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Last time

• simple harmonic motion



Overview

• static equilibrium

• center of gravity

• static equilibrium problems



Static Equilibrium: System in Equilibrium

Knowing that an object is in equilibrium can give a lot of
information about the forces on the object.

Previously: a system was in equilibrium if the net force was zero.

equilibrium ⇐⇒ constant velocity or at rest

Also, acceleration is zero.



Static Equilibrium: Extended System in Equilibrium

Now we consider extended rigid objects.

Forces can cause rotations (torques).

Force Equilibrium

#»

Fnet =
∑
i

#»

F i = 0

Rotational Equilibrium

#»τ net,O =
∑
i

#»τ i = 0

about any axis O.
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Static Equilibrium: Extended System in Equilibrium

Rigid Object in Equilibrium

A rigid object is said to be in equilibrium if
#»

Fnet =
∑

i

#»

F i = 0 and
#»τ net,O =

∑
i

#»τ i ,O = 0 about any axis O.

equilibrium ⇐⇒ v = const. and ω = const.

⇒ a = 0 and α = 0



Static Equilibrium

Static Equilibrium is the special case that the object is also at rest:

vCM = 0

ω = 0



Question

Quick Quiz 12.1 1 Consider the object subject to the two forces of
equal magnitude. Choose the correct statement for this situation.
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Figure 12.3  (Quick Quiz 12.2) 
Three forces act on an object. 
Notice that the lines of action of 
all three forces pass through a 
common point.

 Consider a single force F
S

 acting on a rigid object as shown in Figure 12.1. Recall 
that the torque associated with the force F

S
 about an axis through O is given by 

Equation 11.1:

 tS 5 rS 3 F
S

 

The magnitude of tS is Fd (see Equation 10.14), where d is the moment arm shown 
in Figure 12.1. According to Equation 10.18, the net torque on a rigid object causes 
it to undergo an angular acceleration.
 In this discussion, we investigate those rotational situations in which the angular 
acceleration of a rigid object is zero. Such an object is in rotational equilibrium. 
Because o text 5 Ia for rotation about a fixed axis, the necessary condition for rota-
tional equilibrium is that the net torque about any axis must be zero. We now have 
two necessary conditions for equilibrium of a rigid object:

 1. The net external force on the object must equal zero:

 a F
S

ext 5 0 (12.1)

 2. The net external torque on the object about any axis must be zero:

 a tSext 5 0 (12.2)

These conditions describe the rigid object in equilibrium analysis model. The first 
condition is a statement of translational equilibrium; it states that the translational 
acceleration of the object’s center of mass must be zero when viewed from an iner-
tial reference frame. The second condition is a statement of rotational equilibrium; 
it states that the angular acceleration about any axis must be zero. In the special 
case of static equilibrium, which is the main subject of this chapter, the object in 
equilibrium is at rest relative to the observer and so has no translational or angular 
speed (that is, vCM 5 0 and v 5 0).

Q uick Quiz 12.1  Consider the object subject to the two forces of equal magnitude 
in Figure 12.2. Choose the correct statement with regard to this situation.  
(a) The object is in force equilibrium but not torque equilibrium. (b) The object 
is in torque equilibrium but not force equilibrium. (c) The object is in both 
force equilibrium and torque equilibrium. (d) The object is in neither force 
equilibrium nor torque equilibrium.

Q uick Quiz 12.2  Consider the object subject to the three forces in Figure 12.3. 
Choose the correct statement with regard to this situation. (a) The object is in 
force equilibrium but not torque equilibrium. (b) The object is in torque equi-
librium but not force equilibrium. (c) The object is in both force  equilibrium 
and torque equilibrium. (d) The object is in neither force equilibrium nor 
torque equilibrium.

 The two vector expressions given by Equations 12.1 and 12.2 are equivalent, 
in general, to six scalar equations: three from the first condition for equilibrium 
and three from the second (corresponding to x, y, and z components). Hence, in a 
complex system involving several forces acting in various directions, you could be 
faced with solving a set of equations with many unknowns. Here, we restrict our 
discussion to situations in which all the forces lie in the xy plane. (Forces whose 
vector representations are in the same plane are said to be coplanar.) With this 
restriction, we must deal with only three scalar equations. Two come from balanc-
ing the forces in the x and y directions. The third comes from the torque equa-
tion, namely that the net torque about a perpendicular axis through any point in 
the xy plane must be zero. This perpendicular axis will necessarily be parallel to 
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Figure 12.1  A single force F
S

 acts 
on a rigid object at the point P.

Pitfall Prevention 12.1
Zero Torque Zero net torque does 
not mean an absence of rotational 
motion. An object that is rotating 
at a constant angular speed can 
be under the influence of a net 
torque of zero. This possibility 
is analogous to the translational 
situation: zero net force does not 
mean an absence of translational 
motion.
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Figure 12.2  (Quick Quiz 12.1) 
Two forces of equal magnitude are 
applied at equal distances from 
the center of mass of a rigid object.

(A) The object is in force equilibrium but not torque equilibrium.

(B) The object is in torque equilibrium but not force equilibrium.

(C) The object is in both force equilibrium and torque equilibrium.

(D) The object is in neither force equilibrium nor torque
equilibrium.

1Serway & Jewett, page 364.
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(A) The object is in force equilibrium but not torque equilibrium.
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(B) The object is in torque equilibrium but not force equilibrium.
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(D) The object is in neither force equilibrium nor torque
equilibrium.

1Serway & Jewett, page 364.



Rotational Equilibrium?

A system is in rotational equilibrium if #»τ net = 0 for any possible
axis.

Suppose the system is in force equilibrium. Then
#»

Fnet = 0.

If
#»

Fnet = 0 and #»τ net,O = 0 for a particular axis O, then
#»τ net,O ′ = 0 for any axis O ′.

Rotational Equilibrium from Force Equilibrium

If an object is in force equilibrium and the net torque is zero about
one axis, then the net torque must be zero about any other axis.

If the system is not in force equilibrium, this does not follow!
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Rotational Equilibrium?

Rotational Equilibrium from Force Equilibrium

If an object is in force equilibrium and the net torque is zero about
one axis, then the net torque must be zero about any other axis.

Suppose #»τ net,O = 0 and
#»

Fnet = 0.
S ECT I O N  12 . 2 •  More on the Center of Gravity 365

wise, the point of application of F2 relative to O! is r2 " r!, and so forth. Therefore, the
torque about an axis through O! is

Because the net force is assumed to be zero (given that the object is in translational
equilibrium), the last term vanishes, and we see that the torque about an axis through
O! is equal to the torque about an axis through O. Hence, if an object is in transla-
tional equilibrium and the net torque is zero about one axis, then the net torque
must be zero about any other axis.

12.2 More on the Center of Gravity

We have seen that the point at which a force is applied can be critical in determining
how an object responds to that force. For example, two equal-magnitude but oppo-
sitely directed forces result in equilibrium if they are applied at the same point on an
object. However, if the point of application of one of the forces is moved, so that the
two forces no longer act along the same line of action, then the object undergoes an
angular acceleration.

Whenever we deal with a rigid object, one of the forces we must consider is the
gravitational force acting on it, and we must know the point of application of this
force. As we learned in Section 9.5, associated with every object is a special point called
its center of gravity. All the various gravitational forces acting on all the various mass el-
ements of the object are equivalent to a single gravitational force acting through this
point. Thus, to compute the torque due to the gravitational force on an object of mass
M, we need only consider the force Mg acting at the center of gravity of the object.

How do we find this special point? As we mentioned in Section 9.5, if we assume
that g is uniform over the object, then the center of gravity of the object coincides with
its center of mass. To see that this is so, consider an object of arbitrary shape lying in
the xy plane, as illustrated in Figure 12.5. Suppose the object is divided into a large
number of particles of masses m1, m2, m3, . . . having coordinates (x1, y1), (x2, y2),
(x3, y3), . . . . In Equation 9.28 we defined the x coordinate of the center of mass of
such an object to be

We use a similar equation to define the y coordinate of the center of mass, replacing
each x with its y counterpart.

Let us now examine the situation from another point of view by considering the
gravitational force exerted on each particle, as shown in Figure 12.6. Each particle con-
tributes a torque about the origin equal in magnitude to the particle’s weight mg multi-
plied by its moment arm. For example, the magnitude of the torque due to the force
m1g1 is m1g1x1, where g1 is the value of the gravitational acceleration at the position of
the particle of mass m1. We wish to locate the center of gravity, the point at which appli-
cation of the single gravitational force Mg (where M # m1 $ m2 $ m3 $ % % % is the total
mass of the object) has the same effect on rotation as does the combined effect of all
the individual gravitational forces migi. Equating the torque resulting from Mg acting at
the center of gravity to the sum of the torques acting on the individual particles gives

This expression accounts for the fact that the value of g can in general vary over the
object. If we assume uniform g over the object (as is usually the case), then the

(m1g1 $ m2g2 $ m3g3 $ % % %)xCG # m1g1x1 $ m2g2x2 $ m3g3x3 $ % % %

xCM #
m1x1 $ m2x2 $ m3x3 $ % % %

m1 $ m2 $ m3 $ % % %
#

!
i

 mixi

!
i

 mi

# r1 ! F1 $ r2 ! F2 $ r3 ! F3 $ % % % " r! ! (F1 $ F2 $ F3 $ % % %)
! "O! # (r1 " r!) ! F1 $ (r2 " r!) ! F2 $ (r3 " r!) ! (F3 $ % % %

Figure 12.4 Construction showing
that if the net torque is zero about
origin O, it is also zero about any
other origin, such as O!.

Figure 12.6 The center of gravity
of an object is located at the center
of mass if g is constant over the
object.

Figure 12.5 An object can be di-
vided into many small particles
each having a specific mass and
specific coordinates. These parti-
cles can be used to locate the cen-
ter of mass.
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Center of Gravity vs. Center of Mass

Center of gravity – the point in an extended object at which a
single gravitational force acting is equivalent to the combination of
all the individual gravitational forces acting on each mass element
in the object.

If the gravitational field is uniform (the same at all points) then
the center of gravity is the same point as the center of mass.

 12.2 More on the Center of Gravity 365
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 xCM 5
m1x1 1 m2x2 1 m3x3 1 c

m1 1 m2 1 m3 1 c 5
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mixi
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We use a similar equation to define the y coordinate of the center of mass, replac-
ing each x with its y counterpart.
 Let us now examine the situation from another point of view by considering the 
gravitational force exerted on each particle as shown in Figure 12.5. Each particle 
contributes a torque about an axis through the origin equal in magnitude to the 
particle’s weight mg multiplied by its moment arm. For example, the magnitude of 
the torque due to the force m1gS1 is m1g1x1, where g1 is the value of the gravitational 
acceleration at the position of the particle of mass m1. We wish to locate the center 
of gravity, the point at which application of the single gravitational force M gSCG 
(where M 5 m1 1 m2 1 m3 1 ??? is the total mass of the object and gSCG is the accel-
eration due to gravity at the location of the center of gravity) has the same effect on 
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Figure 12.4  An object can be 
divided into many small particles. 
These particles can be used to 
locate the center of mass.

the z axis, so the two conditions of the rigid object in equilibrium model provide 
the equations

 o Fx 5 0    o Fy 5 0    o tz 5 0 (12.3)

where the location of the axis of the torque equation is arbitrary.

Analysis Model   Rigid Object in Equilibrium

Imagine an object that can rotate, 
but is exhibiting no translational 
acceleration a and no rotational 
acceleration a. Such an object is in 
both translational and rotational 
equilibrium, so the net force and the 
net torque about any axis are both 
equal to zero:

 a F
S

ext 5 0 (12.1)

 a tSext 5 0 (12.2)

Examples: 

must support the weight of several 
humans without collapsing

iron cross 
maneuver in an Olympic event

calm water and maintains a perfectly 
level orientation (Chapter 14)

-
rial in a constant electric field take on an average equilibrium orienta-
tion that remains fixed in time (Chapter 26)
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Figure 12.5  By dividing an 
object into many particles, we can 
find its center of gravity.
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itational force acting on it, and we must know the point of application of this force. 
As we learned in Section 9.5, associated with every object is a special point called its 
center of gravity. The combination of the various gravitational forces acting on all 
the various mass elements of the object is equivalent to a single gravitational force 
acting through this point. Therefore, to compute the torque due to the gravita-
tional force on an object of mass M, we need only consider the force M gS acting at 
the object’s center of gravity.
 How do we find this special point? As mentioned in Section 9.5, if we assume gS is 
uniform over the object, the center of gravity of the object coincides with its cen-
ter of mass. To see why, consider an object of arbitrary shape lying in the xy plane 
as illustrated in Figure 12.4. Suppose the object is divided into a large number of 
particles of masses m1, m2, m3, . . . having coordinates (x1, y1), (x2, y2), (x3, y3), . . . . In 
Equation 9.29, we defined the x coordinate of the center of mass of such an object 
to be

 xCM 5
m1x1 1 m2x2 1 m3x3 1 c

m1 1 m2 1 m3 1 c 5
a

i
mixi

a
i

mi

 

We use a similar equation to define the y coordinate of the center of mass, replac-
ing each x with its y counterpart.
 Let us now examine the situation from another point of view by considering the 
gravitational force exerted on each particle as shown in Figure 12.5. Each particle 
contributes a torque about an axis through the origin equal in magnitude to the 
particle’s weight mg multiplied by its moment arm. For example, the magnitude of 
the torque due to the force m1gS1 is m1g1x1, where g1 is the value of the gravitational 
acceleration at the position of the particle of mass m1. We wish to locate the center 
of gravity, the point at which application of the single gravitational force M gSCG 
(where M 5 m1 1 m2 1 m3 1 ??? is the total mass of the object and gSCG is the accel-
eration due to gravity at the location of the center of gravity) has the same effect on 
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Each particle of the object has 
a specific mass and specific 
coordinates. 

Figure 12.4  An object can be 
divided into many small particles. 
These particles can be used to 
locate the center of mass.

the z axis, so the two conditions of the rigid object in equilibrium model provide 
the equations

 o Fx 5 0    o Fy 5 0    o tz 5 0 (12.3)

where the location of the axis of the torque equation is arbitrary.

Analysis Model   Rigid Object in Equilibrium

Imagine an object that can rotate, 
but is exhibiting no translational 
acceleration a and no rotational 
acceleration a. Such an object is in 
both translational and rotational 
equilibrium, so the net force and the 
net torque about any axis are both 
equal to zero:

 a F
S

ext 5 0 (12.1)

 a tSext 5 0 (12.2)

Examples: 

must support the weight of several 
humans without collapsing

iron cross 
maneuver in an Olympic event

calm water and maintains a perfectly 
level orientation (Chapter 14)

-
rial in a constant electric field take on an average equilibrium orienta-
tion that remains fixed in time (Chapter 26)
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Center of Gravity

In particular, the torque caused by a single force
#»

Fg through the
center of gravity must be the same as the net torque of all the
forces mi

#»g on all the masses mi in the system.

When an object is supported below its center of mass, there should
be no net torque due to gravity.

 12.3 Examples of Rigid Objects in Static Equilibrium 367

Example 12.1   The Seesaw Revisited 

A seesaw consisting of a uniform board of mass M and length , sup-
ports at rest a father and daughter with masses mf and md, respec-
tively, as shown in Figure 12.7. The support (called the fulcrum) is 
under the center of gravity of the board, the father is a distance d 
from the center, and the daughter is a distance ,/2 from the center.

(A)  Determine the magnitude of the upward force nS exerted by 
the support on the board.

Conceptualize  Let us focus our attention on the board and consider 
the gravitational forces on the father and daughter as forces applied directly to the board. The daughter would cause a 
clockwise rotation of the board around the support, whereas the father would cause a counterclockwise rotation.

Categorize  Because the text of the problem states that the system is at rest, we model the board as a rigid object in 
equilibrium. Because we will only need the first condition of equilibrium to solve this part of the problem, however, we 
could also simply model the board as a particle in equilibrium.

AM

S O L U T I O N

 Choose a convenient axis for calculating the net torque on the rigid object. 
Remember that the choice of the axis for the torque equation is arbitrary; therefore, 
choose an axis that simplifies your calculation as much as possible. Usually, the most 
convenient axis for calculating torques is one through a point through which the 
lines of action of several forces pass, so their torques around this axis are zero. If you 
don’t know a force or don’t need to know a force, it is often beneficial to choose an 
axis through the point at which this force acts. Apply the second condition for equi-
librium, Equation 12.2.
 Solve the simultaneous equations for the unknowns in terms of the known 
quantities.

4. Finalize.  Make sure your results are consistent with your diagram. If you selected a 
direction that leads to a negative sign in your solution for a force, do not be alarmed; 
it merely means that the direction of the force is the opposite of what you guessed. 
Add up the vertical and horizontal forces on the object and confirm that each set 
of components adds to zero. Add up the torques on the object and confirm that the 
sum equals zero.

d

M

mf
mdgS 

nS

gS 

gS 

2
!

Figure 12.7  (Example 12.1) A balanced system.

Analyze  Define upward as the positive y direction and 
substitute the forces on the board into Equation 12.1:

n 2 mf g  2 mdg  2 Mg 5 0

Solve for the magnitude of the force nS: (1)   n 5 mf g 1 mdg 1 Mg 5  (mf 1 md 1 M)g

(B)  Determine where the father should sit to balance the system at rest.

Categorize  This part of the problem requires the introduction of torque to find the position of the father, so we model 
the board as a rigid object in equilibrium.

Analyze The board’s center of gravity is at its geometric center because we are told that the board is uniform. If we 
choose a rotation axis perpendicular to the page through the center of gravity of the board, the torques produced by 
nS and the gravitational force on the board about this axis are zero.

S O L U T I O N

▸ Problem-Solving Strategy c o n t i n u e d

continued



Center of Gravity

In the diagram the forces
#»

Fg were in the −y direction.

The x-coordinate of the center of gravity satisfies:

xCGM gCG =
∑
i

ximi gi

where M =
∑

i mi is the total mass.

If #»g CG = #»g i ∀ i then the gi s cancel and this simplifies to:

xCG =
1

M

∑
i

mixi

Same as center of mass expression! xCG = xCM
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Question

Quick Quiz 12.32 A meterstick of uniform density is hung from a
string tied at the 25-cm mark. A 0.50-kg object is hung from the
zero end of the meterstick, and the meterstick is balanced
horizontally. What is the mass of the meterstick?

(A) 0.25 kg

(B) 0.50 kg

(C) 1.0 kg

(D) 2.0 kg

2Serway & Jewett, page 366.
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Seesaw - Example 12.1

A seesaw consisting of a uniform board of mass M and length `,
supports at rest a father and daughter with masses mf and md ,
respectively. The support (called the fulcrum) is under the center
of gravity of the board, the father is a distance d from the center,
and the daughter is a distance `/2 from the center.
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Example 12.1   The Seesaw Revisited 

A seesaw consisting of a uniform board of mass M and length , sup-
ports at rest a father and daughter with masses mf and md, respec-
tively, as shown in Figure 12.7. The support (called the fulcrum) is 
under the center of gravity of the board, the father is a distance d 
from the center, and the daughter is a distance ,/2 from the center.

(A)  Determine the magnitude of the upward force nS exerted by 
the support on the board.

Conceptualize  Let us focus our attention on the board and consider 
the gravitational forces on the father and daughter as forces applied directly to the board. The daughter would cause a 
clockwise rotation of the board around the support, whereas the father would cause a counterclockwise rotation.

Categorize  Because the text of the problem states that the system is at rest, we model the board as a rigid object in 
equilibrium. Because we will only need the first condition of equilibrium to solve this part of the problem, however, we 
could also simply model the board as a particle in equilibrium.

AM

S O L U T I O N

 Choose a convenient axis for calculating the net torque on the rigid object. 
Remember that the choice of the axis for the torque equation is arbitrary; therefore, 
choose an axis that simplifies your calculation as much as possible. Usually, the most 
convenient axis for calculating torques is one through a point through which the 
lines of action of several forces pass, so their torques around this axis are zero. If you 
don’t know a force or don’t need to know a force, it is often beneficial to choose an 
axis through the point at which this force acts. Apply the second condition for equi-
librium, Equation 12.2.
 Solve the simultaneous equations for the unknowns in terms of the known 
quantities.

4. Finalize.  Make sure your results are consistent with your diagram. If you selected a 
direction that leads to a negative sign in your solution for a force, do not be alarmed; 
it merely means that the direction of the force is the opposite of what you guessed. 
Add up the vertical and horizontal forces on the object and confirm that each set 
of components adds to zero. Add up the torques on the object and confirm that the 
sum equals zero.
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Figure 12.7  (Example 12.1) A balanced system.

Analyze  Define upward as the positive y direction and 
substitute the forces on the board into Equation 12.1:

n 2 mf g  2 mdg  2 Mg 5 0

Solve for the magnitude of the force nS: (1)   n 5 mf g 1 mdg 1 Mg 5  (mf 1 md 1 M)g

(B)  Determine where the father should sit to balance the system at rest.

Categorize  This part of the problem requires the introduction of torque to find the position of the father, so we model 
the board as a rigid object in equilibrium.

Analyze The board’s center of gravity is at its geometric center because we are told that the board is uniform. If we 
choose a rotation axis perpendicular to the page through the center of gravity of the board, the torques produced by 
nS and the gravitational force on the board about this axis are zero.

S O L U T I O N

▸ Problem-Solving Strategy c o n t i n u e d

continued

Determine where the father should sit to balance the system at
rest.



Seesaw - Example 12.1

Where should the father sit to balance the system?

Net torque is zero.

Analyzing torques about the fulcrum point:

τnet = 0

mf gd −mdg
`

2
= 0

mf gd = mdg
`

2

d =
md`

2mf



Seesaw - Example 12.1

Where should the father sit to balance the system?

Net torque is zero.

Analyzing torques about the fulcrum point:

τnet = 0

mf gd −mdg
`

2
= 0

mf gd = mdg
`

2

d =
md`

2mf



Seesaw - Example 12.1

Where should the father sit to balance the system?

Net torque is zero.

Analyzing torques about the fulcrum point:
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`
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Example 12.3 - Slipping Ladder

A uniform ladder of length `, rests against a smooth, vertical wall.
The mass of the ladder is m, and the coefficient of static friction
between the ladder and the ground is µs = 0.40. Find the
minimum angle θmin at which the ladder does not slip.

370 Chapter 12 Static Equilibrium and Elasticity

Finalize  Notice that the angle depends only on the coefficient of friction, not on the mass or length of the ladder.

Example 12.3   The Leaning Ladder 

A uniform ladder of length , rests against a smooth, vertical wall (Fig. 
12.9a). The mass of the ladder is m, and the coefficient of static friction 
between the ladder and the ground is ms 5 0.40. Find the minimum 
angle umin at which the ladder does not slip.

Conceptualize  Think about any ladders you have climbed. Do you want 
a large friction force between the bottom of the ladder and the surface 
or a small one? If the friction force is zero, will the ladder stay up? Simu-
late a ladder with a ruler leaning against a vertical surface. Does the 
ruler slip at some angles and stay up at others?

Categorize  We do not wish the ladder to slip, so we model it as a rigid 
object in equilibrium.

Analyze  A diagram showing all the external forces acting on the ladder is illustrated in Figure 12.9b. The force exerted 
by the ground on the ladder is the vector sum of a normal force nS and the force of static friction f

S
s . The wall exerts a 

normal force P
S

 on the top of the ladder, but there is no friction force here because the wall is smooth. So the net force 
on the top of the ladder is perpendicular to the wall and of magnitude P.

AM

S O L U T I O N
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Figure 12.9  (Example 12.3) (a) A uniform 
ladder at rest, leaning against a smooth wall. The 
ground is rough. (b) The forces on the ladder.

Apply the first condition for equilibrium to the ladder in 
both the x and the y directions:

(1)   o  Fx 5 fs 2 P 5 0

(2)   o Fy 5 n 2 mg 5 0

Solve Equation (1) for P : (3)   P 5 fs

Solve Equation (2) for n: (4)   n 5 mg 

When the ladder is on the verge of slipping, the force 
of static friction must have its maximum value, which is 
given by fs,max 5 msn. Combine this equation with Equa-
tions (3) and (4):

(5)   Pmax 5 fs,max 5 msn 5 msmg

Apply the second condition for equilibrium to the lad-
der, evaluating torques about an axis perpendicular to 
the page through O :

a tO 5 P, sin u 2 mg 
,

2
 cos u 5 0

Solve for tan u: sin u
cos u

5 tan u 5
mg
2P

   S   u 5 tan21 amg
2P

b
Under the conditions that the ladder is just ready 
to slip, u becomes umin and Pmax is given by Equa-
tion (5). Substitute:

umin 5 tan21 a mg
2Pmax

b 5 tan21 a 1
2ms

b 5 tan21 c 1
2 10.40 2 d 5 518

 

Example 12.4   Negotiating a Curb 

(A)  Estimate the magnitude of the force F
S

 a person must apply to a wheelchair’s main wheel to roll up over a side-
walk curb (Fig. 12.10a). This main wheel that comes in contact with the curb has a radius r, and the height of the curb 
is h.

AM

umin 5 tan21a mg
2Pmax

b 5 tan21 a 1
2ms

b 5 tan21 c 1
2 10.40 2 d 5

[&&]



Example 12.3 - Slipping Ladder

y-dir:
Fnet,y = 0⇒ n = mg

x-dir:
Fnet,x = 0⇒ P = fs

torques about O: (pick the point O for simplicity)

τnet,O = 0⇒ `P sin θ =
`

2
mg cos θ

At point of slipping fs → fs,max = µsn.

θmin = tan−1

(
1

2µs

)
= 51◦
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Summary

• static equilibrium

• center of gravity

• static equilibrium practice

4th Assignment! Due tomorrow.

Final Exam Tuesday, Mar 24, via Canvas & Zoom, be ready at
9am.

(Uncollected) Homework Serway & Jewett,

• Read 12.1–12.3 of Chapter 12.

• Ch 12, onward from page 400. Probs: 3, 11, 15, 23, 25, 45, 51


