) rotational inertia about A with bullet embedded?

$$
\begin{aligned}
I_{A} & =I_{\mathrm{bullet}}+I_{\mathrm{block}}+I_{\mathrm{rod}} \\
& =m_{b} \ell^{2}+M \ell^{2}+\frac{1}{3} m_{r} \ell^{2} \\
& =\left(m_{b}+M+\frac{m_{r}}{3}\right) \ell^{2}
\end{aligned}
$$

(b) bullet's initial speed, v_{i} ?
isolated system \Rightarrow conserve angular momentum in collision

$$
\begin{aligned}
L_{A, i} & =L_{A, f} \\
L_{\text {bullet }, A, i}+L_{\text {block }+ \text { rod }, A, i} & =I_{A, f} \omega_{f} \\
m_{b} v_{i} \ell+00 & =I_{A} \omega \\
v_{i} & =\frac{\left(m_{b}+M+\frac{m_{r}}{3}\right) \ell \omega}{m_{b}}
\end{aligned}
$$

Summary

- angular impulse
- angular momentum of an object moving in a straight line
- conservation of angular momentum

Final Exam Tuesday, Mar 24, via Canvas \& Zoom, be ready at 9am.

4th Assignment due this Friday.

(Uncollected) Homework

- Play with office furniture

Serway \& Jewett:

- Ch 11, onward from page 357. Probs: 31, 33, 37, 39, 41

[^0]: ${ }^{1}$ Halliday, Resnick, Walker, 9th ed, page 302 , variation on $\# 60$.

