# Kinematics 

# Using the Kinematics Equations 

Lana Sheridan<br>De Anza College

Jan 10, 2020

## Last time

- more about graphs of kinematic quantities
- kinematic equations


## Overview

- practice using kinematic equations


## Using the Kinematics Equations

Example Drag racers can have accelerations as high as $26.0 \mathrm{~m} / \mathrm{s}^{2}$. Starting from rest $\left(\overrightarrow{\mathbf{v}}_{i}=0\right)$ with that acceleration, how much distance does the car cover in 5.56 s ?

Before we start answering...

## Using the Kinematics Equations

Process:
(1) Identify which quantity we need to find and which ones we are given.
(2) Is there a quantity that we are not given and are not asked for?
(1) If so, use the equation that does not include that quantity.

2 If there is not, more that one kinematics equation may be required or there may be several equivalent approaches.
(3) Input known quantities and solve.

## Using the Kinematics Equations

Example Drag racers can have accelerations as high as $26.0 \mathrm{~m} / \mathrm{s}^{2}$. Starting from rest $\left(\overrightarrow{\mathbf{v}}_{i}=0\right)$ with that acceleration, how much distance does the car cover in 5.56 s ?

## Using the Kinematics Equations

Example Drag racers can have accelerations as high as $26.0 \mathrm{~m} / \mathrm{s}^{2}$. Starting from rest $\left(\vec{v}_{i}=0\right)$ with that acceleration, how much distance does the car cover in 5.56 s ?

What equation should we use?

## Using the Kinematics Equations

Example Drag racers can have accelerations as high as $26.0 \mathrm{~m} / \mathrm{s}^{2}$. Starting from rest ( $\vec{v}_{i}=0$ ) with that acceleration, how much distance does the car cover in 5.56 s ?

What equation should we use?

$$
\overrightarrow{\Delta \boldsymbol{r}}=\overrightarrow{\mathbf{v}_{\mathbf{i}}} t+\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2}
$$

## Using the Kinematics Equations

Example Drag racers can have accelerations as high as $26.0 \mathrm{~m} / \mathrm{s}^{2}$. Starting from rest $\left(\vec{v}_{i}=0\right)$ with that acceleration, how much distance does the car cover in 5.56 s ?

What equation should we use?

$$
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}_{\mathbf{i}}} t+\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2}
$$

$$
\begin{aligned}
\Delta x & =\frac{1}{2} a_{x} t^{2} \\
\Delta x & =\frac{1}{2}\left(26.0 \mathrm{~ms}^{-2}\right)(5.56 \mathrm{~s})^{2} \\
& =\underline{402 \mathrm{~m}}
\end{aligned}
$$

## Using the Kinematics Equations, Ex 2.8

A car traveling at a constant speed of $45.0 \mathrm{~m} / \mathrm{s}$ passes a trooper on a motorcycle hidden behind a billboard. One second after the speeding car passes the billboard, the trooper sets out from the billboard to catch the car, accelerating at a constant rate of $3.00 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take the trooper to overtake the car?

${ }^{1}$ Serway \& Jewett, pg 39.

## Using the Kinematics Equations, Ex 2.8

A car traveling at a constant speed of $45.0 \mathrm{~m} / \mathrm{s}$ passes a trooper on a motorcycle hidden behind a billboard. One second after the speeding car passes the billboard, the trooper sets out from the billboard to catch the car, accelerating at a constant rate of $3.00 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take the trooper to overtake the car?


Answer: $t=31.0 \mathrm{~s}$
${ }^{1}$ Serway \& Jewett, pg 39.

## Summary

- using the kinematic equations

Assignment due Thursday, Jan 16.
(Uncollected) Homework Serway \& Jewett,

- Ch 2, onward from page 49. Probs: 53, 56

