# Kinematics <br> Varying Acceleration Vectors 

Lana Sheridan<br>De Anza College

Jan 13, 2020

## Last time

- using the kinematics equations


## Overview

- falling objects and $g$
- varying acceleration
- vectors and components (?)


## Falling Objects

One common scenario of interest where acceleration is constant is falling objects.

Objects (with mass) near the Earth's surface accelerate at a constant rate of $\boldsymbol{g}=9.8 \mathrm{~ms}^{-2}$. (Or, about $10 \mathrm{~ms}^{-2}$ ) The kinematics equations for constant acceleration all apply.

## Falling Objects

One common scenario of interest where acceleration is constant is falling objects.

Objects (with mass) near the Earth's surface accelerate at a constant rate of $\boldsymbol{g}=\mathbf{9 . 8} \mathbf{~ m s}^{-2}$. (Or, about $10 \mathrm{~ms}^{-2}$ ) The kinematics equations for constant acceleration all apply.

## Example

You drop a rock off of a 50.0 m tall building. With what velocity does it strike the ground?

## Falling Objects

## Example

You drop a rock off of a 50.0 m tall building. With what velocity does it strike the ground?

What quantities do we know? Which ones do we want to predict?

## Falling Objects

## Example

You drop a rock off of a 50.0 m tall building. With what velocity does it strike the ground?

What quantities do we know? Which ones do we want to predict?
Which equation(s) should we use?

## Falling Objects

## Example

You drop a rock off of a 50.0 m tall building. With what velocity does it strike the ground?

What quantities do we know? Which ones do we want to predict?
Which equation(s) should we use?

$$
\overrightarrow{\mathbf{v}}=-31.3 \mathrm{~m} / \mathrm{s} \hat{\mathbf{j}} \quad(+y \uparrow)
$$

## Falling Objects

## Example

You drop a rock off of a 50.0 m tall building. With what velocity does it strike the ground?

What quantities do we know? Which ones do we want to predict?
Which equation(s) should we use?
$\overrightarrow{\mathbf{v}}=-31.3 \mathrm{~m} / \mathrm{s} \hat{\mathbf{j}} \quad(+y \uparrow)$

What if we threw it upwards with a speed of $10.0 \mathrm{~m} / \mathrm{s}$ ?

## Falling Objects

## Example

You drop a rock off of a 50.0 m tall building. With what velocity does it strike the ground?

What quantities do we know? Which ones do we want to predict?
Which equation(s) should we use?
$\overrightarrow{\mathbf{v}}=-31.3 \mathrm{~m} / \mathrm{s} \hat{\mathbf{j}} \quad(+y \uparrow)$

What if we threw it upwards with a speed of $10.0 \mathrm{~m} / \mathrm{s}$ ?
Downwards at $10.0 \mathrm{~m} / \mathrm{s}$ ?

## Falling Objects





## Acceleration in terms of $g$

Because $g$ is a constant, and because we have a good intuition for it, we can use it as a "unit" of acceleration.
("How many times $g$ is this acceleration?")

## Acceleration in terms of $g$

Because $g$ is a constant, and because we have a good intuition for it, we can use it as a "unit" of acceleration.
("How many times $g$ is this acceleration?")

Consider the drag race car in the earlier example. For the car the maximum acceleration was $a=26.0 \mathrm{~m} \mathrm{~s}^{-2}$. How many $g s$ is that?

A 0
B roughly 1
C roughly 2 and a half
D 26

## Acceleration in terms of $g$

Because $g$ is a constant, and because we have a good intuition for it, we can use it as a "unit" of acceleration.
("How many times $g$ is this acceleration?")

Consider the drag race car in the earlier example. For the car the maximum acceleration was $a=26.0 \mathrm{~m} \mathrm{~s}^{-2}$. How many $g s$ is that?

A 0
B roughly 1
C roughly 2 and a half $\leftarrow$
D 26

## Acceleration of a Falling Object

## Question

A baseball is thrown straight up. It reaches a peak height of 15 m , measured from the ground, in a time 1.7 s . Treating "up" as the positive direction, what is the acceleration of the ball when it reached its peak height?

A $0 \mathrm{~m} / \mathrm{s}^{2}$
B $-8.8 \mathrm{~m} / \mathrm{s}^{2}$
C $+8.8 \mathrm{~m} / \mathrm{s}^{2}$
D $-9.8 \mathrm{~m} / \mathrm{s}^{2}$

[^0]
## Acceleration of a Falling Object

## Question

A baseball is thrown straight up. It reaches a peak height of 15 m , measured from the ground, in a time 1.7 s . Treating "up" as the positive direction, what is the acceleration of the ball when it reached its peak height?

A $0 \mathrm{~m} / \mathrm{s}^{2}$
B $-8.8 \mathrm{~m} / \mathrm{s}^{2}$
C $+8.8 \mathrm{~m} / \mathrm{s}^{2}$
D $-9.8 \mathrm{~m} / \mathrm{s}^{2} \leftarrow$

[^1]
## 1-D Kinematics with varying acceleration

If we have a varying acceleration $\overrightarrow{\mathbf{a}}(t)$, we should use calculus not the kinematics equations.

In the homework (question 57), there is a situation where the jerk, $J=\frac{\mathrm{da}}{\mathrm{dt}}$ is constant, but not zero.

In that case the acceleration is not constant:

$$
\Delta a=\int_{0}^{t} J d t^{\prime}
$$

so,

$$
a(t)=a_{i}+J t
$$

The velocity cannot be found by using $v(t)=v_{i}+a t$ !
Instead, integrate again.

## 1-D Kinematics with varying acceleration

If we have a varying acceleration $\overrightarrow{\mathbf{a}}(t)$, we should use calculus not the kinematics equations.

In the homework (question 57), there is a situation where the jerk, $J=\frac{\mathrm{da}}{\mathrm{dt}}$ is constant, but not zero.

In that case the acceleration is not constant:

$$
\Delta a=\int_{0}^{t} J d t^{\prime}
$$

so,

$$
a(t)=a_{i}+J t
$$

The velocity cannot be found by using $\bar{v}(t)=\overline{a t}$ !
Instead, integrate again.

## 1-D Kinematics with varying acceleration

Suppose you have a particle with a varying acceleration, but you don't know $a$ as a function of $t$.

Instead, you know $a$ as a function of position, $x$ : $a(x)$

Can you use that knowledge to find changes in velocity, displacement, etc?

Yes!
Consider the integral:

$$
\int a(x) d x
$$

It's not immediately obvious what it's physical meaning is, but let's try to investigate...

## 1-D Kinematics with varying acceleration

$$
\int a \mathrm{dx}=\int \frac{\mathrm{d} v}{\mathrm{dt}} \mathrm{dx}
$$

Using the chain rule:

$$
\int a \mathrm{dx}=\int \frac{\mathrm{d} v}{\mathrm{dx}} \frac{\mathrm{dx}}{\mathrm{dt}} \mathrm{dx}
$$

## 1-D Kinematics with varying acceleration

$$
\int a \mathrm{dx}=\int \frac{\mathrm{d} v}{\mathrm{dt}} \mathrm{dx}
$$

Using the chain rule:

$$
\int a d x=\int \frac{d v}{d x} \frac{d x}{d t} d x
$$

Rearranging:

$$
\int a d x=\int \frac{\mathrm{dx}}{\mathrm{dt}}\left(\frac{\mathrm{dv}}{\mathrm{dx}} \mathrm{dx}\right)
$$

Chain rule again, and using $v=\frac{\mathrm{dx}}{\mathrm{dt}}$ :

$$
\int a \mathrm{dx}=\int v \mathrm{~d} v
$$

## 1-D Kinematics with varying acceleration

$$
\int_{x_{i}}^{x_{f}} a \mathrm{~d} \mathrm{x}=\int_{v_{i}}^{v_{f}} v \mathrm{~d} v=\left.\frac{v^{2}}{2}\right|_{v_{i}} ^{v_{f}}
$$

So, we find that $\int a(x) \mathrm{d} x$ does mean something physically:

$$
\frac{1}{2}\left(v_{f}^{2}-v_{i}^{2}\right)=\int a d x
$$

IF $a$ is a constant:

$$
\frac{1}{2}\left(v_{f}^{2}-v_{i}^{2}\right)=a \Delta x \Rightarrow v_{f}^{2}=v_{i}^{2}+2 a \Delta x
$$

If $a$ varies with $x$, all we need to do is evaluate the integral $\int a(x) d x$.

## 1-D Kinematics with varying acceleration

An asteroid falls in a straight line toward the Sun, starting from rest when it is 1.00 million km from the Sun. Its acceleration is given by, $a=-\frac{k}{x^{2}}$ where $x$ is the distance from the Sun to the asteroid, and $k=1.33 \times 10^{20} \mathrm{~m}^{3} / \mathrm{s}^{2}$ is a constant.

After it has fallen through half-a-million km, what is its speed?

## Summary

- falling objects
- varying acceleration
- vectors and components

Assignment due Thursday, Jan 16.
(Uncollected) Homework Serway \& Jewett,

- Ch 2, onward from page 49. Probs: 53, 56, 57, 59


[^0]:    ${ }^{1}$ Princeton Review: Cracking the AP Physics Exam

[^1]:    ${ }^{1}$ Princeton Review: Cracking the AP Physics Exam

