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Angular Momentum Conservation Application
352 Chapter 11 Angular Momentum

The angular speed vp is called the precessional frequency. This result is valid 
only when vp ,, v. Otherwise, a much more complicated motion is involved. As 
you can see from Equation 11.20, the condition vp ,, v is met when v is large, 
that is, when the wheel spins rapidly. Furthermore, notice that the precessional 
frequency decreases as v increases, that is, as the wheel spins faster about its axis 
of symmetry.
 As an example of the usefulness of gyroscopes, suppose you are in a spacecraft in 
deep space and you need to alter your trajectory. To fire the engines in the correct 
direction, you need to turn the spacecraft. How, though, do you turn a spacecraft 
in empty space? One way is to have small rocket engines that fire perpendicularly 
out the side of the spacecraft, providing a torque around its center of mass. Such a 
setup is desirable, and many spacecraft have such rockets.
 Let us consider another method, however, that does not require the consump-
tion of rocket fuel. Suppose the spacecraft carries a gyroscope that is not rotating 
as in Figure 11.15a. In this case, the angular momentum of the spacecraft about its 
center of mass is zero. Suppose the gyroscope is set into rotation, giving the gyro-
scope a nonzero angular momentum. There is no external torque on the isolated 
system (spacecraft and gyroscope), so the angular momentum of this system must 
remain zero according to the isolated system (angular momentum) model. The 
zero value can be satisfied if the spacecraft rotates in the direction opposite that 
of the gyroscope so that the angular momentum vectors of the gyroscope and the 
spacecraft cancel, resulting in no angular momentum of the system. The result of 
rotating the gyroscope, as in Figure 11.15b, is that the spacecraft turns around! By 
including three gyroscopes with mutually perpendicular axles, any desired rota-
tion in space can be achieved.
 This effect created an undesirable situation with the Voyager 2 spacecraft during 
its flight. The spacecraft carried a tape recorder whose reels rotated at high speeds. 
Each time the tape recorder was turned on, the reels acted as gyroscopes and the 
spacecraft started an undesirable rotation in the opposite direction. This rotation 
had to be counteracted by Mission Control by using the sideward-firing jets to stop 
the rotation!Figure 11.15  (a) A spacecraft 

carries a gyroscope that is not 
spinning. (b) The gyroscope is set 
into rotation.

a

When the gyroscope
turns counterclockwise,
the spacecraft turns 
clockwise.

b

Summary

Definitions

 Given two vectors A
S

 and B
S

, the vec-
tor product A

S
3 B

S
 is a vector C

S
 having a 

magnitude

 C 5 AB sin u (11.3)

where u is the angle between A
S

 and B
S

. The 
direction of the vector C

S
5 A

S
3 B

S
 is per-

pendicular to the plane formed by A
S

 and B
S

, 
and this direction is determined by the right-
hand rule.

 The torque tS on a particle due to a force F
S

 about an axis 
through the origin in an inertial frame is defined to be

 tS ; rS 3 F
S

 (11.1)

 The angular momentum L
S

 about an axis through the origin 
of a particle having linear momentum pS 5 mvS is

 L
S

; rS 3 pS (11.10)

where rS is the vector position of the particle relative to the origin.
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A massive flywheel is driven to cause rotations in the entire rocket.
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 Problems 359

of the spacecraft around the same axis is Is 5 5.00 3   
105 kg ? m2. Neither the spacecraft nor the gyroscope 
is originally rotating. The gyroscope can be powered 
up in a negligible period of time to an angular speed 
of 100 rad/s. If the orientation of the spacecraft is to 
be changed by 30.08, for what time interval should the 
gyroscope be operated?

 43. The angular momentum vector of a precessing gyro-
scope sweeps out a cone as shown in Figure P11.43. The 
angular speed of the tip of the angular momentum vec-
tor, called its precessional frequency, is given by vp 5 
t/L, where t is the magnitude of the torque on the gyro-
scope and L is the magnitude of its angular momen-
tum. In the motion called precession of the equinoxes, the 
Earth’s axis of rotation precesses about the perpendicu-
lar to its orbital plane with a period of 2.58 3 104 yr. 
Model the Earth as a uniform sphere and calculate the 
torque on the Earth that is causing this precession.
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Figure P11.43 A precessing 
angular momentum vector 
sweeps out a cone in space.

Additional Problems
 44. A light rope passes over a light, 

frictionless pulley. One end is fas-
tened to a bunch of bananas of 
mass M, and a monkey of mass M 
clings to the other end (Fig. P11.44). 
The monkey climbs the rope in 
an attempt to reach the bananas.  
(a) Treating the system as consist-
ing of the monkey, bananas, rope, 
and pulley, find the net torque on 
the system about the pulley axis.  
(b) Using the result of part (a), 
determine the total angular momen-
tum about the pulley axis and describe the motion of 
the system. (c) Will the monkey reach the bananas?

 45. Comet Halley moves about the Sun in an elliptical 
orbit, with its closest approach to the Sun being about 
0.590 AU and its greatest distance 35.0 AU (1 AU 5 the 
Earth–Sun distance). The angular momentum of the 
comet about the Sun is constant, and the gravitational 
force exerted by the Sun has zero moment arm. The 
comet’s speed at closest approach is 54.0 km/s. What is 
its speed when it is farthest from the Sun?

 46. Review. Two boys are sliding toward each other on a 
frictionless, ice-covered parking lot. Jacob, mass 45.0 kg,  
is gliding to the right at 8.00 m/s, and Ethan, mass 
31.0 kg, is gliding to the left at 11.0 m/s along the same 

M

M

Figure P11.44

Q/C
S

Q/C

der. (b) Is the mechanical energy of the clay–cylinder 
system constant in this process? Explain your answer.  
(c) Is the momentum of the clay–cylinder system con-
stant in this process? Explain your answer.

M
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d

vi
S

Figure P11.39

 40. Why is the following situation impossible? A space station 
shaped like a giant wheel has a radius of r 5 100 m and 
a moment of inertia of 5.00 3 108 kg ? m2. A crew of 
150 people of average mass 65.0 kg is living on the rim, 
and the station’s rotation causes the crew to experience 
an apparent free-fall acceleration of g (Fig. P11.29).  
A research technician is assigned to perform an experi-
ment in which a ball is dropped at the rim of the station 
every 15 minutes and the time interval for the ball to 
drop a given distance is measured as a test to make sure 
the apparent value of g is correctly maintained. One 
evening, 100 average people move to the center of the 
station for a union meeting. The research technician, 
who has already been performing his experiment for an 
hour before the meeting, is disappointed that he cannot 
attend the meeting, and his mood sours even further by 
his boring experiment in which every time interval for 
the dropped ball is identical for the entire evening.

 41. A 0.005 00-kg bullet traveling horizontally with speed  
1.00 3 103 m/s strikes an 18.0-kg door, embedding itself 
10.0 cm from the side opposite the hinges as shown in 
Figure P11.41. The 1.00-m wide door is free to swing 
on its frictionless hinges. (a) Before it hits the door, 
does the bullet have angular momentum relative to the 
door’s axis of rotation? (b) If so, evaluate this angu-
lar momentum. If not, explain why there is no angular 
momentum. (c) Is the mechanical energy of the bullet– 
door system constant during this collision? Answer 
without doing a calculation. (d) At what angular speed 
does the door swing open immediately after the colli-
sion? (e) Calculate the total energy of the bullet–door 
system and determine whether it is less than or equal 
to the kinetic energy of the bullet before the collision.

0.005 00 kg

18.0 kg

Hinge

Figure P11.41 An overhead view of a bullet striking a door.

Section 11.5  The Motion of Gyroscopes and Tops
 42. A spacecraft is in empty space. It carries on board a 

gyroscope with a moment of inertia of Ig 5 20.0 kg ? m2  
about the axis of the gyroscope. The moment of inertia 

Q/C
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Angular Momentum Conservation Application
Example

Time of gyroscope operation to achieve 30.0◦ rotation of craft?

Conservation of angular momentum:

0 = Igωg + Isωs

ωs = 0.004 rad s−1

θ = π
6

t =
θ

ωs

t = 131 s
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Conservation of Angular Momentum

For an isolated system, ie. a system with no external torques, total
angular momentum is conserved.

 11.4 Analysis Model: Isolated System (Angular Momentum) 347

Example 11.7   Formation of a Neutron Star 

A star rotates with a period of 30 days about an axis through its center. The period is the time interval required for a 
point on the star’s equator to make one complete revolution around the axis of rotation. After the star undergoes a 
supernova explosion, the stellar core, which had a radius of 1.0 3 104 km, collapses into a neutron star of radius 3.0 km. 
Determine the period of rotation of the neutron star.

Conceptualize  The change in the neutron star’s motion is similar to that of the skater described earlier, but in the 
reverse direction. As the mass of the star moves closer to the rotation axis, we expect the star to spin faster.

Categorize  Let us assume that during the collapse of the stellar core, (1) no external torque acts on it, (2) it remains 
spherical with the same relative mass distribution, and (3) its mass remains constant. We categorize the star as an iso-
lated system in terms of angular momentum. We do not know the mass distribution of the star, but we have assumed the 
distribution is symmetric, so the moment of inertia can be expressed as kMR2, where k is some numerical constant. 
(From Table 10.2, for example, we see that k 5 25 for a solid sphere and k 5 23 for a spherical shell.)

Analyze  Let’s use the symbol T for the period, with Ti being the initial period of the star and Tf being the period of the 
neutron star. The star’s angular speed is given by v 5 2p/T.

AM

S O L U T I O N

From the isolated system model for angular 
momentum, write Equation 11.19 for the star:

Iivi 5 If vf

Use v 5 2p/T to rewrite this equation in terms of 
the initial and final periods:

Ii a2p

Ti
b 5 If a2p

Tf
b

Substitute the moments of inertia in the preceding 
equation:

kMRi 2a2p

Ti
b 5 kMRf 2a2p

Tf
b

Solve for the final period of the star: Tf 5 aRf

Ri
b2

Ti

Analysis Model   Isolated System (Angular Momentum)

Imagine a system rotates about 
an axis. If there is no net external 
torque on the system, there is no 
change in the angular momen-
tum of the system:

 DL
S

tot 5 0 (11.18)

Applying this law of conserva-
tion of angular momentum to a 
system whose moment of inertia 
changes gives

 Iivi 5 If vf 5 constant (11.19)

The angular momentum of the 
isolated system is constant.

Angular momentum

System
boundary

Examples: 

star collapses to a small radius and spins at a 
much higher rate

proportional to the cube of its semimajor axis; 
Kepler’s third law  (Chapter 13)

quantum numbers must be obeyed in order to 
conserve angular momentum (Chapter 42)

-
trino must be emitted in order to conserve 
angular momentum (Chapter 44)

Substitute numerical values: Tf 5 a 3.0 km
1.0 3 104 km

b2 130 days 2 5 2.7 3 1026 days 5  0.23 s

Finalize  The neutron star does indeed rotate faster after it collapses, as predicted. It moves very fast, in fact, rotating 
about four times each second!

1Figures from Serway & Jewett.



Non-isolated System

 11.2 Analysis Model: Nonisolated System (Angular Momentum) 341

the torque and angular momentum are evaluated relative to an axis through the 
center of mass.
 Equation 11.13 can be rearranged and integrated to give

D L
S

tot 5 3 1 a tSext 2dt

This equation represents the angular impulse–angular momentum theorem. Compare 
this equation to the translational version, Equation 9.40.

Example 11.4    A System of Objects 

A sphere of mass m1 and a block of mass m2 are connected by a light cord that passes 
over a pulley as shown in Figure 11.6. The radius of the pulley is R, and the mass of 
the thin rim is M. The spokes of the pulley have negligible mass. The block slides on 
a frictionless, horizontal surface. Find an expression for the linear acceleration of 
the two objects, using the concepts of angular momentum and torque.

Conceptualize  When the system is released, the block slides to the left, the sphere 
drops downward, and the pulley rotates counterclockwise. This situation is similar to 
problems we have solved earlier except that now we want to use an angular momen-
tum approach.

Categorize  We identify the block, pulley, and sphere as a nonisolated system for angu-
lar momentum, subject to the external torque due to the gravitational force on the 
sphere. We shall calculate the angular momentum about an axis that coincides with the axle of the pulley. The angular 
momentum of the system includes that of two objects moving translationally (the sphere and the block) and one object 
undergoing pure rotation (the pulley).

Analyze  At any instant of time, the sphere and the block have a common speed v, so the angular momentum of the 
sphere about the pulley axle is m1vR and that of the block is m2vR. At the same instant, all points on the rim of the pul-
ley also move with speed v, so the angular momentum of the pulley is MvR.
 Now let’s address the total external torque acting on the system about the pulley axle. Because it has a moment arm 
of zero, the force exerted by the axle on the pulley does not contribute to the torque. Furthermore, the normal force 

AM

S O L U T I O N

m2

m1

R

vS

vS

Figure 11.6  (Example 11.4) 
When the system is released, the 
sphere moves downward and 
the block moves to the left.

continued

Analysis Model   Nonisolated System (Angular Momentum)

Imagine a system that rotates about an axis. If there is a net external torque acting on the 
system, the time rate of change of the angular momentum of the system is equal to the 
net external torque:

 a tSext 5
d L

S
tot

dt
 (11.13)

Examples: 

engine applies torque to it

torque after the machine is turned off

the Earth by the gravitational force from the Sun 

field (Chapter 31)

Angular momentum

System
boundary External

torque

The rate of change in the 
angular momentum of the 
nonisolated system is equal 
to the net external torque 
on the system.

#»τ ext =
d

#»

L

dt



Recap of Non-isolated Systems

214 Chapter 8 Conservation of Energy

are familiar with work, we can simplify the appearance of equations by letting the 
simple symbol W represent the external work Wext on a system. For internal work, we 
will always use Wint to differentiate it from W.) The other four members of our list 
do not have established symbols, so we will call them TMW (mechanical waves), TMT 
(matter transfer), TET (electrical transmission), and TER (electromagnetic radiation).
 The full expansion of Equation 8.1 is

 DK 1 DU 1 DEint 5 W 1 Q 1 TMW 1 TMT 1 TET 1 TER (8.2)

which is the primary mathematical representation of the energy version of the anal-
ysis model of the nonisolated system. (We will see other versions of the nonisolated 
system model, involving linear momentum and angular momentum, in later chap-
ters.) In most cases, Equation 8.2 reduces to a much simpler one because some of 
the terms are zero for the specific situation. If, for a given system, all terms on the 
right side of the conservation of energy equation are zero, the system is an isolated 
system, which we study in the next section.
 The conservation of energy equation is no more complicated in theory than the 
process of balancing your checking account statement. If your account is the sys-
tem, the change in the account balance for a given month is the sum of all the 
transfers: deposits, withdrawals, fees, interest, and checks written. You may find it 
useful to think of energy as the currency of nature!
 Suppose a force is applied to a nonisolated system and the point of application 
of the force moves through a displacement. Then suppose the only effect on the 
system is to change its speed. In this case, the only transfer mechanism is work (so 
that the right side of Eq. 8.2 reduces to just W) and the only kind of energy in the 
system that changes is the kinetic energy (so that the left side of Eq. 8.2 reduces to 
just DK). Equation 8.2 then becomes

DK 5 W

which is the work–kinetic energy theorem. This theorem is a special case of the 
more general principle of conservation of energy. We shall see several more special 
cases in future chapters.

Q uick Quiz 8.1  By what transfer mechanisms does energy enter and leave (a) your 
television set? (b) Your gasoline-powered lawn mower? (c) Your hand-cranked 
pencil sharpener?

Q uick Quiz 8.2  Consider a block sliding over a horizontal surface with friction. 
Ignore any sound the sliding might make. (i) If the system is the block, this sys-
tem is (a) isolated (b) nonisolated (c) impossible to determine (ii) If the system 
is the surface, describe the system from the same set of choices. (iii) If the system 
is the block and the surface, describe the system from the same set of choices.

Analysis Model   Nonisolated System (Energy)
Imagine you have identified a system to be analyzed 
and have defined a system boundary.  Energy can 
exist in the system in three forms: kinetic, potential, 
and internal. The total of that energy can be changed 
when energy crosses the system boundary by any of six 
transfer methods shown in the diagram here. The total 
change in the energy in the system is equal to the total 
amount of energy that has crossed the system bound-
ary. The mathematical statement of that concept is 
expressed in the conservation of energy equation:

 DEsystem 5 o T (8.1)

Work Heat Mechanical
waves

Matter
transfer

Electrical
transmission

Electromagnetic
radiation

Kinetic energy
Potential energy
Internal energy

System
boundary

The change in the total 
amount of energy in 
the system is equal to 
the total amount of 
energy that crosses the 
boundary of the system.

 9.3 Analysis Model: Nonisolated System (Momentum) 255

continued

the ball and bat during the collision. When we use this approximation, it is impor-
tant to remember that pSi and pSf  represent the momenta immediately before and 
after the collision, respectively. Therefore, in any situation in which it is proper to 
use the impulse approximation, the particle moves very little during the collision.

Q uick Quiz 9.3  Two objects are at rest on a frictionless surface. Object 1 has a 
greater mass than object 2. (i) When a constant force is applied to object 1, it 
accelerates through a distance d in a straight line. The force is removed from 
object 1 and is applied to object 2. At the moment when object 2 has accelerated 
through the same distance d, which statements are true? (a) p1 , p2 (b) p1 5 p2 
(c) p1 . p2 (d) K1 , K2 (e) K1 5 K2 (f) K1 . K2 (ii) When a force is applied to 
object 1, it accelerates for a time interval Dt. The force is removed from object 1  
and is applied to object 2. From the same list of choices, which statements are 
true after object 2 has accelerated for the same time interval Dt?

Q uick Quiz 9.4  Rank an automobile dashboard, seat belt, and air bag, each used 
alone in separate collisions from the same speed, in terms of (a) the impulse and 
(b) the average force each delivers to a front-seat passenger, from greatest to least.

Analysis Model   Nonisolated System (Momentum)

Imagine you have identified a system to be analyzed and have defined a system 
boundary. If external forces are applied on the system, the system is nonisolated. 
In that case, the change in the total momentum of the system is equal to the 
impulse on the system, a statement known as the impulse–momentum theorem: 

 DpS 5 I
S

 (9.13)

Examples: 

(Chapter 34)

Momentum

System
boundary

Impulse

The change in the total 
momentum of the system 
is equal to the total 
impulse on the system.

Example 9.3   How Good Are the Bumpers? 

In a particular crash test, a car of mass 1 500 kg col-
lides with a wall as shown in Figure 9.4. The initial 
and final velocities of the car are vSi 5 215.0 î m/s 
and vSf 5 2.60 î m/s, respectively. If the collision lasts 
0.150 s, find the impulse caused by the collision and 
the average net force exerted on the car.

Conceptualize  The collision time is short, so we can 
imagine the car being brought to rest very rapidly 
and then moving back in the opposite direction with 
a reduced speed.

Categorize  Let us assume the net force exerted on 
the car by the wall and friction from the ground is 
large compared with other forces on the car (such as 
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Figure 9.4  (Example 9.3) (a) This car’s momentum changes as a 
result of its collision with the wall. (b) In a crash test, much of the 
car’s initial kinetic energy is transformed into energy associated 
with the damage to the car.
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the torque and angular momentum are evaluated relative to an axis through the 
center of mass.
 Equation 11.13 can be rearranged and integrated to give

D L
S

tot 5 3 1 a tSext 2dt

This equation represents the angular impulse–angular momentum theorem. Compare 
this equation to the translational version, Equation 9.40.

Example 11.4    A System of Objects 

A sphere of mass m1 and a block of mass m2 are connected by a light cord that passes 
over a pulley as shown in Figure 11.6. The radius of the pulley is R, and the mass of 
the thin rim is M. The spokes of the pulley have negligible mass. The block slides on 
a frictionless, horizontal surface. Find an expression for the linear acceleration of 
the two objects, using the concepts of angular momentum and torque.

Conceptualize  When the system is released, the block slides to the left, the sphere 
drops downward, and the pulley rotates counterclockwise. This situation is similar to 
problems we have solved earlier except that now we want to use an angular momen-
tum approach.

Categorize  We identify the block, pulley, and sphere as a nonisolated system for angu-
lar momentum, subject to the external torque due to the gravitational force on the 
sphere. We shall calculate the angular momentum about an axis that coincides with the axle of the pulley. The angular 
momentum of the system includes that of two objects moving translationally (the sphere and the block) and one object 
undergoing pure rotation (the pulley).

Analyze  At any instant of time, the sphere and the block have a common speed v, so the angular momentum of the 
sphere about the pulley axle is m1vR and that of the block is m2vR. At the same instant, all points on the rim of the pul-
ley also move with speed v, so the angular momentum of the pulley is MvR.
 Now let’s address the total external torque acting on the system about the pulley axle. Because it has a moment arm 
of zero, the force exerted by the axle on the pulley does not contribute to the torque. Furthermore, the normal force 
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Figure 11.6  (Example 11.4) 
When the system is released, the 
sphere moves downward and 
the block moves to the left.

continued

Analysis Model   Nonisolated System (Angular Momentum)

Imagine a system that rotates about an axis. If there is a net external torque acting on the 
system, the time rate of change of the angular momentum of the system is equal to the 
net external torque:

 a tSext 5
d L

S
tot

dt
 (11.13)

Examples: 

engine applies torque to it

torque after the machine is turned off

the Earth by the gravitational force from the Sun 

field (Chapter 31)

Angular momentum

System
boundary External

torque

The rate of change in the 
angular momentum of the 
nonisolated system is equal 
to the net external torque 
on the system.



Non-isolated Example

A sphere of mass m1 and a block of mass m2 are connected by a
light cord that passes over a pulley as shown. The radius of the
pulley is R, and the mass of the thin rim is M. The spokes of the
pulley have negligible mass. The block slides on a frictionless,
horizontal surface. Find an expression for the linear acceleration of
the two objects.
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This equation represents the angular impulse–angular momentum theorem. Compare 
this equation to the translational version, Equation 9.40.

Example 11.4    A System of Objects 

A sphere of mass m1 and a block of mass m2 are connected by a light cord that passes 
over a pulley as shown in Figure 11.6. The radius of the pulley is R, and the mass of 
the thin rim is M. The spokes of the pulley have negligible mass. The block slides on 
a frictionless, horizontal surface. Find an expression for the linear acceleration of 
the two objects, using the concepts of angular momentum and torque.

Conceptualize  When the system is released, the block slides to the left, the sphere 
drops downward, and the pulley rotates counterclockwise. This situation is similar to 
problems we have solved earlier except that now we want to use an angular momen-
tum approach.

Categorize  We identify the block, pulley, and sphere as a nonisolated system for angu-
lar momentum, subject to the external torque due to the gravitational force on the 
sphere. We shall calculate the angular momentum about an axis that coincides with the axle of the pulley. The angular 
momentum of the system includes that of two objects moving translationally (the sphere and the block) and one object 
undergoing pure rotation (the pulley).

Analyze  At any instant of time, the sphere and the block have a common speed v, so the angular momentum of the 
sphere about the pulley axle is m1vR and that of the block is m2vR. At the same instant, all points on the rim of the pul-
ley also move with speed v, so the angular momentum of the pulley is MvR.
 Now let’s address the total external torque acting on the system about the pulley axle. Because it has a moment arm 
of zero, the force exerted by the axle on the pulley does not contribute to the torque. Furthermore, the normal force 
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When the system is released, the 
sphere moves downward and 
the block moves to the left.
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Analysis Model   Nonisolated System (Angular Momentum)

Imagine a system that rotates about an axis. If there is a net external torque acting on the 
system, the time rate of change of the angular momentum of the system is equal to the 
net external torque:
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tot
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 (11.13)

Examples: 

engine applies torque to it

torque after the machine is turned off

the Earth by the gravitational force from the Sun 

field (Chapter 31)

Angular momentum

System
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The rate of change in the 
angular momentum of the 
nonisolated system is equal 
to the net external torque 
on the system.



Non-isolated Example
A sphere of mass m1 and a block of mass m2 are connected by a
light cord that passes over a pulley as shown. The radius of the
pulley is R, and the mass of the thin rim is M. The spokes of the
pulley have negligible mass. The block slides on a frictionless,
horizontal surface. Find an expression for the linear acceleration of
the two objects, using the concepts of angular momentum and
torque.
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the torque and angular momentum are evaluated relative to an axis through the 
center of mass.
 Equation 11.13 can be rearranged and integrated to give
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tot 5 3 1 a tSext 2dt

This equation represents the angular impulse–angular momentum theorem. Compare 
this equation to the translational version, Equation 9.40.

Example 11.4    A System of Objects 

A sphere of mass m1 and a block of mass m2 are connected by a light cord that passes 
over a pulley as shown in Figure 11.6. The radius of the pulley is R, and the mass of 
the thin rim is M. The spokes of the pulley have negligible mass. The block slides on 
a frictionless, horizontal surface. Find an expression for the linear acceleration of 
the two objects, using the concepts of angular momentum and torque.

Conceptualize  When the system is released, the block slides to the left, the sphere 
drops downward, and the pulley rotates counterclockwise. This situation is similar to 
problems we have solved earlier except that now we want to use an angular momen-
tum approach.

Categorize  We identify the block, pulley, and sphere as a nonisolated system for angu-
lar momentum, subject to the external torque due to the gravitational force on the 
sphere. We shall calculate the angular momentum about an axis that coincides with the axle of the pulley. The angular 
momentum of the system includes that of two objects moving translationally (the sphere and the block) and one object 
undergoing pure rotation (the pulley).

Analyze  At any instant of time, the sphere and the block have a common speed v, so the angular momentum of the 
sphere about the pulley axle is m1vR and that of the block is m2vR. At the same instant, all points on the rim of the pul-
ley also move with speed v, so the angular momentum of the pulley is MvR.
 Now let’s address the total external torque acting on the system about the pulley axle. Because it has a moment arm 
of zero, the force exerted by the axle on the pulley does not contribute to the torque. Furthermore, the normal force 
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When the system is released, the 
sphere moves downward and 
the block moves to the left.
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Analysis Model   Nonisolated System (Angular Momentum)

Imagine a system that rotates about an axis. If there is a net external torque acting on the 
system, the time rate of change of the angular momentum of the system is equal to the 
net external torque:
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tot

dt
 (11.13)

Examples: 

engine applies torque to it

torque after the machine is turned off

the Earth by the gravitational force from the Sun 

field (Chapter 31)

Angular momentum

System
boundary External

torque

The rate of change in the 
angular momentum of the 
nonisolated system is equal 
to the net external torque 
on the system.



Non-isolated Example (11.4)

The system: block, sphere, and pulley.
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the torque and angular momentum are evaluated relative to an axis through the 
center of mass.
 Equation 11.13 can be rearranged and integrated to give
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This equation represents the angular impulse–angular momentum theorem. Compare 
this equation to the translational version, Equation 9.40.
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A sphere of mass m1 and a block of mass m2 are connected by a light cord that passes 
over a pulley as shown in Figure 11.6. The radius of the pulley is R, and the mass of 
the thin rim is M. The spokes of the pulley have negligible mass. The block slides on 
a frictionless, horizontal surface. Find an expression for the linear acceleration of 
the two objects, using the concepts of angular momentum and torque.

Conceptualize  When the system is released, the block slides to the left, the sphere 
drops downward, and the pulley rotates counterclockwise. This situation is similar to 
problems we have solved earlier except that now we want to use an angular momen-
tum approach.

Categorize  We identify the block, pulley, and sphere as a nonisolated system for angu-
lar momentum, subject to the external torque due to the gravitational force on the 
sphere. We shall calculate the angular momentum about an axis that coincides with the axle of the pulley. The angular 
momentum of the system includes that of two objects moving translationally (the sphere and the block) and one object 
undergoing pure rotation (the pulley).

Analyze  At any instant of time, the sphere and the block have a common speed v, so the angular momentum of the 
sphere about the pulley axle is m1vR and that of the block is m2vR. At the same instant, all points on the rim of the pul-
ley also move with speed v, so the angular momentum of the pulley is MvR.
 Now let’s address the total external torque acting on the system about the pulley axle. Because it has a moment arm 
of zero, the force exerted by the axle on the pulley does not contribute to the torque. Furthermore, the normal force 
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When the system is released, the 
sphere moves downward and 
the block moves to the left.
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Analysis Model   Nonisolated System (Angular Momentum)

Imagine a system that rotates about an axis. If there is a net external torque acting on the 
system, the time rate of change of the angular momentum of the system is equal to the 
net external torque:

 a tSext 5
d L

S
tot

dt
 (11.13)

Examples: 

engine applies torque to it

torque after the machine is turned off

the Earth by the gravitational force from the Sun 

field (Chapter 31)

Angular momentum

System
boundary External

torque

The rate of change in the 
angular momentum of the 
nonisolated system is equal 
to the net external torque 
on the system.

#»τ net,ext =
d

#»

L

dt

Consider the angular momentum and torques about the axis of the
pulley.
The only net external torque on this system is from the force of
gravity on m1.



Non-isolated Example (11.4)

#»τ net,ext =
d

#»

L

dt

m1gR =
d

dt
(m1vR +m2vR + Iω)

m1gR =
d

dt
(m1vR +m2vR + (MR2)

v

R
)

m1gR =
dv

dt
(m1 +m2 +M)R

a =
m1g

(m1 +m2 +M)
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perpendicular to the angular momentum vector. The net torque and angular 
momentum of the gyroscope are related through Equation 11.13:

a tSext 5
d L

S

dt

This expression shows that in the infinitesimal time interval dt, the nonzero torque 
produces a change in angular momentum d L

S
, a change that is in the same direc-

tion as tS. Therefore, like the torque vector, d L
S

 must also be perpendicular to L
S

. 
Figure 11.14c illustrates the resulting precessional motion of the symmetry axis of 
the gyroscope. In a time interval dt, the change in angular momentum is d L

S
 5 

L
S

f 2 L
S

i 5 tS dt. Because d L
S

 is perpendicular to L
S

, the magnitude of L
S

 does not 
change 1 0 LS i 0 5 0 LS f 0 2 . Rather, what is changing is the direction of L

S
. Because the 

change in angular momentum d L
S

 is in the direction of tS, which lies in the xy plane, 
the gyroscope undergoes precessional motion.
 To simplify the description of the system, we assume the total angular momen-
tum of the precessing wheel is the sum of the angular momentum IvS due to the 
spinning and the angular momentum due to the motion of the center of mass 
about the pivot. In our treatment, we shall neglect the contribution from the center- 
of-mass motion and take the total angular momentum to be simply I vS. In practice, 
this approximation is good if vS is made very large.
 The vector diagram in Figure 11.14c shows that in the time interval dt, the angu-
lar momentum vector rotates through an angle df, which is also the angle through 
which the gyroscope axle rotates. From the vector triangle formed by the vectors 
L
S

i , L
S

f , and d L
S

, we see that

df 5
dL
L

5
a text dt

L
5

1MgrCM 2  dt
L

Dividing through by dt and using the relationship L 5 Iv, we find that the rate at 
which the axle rotates about the vertical axis is

 vp 5
df

dt
5

MgrCM

Iv
 (11.20)
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The gravitational force        in the 
negative z direction produces a 
torque on the gyroscope in the 
positive y direction about the pivot.

MgS The torque results in a change in angular 
momentum       in a direction parallel to the 
torque vector. The gyroscope axle sweeps 
out an angle df in a time interval dt.
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Figure 11.14  (a) A spinning gyroscope is placed on a pivot at the right end. (b) Diagram for the 
spinning gyroscope showing forces, torque, and angular momentum. (c) Overhead view (looking 
down the z axis) of the gyroscope’s initial and final angular momentum vectors for an infinitesimal 
time interval dt.
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Figure 11.13  Precessional 
motion of a top spinning about 
its symmetry axis. (a) The only 
external forces acting on the top 
are the normal force nS and the 
gravitational force M gS. The direc-
tion of the angular momentum 
L
S

 is along the axis of symmetry. 
(b) Because L

S
f 5 D L

S
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i , the 

top precesses about the z axis.

Tops, gyroscopes, and other spinning objects with a fixed point on
their axis of rotation exhibit interesting behavior.

In particular, they are stable against an external gravitational force.

The effect of gravity is to cause precession.

Precessional motion is an additional rotation of the object’s
rotation axis. A smooth change in the angular momentum!
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perpendicular to the angular momentum vector. The net torque and angular 
momentum of the gyroscope are related through Equation 11.13:
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. Because the 

change in angular momentum d L
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 is in the direction of tS, which lies in the xy plane, 
the gyroscope undergoes precessional motion.
 To simplify the description of the system, we assume the total angular momen-
tum of the precessing wheel is the sum of the angular momentum IvS due to the 
spinning and the angular momentum due to the motion of the center of mass 
about the pivot. In our treatment, we shall neglect the contribution from the center- 
of-mass motion and take the total angular momentum to be simply I vS. In practice, 
this approximation is good if vS is made very large.
 The vector diagram in Figure 11.14c shows that in the time interval dt, the angu-
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Figure 11.14  (a) A spinning gyroscope is placed on a pivot at the right end. (b) Diagram for the 
spinning gyroscope showing forces, torque, and angular momentum. (c) Overhead view (looking 
down the z axis) of the gyroscope’s initial and final angular momentum vectors for an infinitesimal 
time interval dt.
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Figure 11.13  Precessional 
motion of a top spinning about 
its symmetry axis. (a) The only 
external forces acting on the top 
are the normal force nS and the 
gravitational force M gS. The direc-
tion of the angular momentum 
L
S

 is along the axis of symmetry. 
(b) Because L
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top precesses about the z axis.

Tops, gyroscopes, and other spinning objects with a fixed point on
their axis of rotation exhibit interesting behavior.

In particular, they are stable against an external gravitational force.

The effect of gravity is to cause precession.

Precessional motion is an additional rotation of the object’s
rotation axis. A smooth change in the angular momentum!



Gyroscopic Motion

Why does the angular momentum vector rotate about an axis
perpendicular to the force of gravity?

Why doesn’t a top fall over?

#»τ ext =
d

#»

L

dt

The change in angular momentum must be in the direction of the
external torque!
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Why does the angular momentum vector rotate about an axis
perpendicular to the force of gravity?

Why doesn’t a top fall over?

#»τ ext =
d

#»

L

dt

The change in angular momentum must be in the direction of the
external torque!
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perpendicular to the angular momentum vector. The net torque and angular 
momentum of the gyroscope are related through Equation 11.13:
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 is in the direction of tS, which lies in the xy plane, 
the gyroscope undergoes precessional motion.
 To simplify the description of the system, we assume the total angular momen-
tum of the precessing wheel is the sum of the angular momentum IvS due to the 
spinning and the angular momentum due to the motion of the center of mass 
about the pivot. In our treatment, we shall neglect the contribution from the center- 
of-mass motion and take the total angular momentum to be simply I vS. In practice, 
this approximation is good if vS is made very large.
 The vector diagram in Figure 11.14c shows that in the time interval dt, the angu-
lar momentum vector rotates through an angle df, which is also the angle through 
which the gyroscope axle rotates. From the vector triangle formed by the vectors 
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df 5
dL
L

5
a text dt

L
5

1MgrCM 2  dt
L

Dividing through by dt and using the relationship L 5 Iv, we find that the rate at 
which the axle rotates about the vertical axis is
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Figure 11.14  (a) A spinning gyroscope is placed on a pivot at the right end. (b) Diagram for the 
spinning gyroscope showing forces, torque, and angular momentum. (c) Overhead view (looking 
down the z axis) of the gyroscope’s initial and final angular momentum vectors for an infinitesimal 
time interval dt.
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perpendicular to the angular momentum vector. The net torque and angular 
momentum of the gyroscope are related through Equation 11.13:
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This expression shows that in the infinitesimal time interval dt, the nonzero torque 
produces a change in angular momentum d L

S
, a change that is in the same direc-

tion as tS. Therefore, like the torque vector, d L
S

 must also be perpendicular to L
S

. 
Figure 11.14c illustrates the resulting precessional motion of the symmetry axis of 
the gyroscope. In a time interval dt, the change in angular momentum is d L
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Figure 11.14  (a) A spinning gyroscope is placed on a pivot at the right end. (b) Diagram for the 
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The torque supplied by the gravitational force is perpendicular to
the force itself.

The magnitude of the angular momentum doesn’t change - only
the direction.
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We can find the value for the precession angular speed ωp if we
make an approximation.

Suppose that the top spins with angular speed ω, and let ω be
very large. Then the top’s angular momentum L = Iω without
considering the precessional motion is almost the same as its total
angular momentum with the precession:

#»

L ≈ #»

L tot

This is a reasonable approximation as long as ω >> ωp.
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perpendicular to the angular momentum vector. The net torque and angular 
momentum of the gyroscope are related through Equation 11.13:

a tSext 5
d L

S

dt

This expression shows that in the infinitesimal time interval dt, the nonzero torque 
produces a change in angular momentum d L

S
, a change that is in the same direc-

tion as tS. Therefore, like the torque vector, d L
S

 must also be perpendicular to L
S

. 
Figure 11.14c illustrates the resulting precessional motion of the symmetry axis of 
the gyroscope. In a time interval dt, the change in angular momentum is d L

S
 5 

L
S

f 2 L
S

i 5 tS dt. Because d L
S

 is perpendicular to L
S

, the magnitude of L
S

 does not 
change 1 0 LS i 0 5 0 LS f 0 2 . Rather, what is changing is the direction of L

S
. Because the 

change in angular momentum d L
S

 is in the direction of tS, which lies in the xy plane, 
the gyroscope undergoes precessional motion.
 To simplify the description of the system, we assume the total angular momen-
tum of the precessing wheel is the sum of the angular momentum IvS due to the 
spinning and the angular momentum due to the motion of the center of mass 
about the pivot. In our treatment, we shall neglect the contribution from the center- 
of-mass motion and take the total angular momentum to be simply I vS. In practice, 
this approximation is good if vS is made very large.
 The vector diagram in Figure 11.14c shows that in the time interval dt, the angu-
lar momentum vector rotates through an angle df, which is also the angle through 
which the gyroscope axle rotates. From the vector triangle formed by the vectors 
L
S

i , L
S

f , and d L
S

, we see that

df 5
dL
L

5
a text dt

L
5

1MgrCM 2  dt
L

Dividing through by dt and using the relationship L 5 Iv, we find that the rate at 
which the axle rotates about the vertical axis is

 vp 5
df

dt
5

MgrCM

Iv
 (11.20)

f

df

O O

M

i

OOO

M

z

y

x

r CM

y

nS

L
S

gSLf
S

a b c

The gravitational force        in the 
negative z direction produces a 
torque on the gyroscope in the 
positive y direction about the pivot.

MgS The torque results in a change in angular 
momentum       in a direction parallel to the 
torque vector. The gyroscope axle sweeps 
out an angle df in a time interval dt.

L
S

d

L
S

L
S

iL
S

d
t
S t

S 

Figure 11.14  (a) A spinning gyroscope is placed on a pivot at the right end. (b) Diagram for the 
spinning gyroscope showing forces, torque, and angular momentum. (c) Overhead view (looking 
down the z axis) of the gyroscope’s initial and final angular momentum vectors for an infinitesimal 
time interval dt.

y

 

CM

O

O

yM
x

x

z

!

b

a

L
S

L
S

fL
S

iL
S

nS

rS
gS

!
S

The right-hand rule indicates 
that    "    "     "    "         is 
in the xy plane.          
 

F
S

M gS!
S rS rS

The direction of !    is parallel 
to that of     in      .!

S
L
S

a

Figure 11.13  Precessional 
motion of a top spinning about 
its symmetry axis. (a) The only 
external forces acting on the top 
are the normal force nS and the 
gravitational force M gS. The direc-
tion of the angular momentum 
L
S

 is along the axis of symmetry. 
(b) Because L

S
f 5 D L

S
1 L

S
i , the 

top precesses about the z axis.

 11.5 The Motion of Gyroscopes and Tops 351

perpendicular to the angular momentum vector. The net torque and angular 
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of-mass motion and take the total angular momentum to be simply I vS. In practice, 
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Angular speed of precession:

ωp =
dφ

dt
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perpendicular to the angular momentum vector. The net torque and angular 
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of-mass motion and take the total angular momentum to be simply I vS. In practice, 
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perpendicular to the angular momentum vector. The net torque and angular 
momentum of the gyroscope are related through Equation 11.13:
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of-mass motion and take the total angular momentum to be simply I vS. In practice, 
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τnet =
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dt

Mg rCM sin θ =
dL

dφ

dφ

dt

= (L sin θ)ωp

ωp =
M g rCM

L

ωp =
MgrCM
Iω



Summary

• conservation of angular momentum

4th Assignment due Friday, Mar 20.

Final Exam Tuesday, Mar 24, via Canvas & Zoom, be ready at
9am.

(Uncollected) Homework
• Play with tops, bicycle wheels, gyroscopes, etc., whatever you

have in your house

Serway & Jewett:

• Ch 11, onward from page 357. Problems: 30, 51, 45, 53, 55

• Look at example 11.9.


