2D Motion Vectors

Lana Sheridan
De Anza College

Jan 14, 2020

Last time

- falling objects
- varying acceleration

Overview

- vectors
- addition and subtraction of vectors

1-D Kinematics with varying acceleration

An asteroid falls in a straight line toward the Sun, starting from rest when it is 1.00 million km from the Sun. Its acceleration is given by, $a=-\frac{k}{x^{2}}$ where x is the distance from the Sun to the asteroid, and $k=1.33 \times 10^{20} \mathrm{~m}^{3} / \mathrm{s}^{2}$ is a constant.

After it has fallen through half-a-million km, what is its speed?

1-D Kinematics with varying acceleration

An asteroid falls in a straight line toward the Sun, starting from rest when it is 1.00 million km from the Sun. Its acceleration is given by, $a=-\frac{k}{x^{2}}$ where x is the distance from the Sun to the asteroid, and $k=1.33 \times 10^{20} \mathrm{~m}^{3} / \mathrm{s}^{2}$ is a constant.

After it has fallen through half-a-million km , what is its speed?

$$
\begin{aligned}
\frac{v^{2}-y_{i}^{2^{1}}}{2} & =\int_{x_{i}}^{x_{f}} a \mathrm{dx} \\
v^{2} & =2 \int_{x_{i}}^{x_{f}}\left(-\frac{k}{x^{2}}\right) \mathrm{dx}
\end{aligned}
$$

1-D Kinematics with varying acceleration

An asteroid falls in a straight line toward the Sun, starting from rest when it is 1.00 million km from the Sun. Its acceleration is given by, $a=-\frac{k}{x^{2}}$ where x is the distance from the Sun to the asteroid, and $k=1.33 \times 10^{20} \mathrm{~m}^{3} / \mathrm{s}^{2}$ is a constant.

After it has fallen through half-a-million km , what is its speed?

$$
\begin{aligned}
\frac{v^{2}-y_{i}^{2}}{2} & =\int_{x_{i}}^{x_{f}} a \mathrm{~d} x \\
v^{2} & =2 \int_{x_{i}}^{x_{f}}\left(-\frac{k}{x^{2}}\right) \mathrm{dx} \\
v^{2} & =2\left[\frac{k}{x_{f}}-\frac{k}{x_{i}}\right] \\
v & =\underline{5.16 \times 10^{5} \mathrm{~m} / \mathrm{s}}
\end{aligned}
$$

Math you will need for 2-Dimensions

Before going into motion in 2 dimensions, we will review some things about vectors.

Vectors

scalar

A scalar quantity indicates an amount. It is represented by a real number. (Assuming it is a physical quantity.)

vector

A vector quantity indicates both an amount and a direction. It is represented more than one real number. (Assuming it is a physical quantity.)

There are many ways to represent a vector.

- a magnitude and (an) angle(s)
- magnitudes in several perpendicular directions

Representing Vectors: Angles Bearing angles

Example, a plane flies $750 \mathrm{~km} \mathrm{~h}^{-1}$ at a bearing of 70°

Generic reference angles

A baseball is thrown at $10 \mathrm{~m} \mathrm{~s}^{-1}, 30^{\circ}$ above the horizontal.

Representing Vectors: Unit Vectors

Magnitudes in several perpendicular directions: using unit vectors.

Unit vectors have a magnitude of one unit.

Representing Vectors: Unit Vectors

Magnitudes in several perpendicular directions: using unit vectors.

Unit vectors have a magnitude of one unit.
A set of perpendicular unit vectors defines a basis or decomposition of a vector space.

Representing Vectors: Unit Vectors

Magnitudes in several perpendicular directions: using unit vectors.

Unit vectors have a magnitude of one unit.
A set of perpendicular unit vectors defines a basis or decomposition of a vector space.

In two dimensions, a pair of perpendicular unit vectors are usually denoted $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ (or sometimes $\hat{\mathbf{x}}, \hat{\mathbf{y}}$).

Components

Consider the 2 dimensional vector $\overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}$, where A_{x} and A_{y} are numbers.

We then say that A_{x} is the i-component (or x-component) of $\overrightarrow{\mathbf{A}}$ and A_{y} is the j-component (or y-component) of $\overrightarrow{\mathbf{A}}$.

Notice that $A_{x}=A \cos \theta$ and $A_{y}=A \sin \theta$.

Components vs Magnitude-and-Angle Notation

Notice that $A_{x}=A \cos \theta$ and $A_{y}=A \sin \theta$.

Also notice,

$$
A=|\overrightarrow{\mathbf{A}}|=\sqrt{A_{x}^{2}+A_{y}^{2}}
$$

and

$$
\theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)
$$

if the angle is given as shown.

Why Vectors?

Of course, there is no reason to limit this to two dimensions.

Why Vectors?

Of course, there is no reason to limit this to two dimensions.
With three dimensions we introduce another unit vector $\hat{\mathbf{k}}=\hat{\mathbf{z}}$.
And we can have as many dimensions as we need by adding more perpendicular unit vectors.

Why Vectors?

Of course, there is no reason to limit this to two dimensions.
With three dimensions we introduce another unit vector $\hat{\mathbf{k}}=\hat{\mathbf{z}}$.
And we can have as many dimensions as we need by adding more perpendicular unit vectors.

Vectors are the right tool for working in higher dimensions.

Why Vectors?

Of course, there is no reason to limit this to two dimensions.
With three dimensions we introduce another unit vector $\hat{\mathbf{k}}=\hat{\mathbf{z}}$. And we can have as many dimensions as we need by adding more perpendicular unit vectors.

Vectors are the right tool for working in higher dimensions.
They have a property that correctly reflects what it means for there to be more than one dimension: that each perpendicular direction is independent of the others.

Why Vectors?

Of course, there is no reason to limit this to two dimensions.
With three dimensions we introduce another unit vector $\hat{\mathbf{k}}=\hat{\mathbf{z}}$. And we can have as many dimensions as we need by adding more perpendicular unit vectors.

Vectors are the right tool for working in higher dimensions.
They have a property that correctly reflects what it means for there to be more than one dimension: that each perpendicular direction is independent of the others.

This makes life much easier: we will be able to solve for motion in the x direction separately from motion in the y direction.

Visualizing Motion in 2 Dimensions

Imagine an air hockey puck moving with horizontally constant velocity:

a

b

If it experiences a momentary upward (in the diagram) acceleration, it will have a component of velocity upwards. The horizontal motion remains unchanged!

Vectors Properties and Operations

Equality

Vectors $\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{B}}$ if and only if the magnitudes and directions are the same. (Each component is the same.)

Addition

$\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$

Vectors Properties and Operations

 Properties of Addition- $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}$ (commutative)

- $(\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}})+\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}+(\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}})$ (associative)

Vectors Properties and Operations

Doing addition:
Almost always the right answer is to break each vector into components and sum each component independently.

Vectors Properties and Operations

Doing addition:
Almost always the right answer is to break each vector into components and sum each component independently.

Vector Addition Example

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower. What is the magnitude and direction of the hiker's resultant displacement $\overrightarrow{\mathbf{R}}$ for the trip?

Vector Addition Example

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower. What is the magnitude and direction of the hiker's resultant displacement $\overrightarrow{\mathbf{R}}$ for the trip?

[^0]
Vector Addition Example

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower. What is the magnitude and direction of the hiker's resultant displacement $\overrightarrow{\mathbf{R}}$ for the trip?
$A_{x}=A \cos \left(-45.0^{\circ}\right)=17.7 \mathrm{~km}$
$A_{y}=A \sin \left(-45.0^{\circ}\right)=-17.7 \mathrm{~km}$
$B_{x}=B \cos \left(60.0^{\circ}\right)=20.0 \mathrm{~km}$
$A_{y}=A \sin \left(60.0^{\circ}\right)=34.6 \mathrm{~km}$

[^1]
Vector Addition Example

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower. What is the magnitude and direction of the hiker's resultant displacement $\overrightarrow{\mathbf{R}}$ for the trip?
$A_{x}=A \cos \left(-45.0^{\circ}\right)=17.7 \mathrm{~km}$
$A_{y}=A \sin \left(-45.0^{\circ}\right)=-17.7 \mathrm{~km}$
$B_{x}=B \cos \left(60.0^{\circ}\right)=20.0 \mathrm{~km}$
$A_{y}=A \sin \left(60.0^{\circ}\right)=34.6 \mathrm{~km}$

$$
\begin{aligned}
\overrightarrow{\mathbf{R}} & =\left(A_{x}+B_{x}\right) \hat{\mathbf{i}}+\left(A_{y}+B_{y}\right) \hat{\mathbf{j}} \\
& =(17.7+20) \hat{\mathbf{i}}+(-17.7+34.6) \hat{\mathbf{j}} \mathrm{km} \\
& =37.7 \hat{\mathbf{i}}+17.0 \hat{\mathbf{j}} \mathrm{~km} \\
& =41.3 \mathrm{~km} \text { at } 24.2^{\circ} \text { north of east }
\end{aligned}
$$

[^2]
Vectors Properties and Operations

Negation

If $\overrightarrow{\mathbf{u}}=-\overrightarrow{\mathbf{v}}$ then $\overrightarrow{\mathbf{u}}$ has the same magnitude as $\overrightarrow{\mathbf{v}}$ but points in the opposite direction.

Subtraction

$\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{A}}+(-\overrightarrow{\mathbf{B}})$

Summary

- vectors
- vector addition and subtraction

Assignment due Thursday, Jan 16.
(Uncollected) Homework Serway \& Jewett,

- Ch 3, onward from page 71. Objective Qs: $1 \& 3$; Conc Qs: 5 Probs: 31, 55, 65

[^0]: ${ }^{0}$ Based on S\&J Example 3.5, pg 69.

[^1]: ${ }^{0}$ Based on S\&J Example 3.5, pg 69.

[^2]: ${ }^{0}$ Based on S\&J Example 3.5, pg 69.

