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Oscillations and Periodic Motion

Many physical systems exhibit cycles of repetitive behavior.
After some time, they return to their initial configuration.

Examples:
e clocks
e rolling wheels
e a pendulum

e bobs on springs



Oscillations

oscillation
motion that repeats over a period of time

amplitude

the magnitude of the vibration; how far does the object move from
its average (equilibrium) position.

period

the time for one complete oscillation.

After 1 period, the motion repeats itself.



Simple Harmonic Motion

The oscillations of bobs on springs and pendula are very regular
and simple to describe.

It is called simple harmonic motion.

simple harmonic motion (SHM)

any motion in which the acceleration is proportional to the
displacement from equilibrium, but opposite in direction

The force causing the acceleration is called the “restoring force”.



SHM and Springs

If a mass is attached to a spring, the force on the mass depends on
its displacement from the spring’s natural length.

Hooke's Law: N
F =—kX

where k is the spring constant and x is the displacement (position)
of the mass.

If the spring is compressed and then the mass is released, it will
move outward until is stretches the spring by the same amount the
spring was compressed initially before it bounces back again.
(Assume no friction.)

Hooke's law gives the force on the bob = SHM.

The spring force is the restoring force.



SHM and Springs

How can we find an equation of motion for the block?

Newton's second law:

— —
—
Fnet: F5:ma

2

Using the definition of acceleration: a, = ﬂTﬁ
d®>x  k
dt?  m

Define
| k
w=1/—
m
and we can write this equation as:

d?x 5
) = —WX
dt



SHM and Springs

To solve:
dx 5
— = —wx
dt

notice that it is a second order linear differential equation.

We can actually find the solutions just be inspection.

A solution x(t) to this equation has the property that if we take its
derivative twice, we get the same form of the function back again,
but with an additional factor of —w?.
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SHM and Springs

To solve:
dx 5
— = —wx
dt
notice that it is a second order linear differential equation.

We can actually find the solutions just be inspection.
A solution x(t) to this equation has the property that if we take its
derivative twice, we get the same form of the function back again,

but with an additional factor of —w?.

Candidate: x(t) = Acos(wt), where A is a constant.

dix = —w? <A cos(wt)) v

dt?



SHM and Springs

2
dx_ 2
dt?
In fact, any solutions of the form:

x = By cos(wt + d1) + By sin(wt + ¢3)

where Bi, By, ¢1, and ¢ are constants.

However, since sin(0) = cos(0 + 71/2), in general any solution can
be written in the form:

x = Acos(wt + ¢)



Oscillating Solutions

x = Acos(wt)

(or equivalently, y = Asin(wt).)

A sin ot

We now call w the angular frequency of the oscillation.

'Figure from School of Physics webpage, University of New South Wales.
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SHM and Springs

The position of the bob at a given time is given by:
x = Acos(wt + ¢)

A is the amplitude of the oscillation. We could also write xmax = A.

x=|()
A t=0

|

| m
e v;= 0

|

|

The speed of the particle at any point in time is:
v =—Awsin(wt + ¢)

We find that by differentiating the expression for position.



SHM and Springs

x = Acos(wt + ¢)

w is the angular frequency of the oscillation.

When t = %‘ the block has returned to the position it had at
t = 0. That is one complete cycle.



SHM and Springs

x = Acos(wt + ¢)

w is the angular frequency of the oscillation.

When t = %” the block has returned to the position it had at
t = 0. That is one complete cycle.

Recalling that w = \/k/m:

Only depends on the mass of the bob and the spring constant.
Does not depend on the amplitude.



SHM and Springs Question

A mass-spring system has a period, T. If the mass of the bob is
quadrupled (and everything else is unchanged), what happens to
the period of the motion?

(A) halves, T/2

(B) remains unchanged, T
(C) doubles, 2T

(D) quadruples, 4T
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SHM and Springs Question

A mass-spring system has a period, T. If the spring constant is
halved (and everything else is unchanged), what happens to the
period of the motion?

(A) halves, T/2

(B) is reduced by a factor of v/2, so, T/+/2
(C) remains unchanged, T

(D) is increased by a factor of v/2, so, v2T
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Oscillations and Waveforms

Any oscillation can be plotted against time. eg. the position of a
vibrating object against time.

The result is a waveform.



Oscillations and Waveforms

Any oscillation can be plotted against time. eg. the position of a
vibrating object against time.

The result is a waveform.

From this wave description of the motion, a lot of parameters can
be specified.

This allows us to quantitatively compare one oscillation to another.

Examples of quantities: period, amplitude, frequency.



Measuring Oscillations

frequency

The number of complete oscillations in some amount of time.
Usually, oscillations per second.

f==
-

Units of frequency: Hertz. 1 Hz =1s!

If one oscillation takes a quarter of a second (0.25 s), then there
are 4 oscillations per second. The frequency is 4 s™1 = 4 Hz.

w = 27tf



Period and frequency question

What is the period, in seconds, that corresponds to each of the
following frequencies?

@ 10 Hz
@ 0.2 Hz
® 60 Hz

'Hewitt, page 350, Ch 18, problem 2.



Waveform

x = Acos(wt + ¢)

P

A

1Figure from Serway & Jewett, 9th ed.



Energy in SHM
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Energy in SHM

Potential Energy:

1 1
U= 5kx2 = 5kA2 cos?(wt + ¢)
Kinetic Energy:
I 5 1 5 5 .5
K= Smve = EmA wsin“(wt + ¢)
Using w? = k/m
L 2. 2 -2
K+U = §kA (cos (wt+ d) +sin (wt+¢))
1
= —kA?
2

This does not depend on time!



Energy in SHM

In either plot, notice that
K+ U= constant.

K+U:%kA2

1Figure from Serway & Jewett, 9th ed.



Pendula and SHM - Did not get to

pendulum

a massive bob attached to the end rod or string that will oscillate
along a circular arc under the influence of gravity

A pendulum bob that is displaced to one side by a small amount
and released follows SHM to a good approximation.

Gravity and the tension in the string provide the restoring force.



Pendula and SHM - Did not get to

frictionless pivot

amplitude :6
' \massless rod

bob's™~.__ i
trajectory massive bob
equilibrium

position



Pendula and SHM

m

mg sin 6
0
mg cos 6

I]Ig
The tangential component of the net force on the pendulum bob is
—mg sin 0 along the arc s, when the string is at an angle 0 to the
vertical.

Therefore, Newton's second law for rotations (Thet = [ ) analyzing
about the pivot gives:

I— =—Lmgsin®



Pendula and SHM

For a “simple pendulum” I = mL? (string is massless).

d20
ml? el = —mgLsin®
Dividing by mL?:
d?e g

P:—Zsine



Pendula and SHM

For a “simple pendulum” I = mL? (string is massless).

d20
ml? el = —mgLsin®
Dividing by mL?:
d?0
P = —% sin 9

This is a non-linear second order differential equation, and the
exact solution is a bit ugly.

However, we can approximate this motion as SHM. (Remember,
for SHM acceleration is proportional to displacement but in the
opposite direction.)



Pendula and SHM

For small values of 6 (measured in radians!), sin® ~ 6.
That means for small oscillations of a pendulum, the restoring
force on the bob is roughly:

F=—mgo

and the motion is SHM.

Our equation of motion becomes:

d%0
— =—w?0
dt

where w = /£



Pendula and SHM

Equation of motion:
d?e )
P

We already know the solutions should be of the form
0 = Omax cos(wt + ¢)

where Oayx is the amplitude and T = % is the period.



Pendula and SHM

Equation of motion:
d?e 5
P

We already know the solutions should be of the form
0 = Omax cos(wt + ¢)

where Oayx is the amplitude and T = %‘ is the period.

Recalling that w = /g/L, for the simple pendulum:

Period, T = 27t £
g




Problem

An astronaut on the Moon attaches a small brass ball to a 1.00 m
length of string and makes a simple pendulum. She times 15
complete swings in a time of 75 seconds. From this measurement
she calculates the acceleration due to gravity on the Moon. What
is her result??

Hewitt, “Conceptual Physics”, problem 8, page 350.



Problem

An astronaut on the Moon attaches a small brass ball to a 1.00 m
length of string and makes a simple pendulum. She times 15
complete swings in a time of 75 seconds. From this measurement
she calculates the acceleration due to gravity on the Moon. What
is her result??

1.58 m/s?

Hewitt, “Conceptual Physics”, problem 8, page 350.



“Physical Pendulum”
Skipped, Not on Final

The swinging rigid
object has a

moment of inertia
I about the pivot.

As before, for small angles Newton's second law for rotations
(Tnet = [) analyzing about the pivot gives:
d%0



“Physical Pendulum”
Skipped, Not on Final

The swinging rigid
object has a

moment of inertia
I about the pivot.

As before, for small angles Newton's second law for rotations
(Tnet = [) analyzing about the pivot gives:

d%0
I— = —mgdd
dt? &

Solving yields 0 = 0,2 cos(wt + ¢), with

[ 1



Damped Oscillations - Skipped! Not on Final

Imagine now a system with a restoring force, but also a resistive

force.
(.
|
v |
In the picture, that would be a fluid resistance force, R = —bv.
dx d’x
Fnet:—kX—ba:mP



Damped Oscillations - Skipped! Not on Final

dx d?x
Fnet:—kX—ba:mP
d®>x b dx k
Z4ix=0

42  mdt 'm

Solutions! are

x = Ae B/2Mt o5(wt + )

2
where w = % — (%) and A and ¢ are constants.

1See the appendix to these slides for proof.



Damped Oscillations -Skipped! Not on Final

x = Ae  (P/2Mt cos(wt + ¢)

x The amplitude
decreases as Ae~ (?/2mt.

The decaying exponential e~ (2/2M)t shows that the amplitude of

the waveform is decreasing (energy lost). The cosine is an
oscillating solution.



Summary
e oscillations

e simple harmonic motion (SHM)

e spring and pendulum systems
4th Assignment due Friday, Mar 20.

Canvas Quiz/Survey due Thursday night, not posted vyet,
will take ~5 mins, get credit for it as a quiz!

Final Exam Tuesday, Mar 24, via Canvas & Zoom, be ready at
9am.

(Uncollected) Homework
Serway & Jewett,

e Ch 15, onward from page 472. OQs: 13; CQs: 5, 7; Probs: 1,
3,9, 35, 41



Appendix: Damped Oscillations Solution Derivation

P bk k|
dt? mdt m~

Suppose an exponential function is the solution to this equation:
x=Be"

r and B are constants.
Then

b k
Bet(r’+ =r+—r)=0
m m
The exponential function is not zero for any finite t, so the other

factor must be zero. We must find the roots for r that make this
equation true.



Damped Oscillations Solution Derivation
This is called the characteristic equation

b k
PP+ —r+—r=0
m m

—b b\* Kk
=4 — ] —=
"7 om <2m> m

This means the solutions are of the form:

The roots are:

X = e fb/ (2m)t (B elwt+ Bzeilwt)

where



Damped Oscillations Solution Derivation
This means the solutions are of the form:

X — e—b/(2m)t (Bleiwt + B2e—iwt)

k b\?
w=4/——|=—
m 2m
Recall that cos(x) = %(eix 4+ e~*). (If you haven't seen this, try to

prove it using the series expansions of cosine and the exponential
function.)

where

We can write the solution as

x = Ae” (P/2Mt cos(wt + ¢)

where B; = Ae/® and B, = Ae /¢,



Summary (Again)
e oscillations
e simple harmonic motion (SHM)

e spring and pendulum systems
4th Assignment due Friday, Mar 20.

Canvas Quiz/Survey due Thursday night, not posted vyet,
will take ~5 mins, get credit for it as a quiz!

Final Exam Tuesday, Mar 24, via Canvas & Zoom, be ready at
9am.

(Uncollected) Homework
Serway & Jewett,

e Ch 15, onward from page 472. OQs: 13; CQs: 5, 7; Probs: 1,
3,9, 35,41



