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Oscillations and Periodic Motion

Many physical systems exhibit cycles of repetitive behavior.

After some time, they return to their initial configuration.

Examples:

• clocks

• rolling wheels

• a pendulum

• bobs on springs



Oscillations

oscillation

motion that repeats over a period of time

amplitude

the magnitude of the vibration; how far does the object move from
its average (equilibrium) position.

period

the time for one complete oscillation.

After 1 period, the motion repeats itself.



Simple Harmonic Motion

The oscillations of bobs on springs and pendula are very regular
and simple to describe.

It is called simple harmonic motion.

simple harmonic motion (SHM)

any motion in which the acceleration is proportional to the
displacement from equilibrium, but opposite in direction

The force causing the acceleration is called the “restoring force”.



SHM and Springs
If a mass is attached to a spring, the force on the mass depends on
its displacement from the spring’s natural length.

Hooke’s Law:
#»

F = −k #»x

where k is the spring constant and x is the displacement (position)
of the mass.

If the spring is compressed and then the mass is released, it will
move outward until is stretches the spring by the same amount the
spring was compressed initially before it bounces back again.
(Assume no friction.)

Hooke’s law gives the force on the bob ⇒ SHM.

The spring force is the restoring force.



SHM and Springs

How can we find an equation of motion for the block?

Newton’s second law:

#»

Fnet =
#»

F s = m #»a

Using the definition of acceleration: ax = d2x
dt2

d2x

dt2
= −

k

m
x

Define

ω =

√
k

m

and we can write this equation as:

d2x

dt2
= −ω2x



SHM and Springs

To solve:
d2x

dt2
= −ω2x

notice that it is a second order linear differential equation.

We can actually find the solutions just be inspection.

A solution x(t) to this equation has the property that if we take its
derivative twice, we get the same form of the function back again,
but with an additional factor of −ω2.

Candidate: x(t) = A cos(ωt), where A is a constant.

d2x

dt2
= −ω2

(
A cos(ωt)

)
X
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SHM and Springs

d2x

dt2
= −ω2x

In fact, any solutions of the form:

x = B1 cos(ωt + φ1) + B2 sin(ωt + φ2)

where B1, B2, φ1, and φ2 are constants.

However, since sin(θ) = cos(θ+ π/2), in general any solution can
be written in the form:

x = A cos(ωt + φ)



Oscillating Solutions

x = A cos(ωt)

(or equivalently, y = A sin(ωt).)

We now call ω the angular frequency of the oscillation.

1Figure from School of Physics webpage, University of New South Wales.
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SHM and Springs
The position of the bob at a given time is given by:

x = A cos(ωt + φ)

A is the amplitude of the oscillation. We could also write xmax = A.

 15.2 Analysis Model: Particle in Simple Harmonic Motion 455

Q uick Quiz 15.4  An object of mass m is hung from a spring and set into oscilla-
tion. The period of the oscillation is measured and recorded as T. The object 
of mass m is removed and replaced with an object of mass 2m. When this object 
is set into oscillation, what is the period of the motion? (a) 2T   (b) !2 T    (c) T   
(d) T/!2   (e) T/2

 Equation 15.6 describes simple harmonic motion of a particle in general. Let’s 
now see how to evaluate the constants of the motion. The angular frequency v is 
evaluated using Equation 15.9. The constants A and f are evaluated from the ini-
tial conditions, that is, the state of the oscillator at t 5 0.
 Suppose a block is set into motion by pulling it from equilibrium by a distance A 
and releasing it from rest at t 5 0 as in Figure 15.6. We must then require our solu-
tions for x(t) and v(t) (Eqs. 15.6 and 15.15) to obey the initial conditions that x(0) 5 
A and v(0) 5 0:

x(0) 5 A cos f 5 A

 v(0) 5 2vA sin f 5 0 

These conditions are met if f 5 0, giving x 5 A cos vt as our solution. To check this 
solution, notice that it satisfies the condition that x(0) 5 A because cos 0 5 1.
 The position, velocity, and acceleration of the block versus time are plotted in 
Figure 15.7a for this special case. The acceleration reaches extreme values of 7v2A 
when the position has extreme values of 6A. Furthermore, the velocity has extreme 
values of 6vA, which both occur at x 5 0. Hence, the quantitative solution agrees 
with our qualitative description of this system.
 Let’s consider another possibility. Suppose the system is oscillating and we define 
t 5 0 as the instant the block passes through the unstretched position of the spring 
while moving to the right (Fig. 15.8). In this case, our solutions for x(t) and v(t) 
must obey the initial conditions that x(0) 5 0 and v(0) 5 vi:

 x(0) 5 A cos f 5 0 

 v(0) 5 2vA sin f 5 vi 

 The first of these conditions tells us that f 5 6p/2. With these choices for f, the 
second condition tells us that A 5 7vi/v. Because the initial velocity is positive and 
the amplitude must be positive, we must have f 5 2p/2. Hence, the solution is

 x 5
vi

v
 cos avt 2

p

2
b  

The graphs of position, velocity, and acceleration versus time for this choice of t 5 0 
are shown in Figure 15.7b. Notice that these curves are the same as those in Figure 
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Figure 15.5  Graphical repre-
sentation of simple harmonic 
motion. (a) Position versus time. 
(b) Velocity versus time. (c) Accel-
eration versus time. Notice that at 
any specified time the velocity is 
908 out of phase with the position 
and the acceleration is 1808 out of 
phase with the position.
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Figure 15.7  (a) Position, velocity, and acceleration versus time for the block in Figure 15.6 under 
the initial conditions that at t 5 0, x(0) 5 A, and v(0) 5 0. (b) Position, velocity, and acceleration ver-
sus time for the block in Figure 15.8 under the initial conditions that at t 5 0, x(0) 5 0, and v(0) 5 vi.

Figure 15.6 A block–spring 
system that begins its motion from 
rest with the block at x 5 A at t 5 0.
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m

x ! 0

t ! 0
xi ! A
vi ! 0

Figure 15.8 The block–spring 
system is undergoing oscillation, 
and t 5 0 is defined at an instant 
when the block passes through the 
equilibrium position x 5 0 and is 
moving to the right with speed vi.
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x ! 0
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xi ! 0
v ! vi

vi
S

The speed of the particle at any point in time is:

v = −Aω sin(ωt + φ)

We find that by differentiating the expression for position.



SHM and Springs

x = A cos(ωt + φ)

ω is the angular frequency of the oscillation.

When t = 2π
ω the block has returned to the position it had at

t = 0. That is one complete cycle.

Recalling that ω =
√

k/m:

Period,T = 2π

√
m

k

Only depends on the mass of the bob and the spring constant.
Does not depend on the amplitude.
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SHM and Springs Question

A mass-spring system has a period, T . If the mass of the bob is
quadrupled (and everything else is unchanged), what happens to
the period of the motion?

(A) halves, T/2

(B) remains unchanged, T

(C) doubles, 2T

(D) quadruples, 4T
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SHM and Springs Question

A mass-spring system has a period, T . If the spring constant is
halved (and everything else is unchanged), what happens to the
period of the motion?

(A) halves, T/2

(B) is reduced by a factor of
√

2, so, T/
√

2

(C) remains unchanged, T

(D) is increased by a factor of
√

2, so,
√

2T
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Oscillations and Waveforms

Any oscillation can be plotted against time. eg. the position of a
vibrating object against time.

The result is a waveform.

From this wave description of the motion, a lot of parameters can
be specified.

This allows us to quantitatively compare one oscillation to another.

Examples of quantities: period, amplitude, frequency.
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Measuring Oscillations

frequency

The number of complete oscillations in some amount of time.
Usually, oscillations per second.

f =
1

T

Units of frequency: Hertz. 1 Hz = 1 s−1

If one oscillation takes a quarter of a second (0.25 s), then there
are 4 oscillations per second. The frequency is 4 s−1 = 4 Hz.

ω = 2πf



Period and frequency question

What is the period, in seconds, that corresponds to each of the
following frequencies?

1 10 Hz

2 0.2 Hz

3 60 Hz

1Hewitt, page 350, Ch 18, problem 2.



Waveform

x = A cos(ωt + φ)

 15.2 Analysis Model: Particle in Simple Harmonic Motion 455
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Figure 15.7  (a) Position, velocity, and acceleration versus time for the block in Figure 15.6 under 
the initial conditions that at t 5 0, x(0) 5 A, and v(0) 5 0. (b) Position, velocity, and acceleration ver-
sus time for the block in Figure 15.8 under the initial conditions that at t 5 0, x(0) 5 0, and v(0) 5 vi.

Figure 15.6 A block–spring 
system that begins its motion from 
rest with the block at x 5 A at t 5 0.
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x ! 0

t ! 0
xi ! A
vi ! 0

Figure 15.8 The block–spring 
system is undergoing oscillation, 
and t 5 0 is defined at an instant 
when the block passes through the 
equilibrium position x 5 0 and is 
moving to the right with speed vi.

m

x ! 0
t ! 0

xi ! 0
v ! vi

vi
S

f =
1

T

1Figure from Serway & Jewett, 9th ed.



Energy in SHM
460 Chapter 15 Oscillatory Motion

position, the potential energy curve for this function approximates a parabola, 
which represents the potential energy function for a simple harmonic oscillator. 
Therefore, we can model the complex atomic binding forces as being due to tiny 
springs as depicted in Figure 15.11b.
 The ideas presented in this chapter apply not only to block–spring systems and 
atoms, but also to a wide range of situations that include bungee jumping, playing 
a musical instrument, and viewing the light emitted by a laser. You will see more 
examples of simple harmonic oscillators as you work through this book.

r

U

a b

Figure 15.11  (a) If the atoms in a molecule 
do not move too far from their equilibrium 
positions, a graph of potential energy versus 
separation distance between atoms is similar 
to the graph of potential energy versus posi-
tion for a simple harmonic oscillator (dashed 
black curve). (b) The forces between atoms 
in a solid can be modeled by imagining 
springs between neighboring atoms.
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Figure 15.10 (a) through (e) Several instants in the simple harmonic motion for a block–spring system. Energy bar graphs show the distri-
bution of the energy of the system at each instant. The parameters in the table at the right refer to the block–spring system, assuming at t 5 0, 
x 5 A; hence, x 5 A cos vt. For these five special instants, one of the types of energy is zero. (f) An arbitrary point in the motion of the oscilla-
tor. The system possesses both kinetic energy and potential energy at this instant as shown in the bar graph.

Example 15.3   Oscillations on a Horizontal Surface 

A 0.500-kg cart connected to a light spring for which the force constant is 20.0 N/m oscillates on a frictionless, hori-
zontal air track.

(A)  Calculate the maximum speed of the cart if the amplitude of the motion is 3.00 cm.

Conceptualize  The system oscillates in exactly the same way as the block in Figure 15.10, so use that figure in your 
mental image of the motion.

AM

S O L U T I O N



Energy in SHM

Potential Energy:

U =
1

2
kx2 =

1

2
kA2 cos2(ωt + φ)

Kinetic Energy:

K =
1

2
mv2 =

1

2
mA2ω2 sin2(ωt + φ)

Using ω2 = k/m

K + U =
1

2
kA2

(
cos2(ωt + φ) + sin2(ωt + φ)

)
=

1

2
kA2

This does not depend on time!



Energy in SHM 15.3 Energy of the Simple Harmonic Oscillator 459

We see that K and U are always positive quantities or zero. Because v2 5 k/m, we can 
express the total mechanical energy of the simple harmonic oscillator as

E 5 K 1 U 5 1
2kA2 3sin2 1vt 1 f 2 1 cos2 1vt 1 f 2 4

From the identity sin2 u 1 cos2 u 5 1, we see that the quantity in square brackets is 
unity. Therefore, this equation reduces to

 E 5 1
2kA2 (15.21)

That is, the total mechanical energy of a simple harmonic oscillator is a constant of 
the motion and is proportional to the square of the amplitude. The total mechani-
cal energy is equal to the maximum potential energy stored in the spring when x 5 
6A because v 5 0 at these points and there is no kinetic energy. At the equilibrium 
position, where U 5 0 because x 5 0, the total energy, all in the form of kinetic 
energy, is again 12kA2.
 Plots of the kinetic and potential energies versus time appear in Figure 15.9a, 
where we have taken f 5 0. At all times, the sum of the kinetic and potential ener-
gies is a constant equal to 12kA2, the total energy of the system.
 The variations of K and U with the position x of the block are plotted in Figure 
15.9b. Energy is continuously being transformed between potential energy stored 
in the spring and kinetic energy of the block.
 Figure 15.10 on page 460 illustrates the position, velocity, acceleration, kinetic 
energy, and potential energy of the block–spring system for one full period of the 
motion. Most of the ideas discussed so far are incorporated in this important fig-
ure. Study it carefully.
 Finally, we can obtain the velocity of the block at an arbitrary position by express-
ing the total energy of the system at some arbitrary position x as

 E 5 K 1 U 5 1
2mv 2 1 1

2kx 2 5 1
2kA2 

 v 5 6Å k
m

1A2 2 x2 2 5 6v"A2 2 x2 (15.22)

When you check Equation 15.22 to see whether it agrees with known cases, you 
find that it verifies that the speed is a maximum at x 5 0 and is zero at the turning 
points x 5 6A.
 You may wonder why we are spending so much time studying simple harmonic 
oscillators. We do so because they are good models of a wide variety of physical 
phenomena. For example, recall the Lennard–Jones potential discussed in Exam-
ple 7.9. This complicated function describes the forces holding atoms together. 
 Figure 15.11a on page 460 shows that for small displacements from the equilibrium  
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�W  Velocity as a function  
of position for a simple har-
monic oscillator
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Figure 15.9 (a) Kinetic energy 
and potential energy versus time 
for a simple harmonic oscillator 
with f 5 0. (b) Kinetic energy and 
potential energy versus position 
for a simple harmonic oscillator.

K + U =
1

2
kA2

1Figure from Serway & Jewett, 9th ed.



Pendula and SHM - Did not get to

pendulum

a massive bob attached to the end rod or string that will oscillate
along a circular arc under the influence of gravity

A pendulum bob that is displaced to one side by a small amount
and released follows SHM to a good approximation.

Gravity and the tension in the string provide the restoring force.



Pendula and SHM - Did not get to



Pendula and SHM
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15.5 The Pendulum
The simple pendulum is another mechanical system that exhibits periodic motion. 
It consists of a particle-like bob of mass m suspended by a light string of length L 
that is fixed at the upper end as shown in Figure 15.16. The motion occurs in the 
vertical plane and is driven by the gravitational force. We shall show that, provided 
the angle u is small (less than about 108), the motion is very close to that of a simple 
harmonic oscillator.
 The forces acting on the bob are the force T

S
 exerted by the string and the gravi-

tational force m gS. The tangential component mg sin u of the gravitational force 
always acts toward u 5 0, opposite the displacement of the bob from the lowest posi-
tion. Therefore, the tangential component is a restoring force, and we can apply 
Newton’s second law for motion in the tangential direction:

 Ft 5 mat   S   2mg sin u 5 m 
d 2s
dt 2  

where the negative sign indicates that the tangential force acts toward the equilib-
rium (vertical) position and s is the bob’s position measured along the arc. We have 
expressed the tangential acceleration as the second derivative of the position s.  
Because s 5 Lu (Eq. 10.1a with r 5 L) and L is constant, this equation reduces to

 
d 2u

dt 2 5 2
g
L

 sin u  

Figure 15.16 A simple 
pendulum.

L

s
m g sin

m

m g cos

u

u

u
u

T
S

mgS 

When u is small, a simple 
pendulum's motion can be 
modeled as simple harmonic 
motion about the equilibrium 
position u ! 0.

Analyze Use Equation 15.23 to write an expression for 
the x coordinate of the rotating ball:

x 5 A cos 1vt 1 f 2
Solve for the phase constant: f 5 cos21 a x

A
b 2 vt

Substitute numerical values for the initial conditions: f 5 cos21 a2.00 m
3.00 m

b 2 0 5 648.28 5 60.841 rad

If we were to take f 5 10.841 rad as our answer, the shadow would be moving to the left at t 5 0. Because the shadow 
is moving to the right at t 5 0, we must choose f 5 20.841 rad.

Write the x coordinate as a function of time: x 5   3.00 cos (8.00t 2 0.841)

(B)  Find the x components of the shadow’s velocity and acceleration at any time t.

S O L U T I O N

Differentiate the x coordinate with respect to time to 
find the velocity at any time in m/s:

vx 5
dx
dt

5 123.00 m 2 18.00 rad/s 2  sin 18.00t 2 0.841 2
5   224.0 sin (8.00t 2 0.841)

Differentiate the velocity with respect to time to find 
the acceleration at any time in m/s2:

ax 5
dvx

dt
5 1224.0 m/s 2 18.00 rad/s 2  cos 18.00t 2 0.841 2

5   2192 cos (8.00t 2 0.841)

Finalize These results are equally valid for the ball moving in uniform circular motion and the shadow moving in 
simple harmonic motion. Notice that the value of the phase constant puts the ball in the fourth quadrant of the xy 
coordinate system of Figure 15.14, which is consistent with the shadow having a positive value for x and moving toward 
the right.

 

▸ 15.4 c o n t i n u e d

The tangential component of the net force on the pendulum bob is
−mg sin θ along the arc s, when the string is at an angle θ to the
vertical.

Therefore, Newton’s second law for rotations (τnet = Iα) analyzing
about the pivot gives:

I
d2θ

dt2
= −Lmg sin θ



Pendula and SHM

For a “simple pendulum” I = mL2 (string is massless).

mL2
d2θ

dt2
= −mgL sin θ

Dividing by mL2:
d2θ

dt2
= −

g

L
sin θ

This is a non-linear second order differential equation, and the
exact solution is a bit ugly.

However, we can approximate this motion as SHM. (Remember,
for SHM acceleration is proportional to displacement but in the
opposite direction.)
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Pendula and SHM

For small values of θ (measured in radians!), sin θ ≈ θ.

That means for small oscillations of a pendulum, the restoring
force on the bob is roughly:

F = −mgθ

and the motion is SHM.

Our equation of motion becomes:

d2θ

dt2
= −ω2θ

where ω =
√

g
L



Pendula and SHM

Equation of motion:
d2θ

dt2
= −ω2θ

We already know the solutions should be of the form

θ = θmax cos(ωt + φ)

where θmax is the amplitude and T = 2π
ω is the period.
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Problem

An astronaut on the Moon attaches a small brass ball to a 1.00 m
length of string and makes a simple pendulum. She times 15
complete swings in a time of 75 seconds. From this measurement
she calculates the acceleration due to gravity on the Moon. What
is her result?1

1.58 m/s2

1Hewitt, “Conceptual Physics”, problem 8, page 350.
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CHECKPOINT 4

Three physical pendulums, of masses m0, 2m0, and 3m0, have the same shape and size
and are suspended at the same point. Rank the masses according to the periods of the
pendulums, greatest first.

Fig. 15-10 A physical 
pendulum.The restoring
torque is hFg sin !.When 
! " 0, center of mass C
hangs directly below pivot
point O.

θ h 

θ 

θ θ Fg sin 
Fg cos 

O 

C 

Fg 

This component brings the 
pendulum back to center.

If we replace L with h in Eq. 15-27, we can write the period as

(physical pendulum, small amplitude). (15-29)

As with the simple pendulum, I is the rotational inertia of the pendulum about O.
However, now I is not simply mL2 (it depends on the shape of the physical pen-
dulum), but it is still proportional to m.

A physical pendulum will not swing if it pivots at its center of mass.
Formally, this corresponds to putting h " 0 in Eq. 15-29. That equation then pre-
dicts T : #, which implies that such a pendulum will never complete one swing.

Corresponding to any physical pendulum that oscillates about a given pivot
point O with period T is a simple pendulum of length L0 with the same period T.
We can find L0 with Eq. 15-28. The point along the physical pendulum at distance
L0 from point O is called the center of oscillation of the physical pendulum for the
given suspension point.

Measuring g
We can use a physical pendulum to measure the free-fall acceleration g at a par-
ticular location on Earth’s surface. (Countless thousands of such measurements
have been made during geophysical prospecting.)

To analyze a simple case, take the pendulum to be a uniform rod of length L,
suspended from one end. For such a pendulum, h in Eq. 15-29, the distance
between the pivot point and the center of mass, is L. Table 10-2e tells us that the
rotational inertia of this pendulum about a perpendicular axis through its center
of mass is mL2. From the parallel-axis theorem of Eq. 10-36 (I " Icom $ Mh2),
we then find that the rotational inertia about a perpendicular axis through one
end of the rod is

I " Icom $ mh2 " mL2 $ m( L)2 " mL2. (15-30)

If we put h " L and I " mL2 in Eq. 15-29 and solve for g, we find

. (15-31)

Thus, by measuring L and the period T, we can find the value of g at the pendu-
lum’s location. (If precise measurements are to be made, a number of refinements
are needed, such as swinging the pendulum in an evacuated chamber.)

g "
8% 2L
3T 2

1
3

1
2

1
3

1
2

1
12

1
12

1
2

T " 2% A I
mgh
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As before, for small angles Newton’s second law for rotations
(τnet = Iα) analyzing about the pivot gives:

I
d2θ

dt2
= −mgdθ

Solving yields θ = θmax cos(ωt + φ), with

ω =
√

mgd/I ; T = 2π

√
I

mgd

The swinging rigid
object has a
moment of inertia
I about the pivot.
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Imagine now a system with a restoring force, but also a resistive
force.

468 Chapter 15 Oscillatory Motion

 o t 5 Ia   S   2ku 5 I 
d2u

dt 2  

 
d 2u

dt 2 5 2
k

I
 u  (15.29)

Again, this result is the equation of motion for a simple harmonic oscillator, with 
v 5 !k/I  and a period

 T 5 2pÅ I
k

 (15.30)

 This system is called a torsional pendulum. There is no small-angle restriction in 
this situation as long as the elastic limit of the wire is not exceeded.

15.6 Damped Oscillations
The oscillatory motions we have considered so far have been for ideal systems, that is, 
systems that oscillate indefinitely under the action of only one force, a linear restoring 
force. In many real systems, nonconservative forces such as friction or air resistance 
also act and retard the motion of the system. Consequently, the mechanical energy of 
the system diminishes in time, and the motion is said to be damped. The mechanical 
energy of the system is transformed into internal energy in the object and the retard-
ing medium. Figure 15.20 depicts one such system: an object attached to a spring 
and submersed in a viscous liquid. Another example is a simple pendulum oscillating 
in air. After being set into motion, the pendulum eventually stops oscillating due to 
air resistance. The opening photograph for this chapter depicts damped oscillations 
in practice. The spring-loaded devices mounted below the bridge are dampers that 
transform mechanical energy of the oscillating bridge into internal energy.
 One common type of retarding force is that discussed in Section 6.4, where 
the force is proportional to the speed of the moving object and acts in the direc-
tion opposite the velocity of the object with respect to the medium. This retarding 
force is often observed when an object moves through air, for instance. Because 
the retarding force can be expressed as R

S
5 2b vS (where b is a constant called the 

damping coefficient) and the restoring force of the system is 2kx, we can write New-
ton’s second law as
 o Fx = 2kx 2 bvx = max 

 2kx 2 b 
dx
dt

5 m 
d 2x
dt 2  (15.31)

The solution to this equation requires mathematics that may be unfamiliar to you; 
we simply state it here without proof. When the retarding force is small compared 
with the maximum restoring force—that is, when the damping coefficient b is 
small—the solution to Equation 15.31 is

 x 5 Ae2(b/2m)t cos (vt 1 f) (15.32)

where the angular frequency of oscillation is

 v 5 Å k
m 2 a b

2m
b2

 (15.33)

 This result can be verified by substituting Equation 15.32 into Equation 15.31. It 
is convenient to express the angular frequency of a damped oscillator in the form

 v 5 Åv0
2 2 a b

2m
b2

 

where v0 5 !k/m represents the angular frequency in the absence of a retarding 
force (the undamped oscillator) and is called the natural frequency of the system.

O

P
maxu

The object oscillates about the 
line OP with an amplitude umax.

Figure 15.19  A torsional 
pendulum.

m

Figure 15.20  One example of 
a damped oscillator is an object 
attached to a spring and sub-
mersed in a viscous liquid.

In the picture, that would be a fluid resistance force,
#»

R = −b #»v .

Fnet = −kx − b
dx

dt
= m

d2x

dt2
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Fnet = −kx − b
dx

dt
= m

d2x

dt2

d2x

dt2
+

b

m

dx

dt
+
k

m
x = 0

Solutions1 are

x = A e−(b/2m)t cos(ωt + φ)

where ω =

√
k
m −

(
b
2m

)2
and A and φ are constants.

1See the appendix to these slides for proof.



Damped Oscillations -Skipped! Not on Final

x = A e−(b/2m)t cos(ωt + φ) 15.7 Forced Oscillations 469

 Figure 15.21 shows the position as a function of time for an object oscillating in 
the presence of a retarding force. When the retarding force is small, the oscillatory 
character of the motion is preserved but the amplitude decreases exponentially in 
time, with the result that the motion ultimately becomes undetectable. Any system 
that behaves in this way is known as a damped oscillator. The dashed black lines in 
Figure 15.21, which define the envelope of the oscillatory curve, represent the expo-
nential factor in Equation 15.32. This envelope shows that the amplitude decays 
exponentially with time. For motion with a given spring constant and object mass, 
the oscillations dampen more rapidly for larger values of the retarding force.
 When the magnitude of the retarding force is small such that b/2m , v0, the 
system is said to be underdamped. The resulting motion is represented by Figure 
15.21 and the the blue curve in Figure 15.22. As the value of b increases, the ampli-
tude of the oscillations decreases more and more rapidly. When b reaches a critical 
value bc such that bc/2m 5 v0, the system does not oscillate and is said to be criti-
cally damped. In this case, the system, once released from rest at some nonequilib-
rium position, approaches but does not pass through the equilibrium position. The 
graph of position versus time for this case is the red curve in Figure 15.22.
 If the medium is so viscous that the retarding force is large compared with the 
restoring force—that is, if b/2m . v0—the system is overdamped. Again, the dis-
placed system, when free to move, does not oscillate but rather simply returns to its 
equilibrium position. As the damping increases, the time interval required for the 
system to approach equilibrium also increases as indicated by the black curve in 
Figure 15.22. For critically damped and overdamped systems, there is no angular 
frequency v and the solution in Equation 15.32 is not valid.

15.7 Forced Oscillations
We have seen that the mechanical energy of a damped oscillator decreases in 
time as a result of the retarding force. It is possible to compensate for this energy 
decrease by applying a periodic external force that does positive work on the sys-
tem. At any instant, energy can be transferred into the system by an applied force 
that acts in the direction of motion of the oscillator. For example, a child on a 
swing can be kept in motion by appropriately timed “pushes.” The amplitude of 
motion remains constant if the energy input per cycle of motion exactly equals the 
decrease in mechanical energy in each cycle that results from retarding forces.
 A common example of a forced oscillator is a damped oscillator driven by an 
external force that varies periodically, such as F(t) 5 F0 sin vt, where F0 is a constant 
and v is the angular frequency of the driving force. In general, the frequency v of 
the driving force is variable, whereas the natural frequency v0 of the oscillator is 
fixed by the values of k and m. Modeling an oscillator with both retarding and driv-
ing forces as a particle under a net force, Newton’s second law in this situation gives

 a Fx 5 max   S   F0 sin vt 2 b 
dx
dt

2 kx 5 m 
d 2x
dt 2  (15.34)

Again, the solution of this equation is rather lengthy and will not be presented. 
After the driving force on an initially stationary object begins to act, the ampli-
tude of the oscillation will increase. The system of the oscillator and the surround-
ing medium is a nonisolated system: work is done by the driving force, such that 
the vibrational energy of the system (kinetic energy of the object, elastic potential 
energy in the spring) and internal energy of the object and the medium increase. 
After a sufficiently long period of time, when the energy input per cycle from the 
driving force equals the amount of mechanical energy transformed to internal 
energy for each cycle, a steady-state condition is reached in which the oscillations 
proceed with constant amplitude. In this situation, the solution of Equation 15.34 is

 x 5 A cos (vt 1 f) (15.35)

x

t

Figure 15.22  Graphs of posi-
tion versus time for an under-
damped oscillator (blue curve), a 
critically damped oscillator (red 
curve), and an overdamped oscil-
lator (black curve).

A

x

0 t

The amplitude 
decreases as Ae!(b/2m)t.

Figure 15.21 Graph of posi-
tion versus time for a damped 
oscillator.

The decaying exponential e−(b/2m)t shows that the amplitude of
the waveform is decreasing (energy lost). The cosine is an
oscillating solution.



Summary
• oscillations

• simple harmonic motion (SHM)

• spring and pendulum systems

4th Assignment due Friday, Mar 20.

Canvas Quiz/Survey due Thursday night, not posted yet,
will take ∼5 mins, get credit for it as a quiz!

Final Exam Tuesday, Mar 24, via Canvas & Zoom, be ready at
9am.

(Uncollected) Homework
Serway & Jewett,

• Ch 15, onward from page 472. OQs: 13; CQs: 5, 7; Probs: 1,
3, 9, 35, 41



Appendix: Damped Oscillations Solution Derivation

d2x

dt2
+

b

m

dx

dt
+
k

m
x = 0

Suppose an exponential function is the solution to this equation:

x = B ert

r and B are constants.
Then

B ert(r2 +
b

m
r +

k

m
r) = 0

The exponential function is not zero for any finite t, so the other
factor must be zero. We must find the roots for r that make this
equation true.



Damped Oscillations Solution Derivation

This is called the characteristic equation

r2 +
b

m
r +

k

m
r = 0

The roots are:

r =
−b

2m
±

√(
b

2m

)2

−
k

m

This means the solutions are of the form:

x = e−b/(2m)t
(
B1e

iωt + B2e
−iωt

)
where

ω =

√
k

m
−

(
b

2m

)2



Damped Oscillations Solution Derivation

This means the solutions are of the form:

x = e−b/(2m)t
(
B1e

iωt + B2e
−iωt

)
where

ω =

√
k

m
−

(
b

2m

)2

Recall that cos(x) = 1
2(e

ix + e−ix). (If you haven’t seen this, try to
prove it using the series expansions of cosine and the exponential
function.)

We can write the solution as

x = A e−(b/2m)t cos(ωt + φ)

where B1 = A e iφ and B2 = A e−iφ.
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9am.
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