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Vectors Properties and Operations

Negation
If #»u = − #»v then #»u has the same magnitude as #»v but points in

the opposite direction.

Subtraction
#»

A −
#»

B =
#»

A + (−
#»

B)

 3.3 Some Properties of Vectors 63

 When three or more vectors are added, their sum is independent of the way in 
which the individual vectors are grouped together. A geometric proof of this rule 
for three vectors is given in Figure 3.9. This property is called the associative law of 
addition:

 A
S

1 1 B
S

1 C
S 2 5 1 A

S
1 B

S 2 1 C
S

 (3.6)

 In summary, a vector quantity has both magnitude and direction and also obeys 
the laws of vector addition as described in Figures 3.6 to 3.9. When two or more 
vectors are added together, they must all have the same units and they must all 
be the same type of quantity. It would be meaningless to add a velocity vector (for 
example, 60 km/h to the east) to a displacement vector (for example, 200 km to the 
north) because these vectors represent different physical quantities. The same rule 
also applies to scalars. For example, it would be meaningless to add time intervals 
to temperatures.

Negative of a Vector
The negative of the vector A

S
 is defined as the vector that when added to A

S
 gives 

zero for the vector sum. That is, A
S

1 12 A
S 2 5 0. The vectors A

S
 and 2 A

S
 have the 

same magnitude but point in opposite directions.

Subtracting Vectors
The operation of vector subtraction makes use of the definition of the negative of a 
vector. We define the operation A

S
2 B

S
 as vector 2 B

S
 added to vector A

S
:

 A
S

2 B
S

5 A
S

1 12 B
S 2  (3.7)

The geometric construction for subtracting two vectors in this way is illustrated in 
Figure 3.10a.
 Another way of looking at vector subtraction is to notice that the difference 
A
S

2 B
S

 between two vectors A
S

 and B
S

 is what you have to add to the second vector  
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Motion in 2 Dimensions

All the same kinematics definitions and equations apply in 2
dimensions.

We can use our knowledge of vectors to solve separately the
motion in the x and y directions.



Motion in 2 Dimensions

 4.1 The Position, Velocity, and Acceleration Vectors 79

! to " is not necessarily a straight line. As the particle moves from ! to " in the 
time interval Dt 5 tf 2 ti, its position vector changes from rSi to rSf . As we learned 
in Chapter 2, displacement is a vector, and the displacement of the particle is the 
difference between its final position and its initial position. We now define the dis-
placement vector D rS for a particle such as the one in Figure 4.1 as being the differ-
ence between its final position vector and its initial position vector:

 D rS ; rSf 2 rSi (4.1)

The direction of D rS is indicated in Figure 4.1. As we see from the figure, the mag-
nitude of D rS is less than the distance traveled along the curved path followed by the 
particle.
 As we saw in Chapter 2, it is often useful to quantify motion by looking at the 
displacement divided by the time interval during which that displacement occurs, 
which gives the rate of change of position. Two-dimensional (or three-dimensional) 
kinematics is similar to one-dimensional kinematics, but we must now use full vector 
notation rather than positive and negative signs to indicate the direction of motion.
 We define the average velocity vSavg of a particle during the time interval Dt as 
the displacement of the particle divided by the time interval:

 vSavg ;
D rS

Dt
 (4.2)

Multiplying or dividing a vector quantity by a positive scalar quantity such as Dt 
changes only the magnitude of the vector, not its direction. Because displacement 
is a vector quantity and the time interval is a positive scalar quantity, we conclude 
that the average velocity is a vector quantity directed along D rS. Compare Equa-
tion 4.2 with its one-dimensional counterpart, Equation 2.2.
 The average velocity between points is independent of the path taken. That is 
because average velocity is proportional to displacement, which depends only 
on the initial and final position vectors and not on the path taken. As with one- 
dimensional motion, we conclude that if a particle starts its motion at some point and 
returns to this point via any path, its average velocity is zero for this trip because its 
displacement is zero. Consider again our basketball players on the court in Figure 2.2  
(page 23). We previously considered only their one-dimensional motion back and 
forth between the baskets. In reality, however, they move over a two-dimensional sur-
face, running back and forth between the baskets as well as left and right across the 
width of the court. Starting from one basket, a given player may follow a very compli-
cated two-dimensional path. Upon returning to the original basket, however, a play-
er’s average velocity is zero because the player’s displacement for the whole trip is zero.
 Consider again the motion of a particle between two points in the xy plane as 
shown in Figure 4.2 (page 80). The dashed curve shows the path of the particle. As 
the time interval over which we observe the motion becomes smaller and smaller—
that is, as " is moved to "9 and then to "0 and so on—the direction of the displace-
ment approaches that of the line tangent to the path at !. The instantaneous velocity  
vS is defined as the limit of the average velocity D rS/Dt as Dt approaches zero:

 vS ; lim
Dt S0

 
D rS

Dt
5

d rS

dt
 (4.3)

That is, the instantaneous velocity equals the derivative of the position vector with 
respect to time. The direction of the instantaneous velocity vector at any point in 
a particle’s path is along a line tangent to the path at that point and in the direc-
tion of motion. Compare Equation 4.3 with the corresponding one-dimensional 
version, Equation 2.5.
 The magnitude of the instantaneous velocity vector v 5 0 vS 0  of a particle is called 
the speed of the particle, which is a scalar quantity.

WW  Displacement vector

WW Average velocity
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Figure 4.1  A particle moving 
in the xy plane is located with 
the position vector rS drawn from 
the origin to the particle. The 
displacement of the particle as it 
moves from ! to " in the time 
interval Dt 5 tf 2 ti is equal to the 
vector D rS 5 rSf 2 rSi.

#»r = x î + y ĵ

#  »

∆r = #»r f −
#»r i



Motion in 2 Dimensions
80 Chapter 4 Motion in Two Dimensions

 As a particle moves from one point to another along some path, its instanta-
neous velocity vector changes from vSi at time ti to vSf  at time tf . Knowing the velocity 
at these points allows us to determine the average acceleration of the particle. The 
average acceleration aSavg of a particle is defined as the change in its instantaneous 
velocity vector DvS divided by the time interval Dt during which that change occurs:

 aSavg ;
DvS

Dt
5

vSf 2 vSi

tf 2 ti
 (4.4)

Because aSavg is the ratio of a vector quantity DvS and a positive scalar quantity Dt, 
we conclude that average acceleration is a vector quantity directed along DvS. As 
indicated in Figure 4.3, the direction of DvS is found by adding the vector 2vSi (the 
negative of vSi) to the vector vSf  because, by definition, DvS 5 vSf 2 vSi. Compare 
Equation 4.4 with Equation 2.9.
 When the average acceleration of a particle changes during different time inter-
vals, it is useful to define its instantaneous acceleration. The instantaneous accel-
eration aS is defined as the limiting value of the ratio D vS/Dt as Dt approaches zero:

 aS ; lim
Dt S0

 
DvS

Dt
5

d vS

dt
 (4.5)

In other words, the instantaneous acceleration equals the derivative of the velocity 
vector with respect to time. Compare Equation 4.5 with Equation 2.10.
 Various changes can occur when a particle accelerates. First, the magnitude 
of the velocity vector (the speed) may change with time as in straight-line (one- 
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Figure 4.3  A particle moves from position ! to 
position ". Its velocity vector changes from vSi to vSf . 
The vector diagrams at the upper right show two 
ways of determining the vector DvS from the initial 
and final velocities.

Figure 4.2  As a particle moves 
between two points, its average 
velocity is in the direction of the 
displacement vector D rS. By defini-
tion, the instantaneous velocity at 
! is directed along the line tan-
gent to the curve at !.

Pitfall Prevention 4.1
Vector Addition Although the vec-
tor addition discussed in Chapter 
3 involves displacement vectors, vec-
tor addition can be applied to any 
type of vector quantity. Figure 4.3, 
for example, shows the addition of 
velocity vectors using the graphical 
approach.

#»v = lim
∆t→0

#»r (t + ∆t) − #»r (t)

∆t
=

d #»r

dt



Velocity in 2 Dimensions

Different directions are independent ⇒ differentiate separately!

#»r = x î + y ĵ

#»v =
d #»r

dt

=
dx

dt
î +

dy

dt
ĵ

#»v = vx î + vy ĵ

(Differentiation is a linear operation.)



Acceleration in 2 Dimensions

80 Chapter 4 Motion in Two Dimensions

 As a particle moves from one point to another along some path, its instanta-
neous velocity vector changes from vSi at time ti to vSf  at time tf . Knowing the velocity 
at these points allows us to determine the average acceleration of the particle. The 
average acceleration aSavg of a particle is defined as the change in its instantaneous 
velocity vector DvS divided by the time interval Dt during which that change occurs:

 aSavg ;
DvS

Dt
5

vSf 2 vSi

tf 2 ti
 (4.4)

Because aSavg is the ratio of a vector quantity DvS and a positive scalar quantity Dt, 
we conclude that average acceleration is a vector quantity directed along DvS. As 
indicated in Figure 4.3, the direction of DvS is found by adding the vector 2vSi (the 
negative of vSi) to the vector vSf  because, by definition, DvS 5 vSf 2 vSi. Compare 
Equation 4.4 with Equation 2.9.
 When the average acceleration of a particle changes during different time inter-
vals, it is useful to define its instantaneous acceleration. The instantaneous accel-
eration aS is defined as the limiting value of the ratio D vS/Dt as Dt approaches zero:

 aS ; lim
Dt S0
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 (4.5)

In other words, the instantaneous acceleration equals the derivative of the velocity 
vector with respect to time. Compare Equation 4.5 with Equation 2.10.
 Various changes can occur when a particle accelerates. First, the magnitude 
of the velocity vector (the speed) may change with time as in straight-line (one- 
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displacement vector D rS. By defini-
tion, the instantaneous velocity at 
! is directed along the line tan-
gent to the curve at !.

Pitfall Prevention 4.1
Vector Addition Although the vec-
tor addition discussed in Chapter 
3 involves displacement vectors, vec-
tor addition can be applied to any 
type of vector quantity. Figure 4.3, 
for example, shows the addition of 
velocity vectors using the graphical 
approach.

#   »

∆v = #»v (t + ∆t) − #»v (t) = #»vf −
#»vi

#»a = lim
∆t→0

#»v (t + ∆t) − #»v (t)

∆t
=

d #»v

dt



Kinematic Equations in 2 Dimensions

#»vf = #»vi +
#»a t

82 Chapter 4 Motion in Two Dimensions

 Because the acceleration aS of the particle is assumed constant in this discussion, 
its components ax and ay also are constants. Therefore, we can model the particle as 
a particle under constant acceleration independently in each of the two directions 
and apply the equations of kinematics separately to the x and y components of the 
velocity vector. Substituting, from Equation 2.13, vxf 5 vxi 1 axt and vyf 5 vyi 1 ayt 
into Equation 4.7 to determine the final velocity at any time t, we obtain

vSf 5 1vxi 1 axt 2 î 1 1vyi 1 ayt 2 ĵ 5 1vxi î 1 vyi ĵ 2 1 1ax î 1 ay ĵ 2 t
 vSf 5 vSi 1 aSt (4.8)

This result states that the velocity of a particle at some time t equals the vector 
sum of its initial velocity vSi at time t 5 0 and the additional velocity aSt acquired 
at time t as a result of constant acceleration. Equation 4.8 is the vector version of 
Equation 2.13.
 Similarly, from Equation 2.16 we know that the x and y coordinates of a particle 
under constant acceleration are

xf 5 xi 1 vxit 1 1
2axt 2  yf 5 yi 1 vyit 1 1

2ayt 2

Substituting these expressions into Equation 4.6 (and labeling the final position 
vector rSf ) gives

 rSf 5 1xi 1 vxit 1 1
2axt 2 2 î 1 1yi 1 vyit 1 1

2ayt 2 2 ĵ
 5 1xi î 1 yi ĵ 2 1 1vxi î 1 vyi ĵ 2 t 1 1

2 1ax î 1 ay ĵ 2 t 2

 rSf 5 rSi 1 vSit 1 1
2 aSt 2 (4.9)

which is the vector version of Equation 2.16. Equation 4.9 tells us that the position 
vector rSf  of a particle is the vector sum of the original position rSi, a displacement 
vSi t arising from the initial velocity of the particle, and a displacement 1

2 aSt 2 result-
ing from the constant acceleration of the particle.
 We can consider Equations 4.8 and 4.9 to be the mathematical representation 
of a two-dimensional version of the particle under constant acceleration model. 
Graphical representations of Equations 4.8 and 4.9 are shown in Figure 4.5. The 
components of the position and velocity vectors are also illustrated in the figure. 
Notice from Figure 4.5a that vSf  is generally not along the direction of either vSi or 
aS because the relationship between these quantities is a vector expression. For the 
same reason, from Figure 4.5b we see that rSf  is generally not along the direction of 
rSi, vSi, or aS. Finally, notice that vSf  and rSf  are generally not in the same direction.

Velocity vector as W
a function of time for a  
particle under constant 

 acceleration in two 
dimensions

Position vector as 
a function of time for a  
particle under constant 

 acceleration in two 
dimensions

Figure 4.5 Vector representa-
tions and components of (a) the 
velocity and (b) the position of a 
particle under constant accelera-
tion in two dimensions.
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Kinematic Equations in 2 Dimensions

#»vf = #»vi +
#»a t

#»v f = (vx ,î i + vy ,i ĵ) + (ax î + ay ĵ)t

vx î + vy ĵ = (vx ,i + ax t )̂i + (vy ,i + ay t )̂j
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Kinematic Equations in 2 Dimensions

The other kinematics equations work basically the same way as
#»vf = #»vi +

#»a t.

For the scalar equation, it holds for each component:

v2
f ,x = v2

i ,x + 2ax∆x

v2
f ,y = v2

i ,y + 2ay∆y



Projectiles

projectile

Any object that is thrown. We will use this word specifically to
refer to thrown objects that experience a vertical acceleration g .

Assumption

Air resistance is negligible.

Why do we care?



Projectiles
projectile

Any object that is thrown. We will use this word specifically to
refer to thrown objects that experience a vertical acceleration g .

Assumption

Air resistance is negligible.

Why do we care?
Historically...



Projectile Velocity
 4.3 Projectile Motion 85

Figure 4.7 The parabolic path 
of a projectile that leaves the ori-
gin with a velocity vSi . The velocity 
vector vS changes with time in 
both magnitude and direction. 
This change is the result of accel-
eration aS 5 gS in the negative  
y direction.
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Figure 4.8  The position vector 
rSf  of a projectile launched from 
the origin whose initial velocity 
at the origin is vSi . The vector vSit 
would be the displacement of the 
projectile if gravity were absent, 
and the vector 12 gSt 2 is its vertical 
displacement from a straight-line 
path due to its downward gravita-
tional acceleration.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):

vyf 5 vyi 2 gt

vy,avg 5
vyi 1 vyf

2

   yf 5 yi 1 1
2 1vyi 1 vyf 2 t 

 yf 5 yi 1 vyit 2 1
2gt 2

vyf
2 5 vyi

2
 2 2g 1 yf 2 yi 2

The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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Vector Addition can give a Projectile’s Trajectory

 4.3 Projectile Motion 85

Figure 4.7 The parabolic path 
of a projectile that leaves the ori-
gin with a velocity vSi . The velocity 
vector vS changes with time in 
both magnitude and direction. 
This change is the result of accel-
eration aS 5 gS in the negative  
y direction.
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 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):
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The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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Principle Equations of Projectile Motion

(Notice, these are just special cases of the kinematics equations!)

∆x = vix t vx = vix v2
x = v2

ix

∆y = viy t −
1

2
gt2 vy = viy − gt v2

y = v2
iy − 2g(∆y)



Height of a Projectile

How can we find the maximum height that a projectile reaches?
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Figure 4.7 The parabolic path 
of a projectile that leaves the ori-
gin with a velocity vSi . The velocity 
vector vS changes with time in 
both magnitude and direction. 
This change is the result of accel-
eration aS 5 gS in the negative  
y direction.
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Figure 4.8  The position vector 
rSf  of a projectile launched from 
the origin whose initial velocity 
at the origin is vSi . The vector vSit 
would be the displacement of the 
projectile if gravity were absent, 
and the vector 12 gSt 2 is its vertical 
displacement from a straight-line 
path due to its downward gravita-
tional acceleration.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):
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The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):
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The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):
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The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):
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The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.

x
vxi

vxi

vy

vy ! 0

vxi

vy

i
vy

vy

i

vxi

y

i

i

u

u
u

u

The y component of 
velocity is zero at the 
peak of the path.

The x component of 
velocity remains 
constant because 
there is no 
acceleration in the x 
direction.

vS

The projectile is launched 
with initial velocity vi.

S

vS
vS

vS

vS

gS 

!

"

# $

%

"
#

$

%

Find the height when vy = 0.

v2
f ,y = v2

i ,y − 2g∆y

0 = v2
y ,i − 2gh

h =
v2
y ,i

2g

In the diagram, vy ,i = vi sin θ.

h =
v2
i sin2 θ

2g



Time of Flight of a Projectile

time of flight

The time from launch to when projectile hits the ground.

How can we find the time of flight of a projectile?
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Figure 4.7 The parabolic path 
of a projectile that leaves the ori-
gin with a velocity vSi . The velocity 
vector vS changes with time in 
both magnitude and direction. 
This change is the result of accel-
eration aS 5 gS in the negative  
y direction.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):
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The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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Assuming that it is launched from the ground and lands on the
ground at the same height...



Time of Flight of a Projectile
There are several ways to find an expression for this time.

One way: Notice that just when striking the ground, ∆y = 0.

∆y = vy ,i t +
1

2
ay t

2

0 = vi sin θt −
1

2
gt2

Now cancel a factor of t. Warning! This will remove one solution
to this equation in t. What is it?

1

2
gt = vi sin θ

tflight =
2vi sin θ

g
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Time of Flight of a Projectile
Quick Quiz 4.31 Rank the launch angles for the five paths in the
figure with respect to time of flight from the shortest time of flight
to the longest. (Assume the magnitude vi remains the same.)

86 Chapter 4 Motion in Two Dimensions

 We can determine h by noting that at the peak vy! 5 0. Therefore, from the 
particle under constant acceleration model, we can use the y direction version of 
Equation 2.13 to determine the time t! at which the projectile reaches the peak:

 vyf 5 vyi 2 gt    S   0 5 vi sin ui 2 gt !

t ! 5
vi sin ui

g

 Substituting this expression for t! into the y direction version of Equation 2.16 
and replacing yf 5 y! with h, we obtain an expression for h in terms of the magni-
tude and direction of the initial velocity vector:

yf 5 yi 1 vyit 2 12gt 2   S    h 5 1vi sin ui 2  vi sin ui

g 2 1
2g avi sin ui

g b2

  h 5
vi

2 sin2 ui

2g
 (4.12)

 The range R is the horizontal position of the projectile at a time that is twice the 
time at which it reaches its peak, that is, at time t" 5 2t!. Using the particle under 
constant velocity model, noting that vxi 5 vx" 5 vi cos ui, and setting x" 5 R at t 5 
2t!, we find that

xf 5 xi 1 vxit   S    R 5 vxit " 5 1vi cos ui 22t !

 5 1vi cos ui 2  2vi sin ui

g 5
2vi

2 sin ui cos ui

g

Using the identity sin 2u 5 2 sin u cos u (see Appendix B.4), we can write R in the 
more compact form

 R 5
vi

2 sin 2ui

g  (4.13)

 The maximum value of R from Equation 4.13 is Rmax 5 vi
2/g . This result makes 

sense because the maximum value of sin 2ui is 1, which occurs when 2ui 5 90°. 
Therefore, R is a maximum when ui 5 45°.
 Figure 4.10 illustrates various trajectories for a projectile having a given initial 
speed but launched at different angles. As you can see, the range is a maximum 
for ui 5 45°. In addition, for any ui other than 45°, a point having Cartesian coordi-
nates (R, 0) can be reached by using either one of two complementary values of ui, 
such as 75° and 15°. Of course, the maximum height and time of flight for one of 
these values of ui are different from the maximum height and time of flight for the 
complementary value.

Q uick Quiz 4.3 Rank the launch angles for the five paths in Figure 4.10 with 
respect to time of flight from the shortest time of flight to the longest.

50

100

150
y (m)

x (m)

75!

60!

45!

30!

15!

vi " 50 m/s
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Complementary 
values of the initial 
angle ui result in the 
same value of R.

Figure 4.10 A projectile 
launched over a flat surface from 
the origin with an initial speed 
of 50 m/s at various angles of 
projection.

Pitfall Prevention 4.3
The Range Equation Equation 
4.13 is useful for calculating R only 
for a symmetric path as shown in 
Figure 4.10. If the path is not sym-
metric, do not use this equation. The 
particle under constant velocity 
and particle under constant accel-
eration models are the important 
starting points because they give 
the position and velocity compo-
nents of any projectile moving  
with constant acceleration in two 
dimensions at any time t.

A 15◦, 30◦, 45◦, 60◦, 75◦

B 45◦, 30◦, 60◦, 15◦, 75◦

C 15◦, 75◦, 30◦, 60◦, 45◦

D 75◦, 60◦, 45◦, 30◦, 15◦

1Page 86, Serway & Jewett



Time of Flight of a Projectile
Quick Quiz 4.31 Rank the launch angles for the five paths in the
figure with respect to time of flight from the shortest time of flight
to the longest. (Assume the magnitude vi remains the same.)

86 Chapter 4 Motion in Two Dimensions

 We can determine h by noting that at the peak vy! 5 0. Therefore, from the 
particle under constant acceleration model, we can use the y direction version of 
Equation 2.13 to determine the time t! at which the projectile reaches the peak:

 vyf 5 vyi 2 gt    S   0 5 vi sin ui 2 gt !

t ! 5
vi sin ui

g

 Substituting this expression for t! into the y direction version of Equation 2.16 
and replacing yf 5 y! with h, we obtain an expression for h in terms of the magni-
tude and direction of the initial velocity vector:

yf 5 yi 1 vyit 2 12gt 2   S    h 5 1vi sin ui 2  vi sin ui

g 2 1
2g avi sin ui

g b2

  h 5
vi

2 sin2 ui

2g
 (4.12)

 The range R is the horizontal position of the projectile at a time that is twice the 
time at which it reaches its peak, that is, at time t" 5 2t!. Using the particle under 
constant velocity model, noting that vxi 5 vx" 5 vi cos ui, and setting x" 5 R at t 5 
2t!, we find that

xf 5 xi 1 vxit   S    R 5 vxit " 5 1vi cos ui 22t !

 5 1vi cos ui 2  2vi sin ui

g 5
2vi

2 sin ui cos ui

g

Using the identity sin 2u 5 2 sin u cos u (see Appendix B.4), we can write R in the 
more compact form

 R 5
vi

2 sin 2ui

g  (4.13)

 The maximum value of R from Equation 4.13 is Rmax 5 vi
2/g . This result makes 

sense because the maximum value of sin 2ui is 1, which occurs when 2ui 5 90°. 
Therefore, R is a maximum when ui 5 45°.
 Figure 4.10 illustrates various trajectories for a projectile having a given initial 
speed but launched at different angles. As you can see, the range is a maximum 
for ui 5 45°. In addition, for any ui other than 45°, a point having Cartesian coordi-
nates (R, 0) can be reached by using either one of two complementary values of ui, 
such as 75° and 15°. Of course, the maximum height and time of flight for one of 
these values of ui are different from the maximum height and time of flight for the 
complementary value.

Q uick Quiz 4.3 Rank the launch angles for the five paths in Figure 4.10 with 
respect to time of flight from the shortest time of flight to the longest.
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x (m)

75!

60!

45!

30!

15!

vi " 50 m/s

50 100 150 200 250

Complementary 
values of the initial 
angle ui result in the 
same value of R.

Figure 4.10 A projectile 
launched over a flat surface from 
the origin with an initial speed 
of 50 m/s at various angles of 
projection.

Pitfall Prevention 4.3
The Range Equation Equation 
4.13 is useful for calculating R only 
for a symmetric path as shown in 
Figure 4.10. If the path is not sym-
metric, do not use this equation. The 
particle under constant velocity 
and particle under constant accel-
eration models are the important 
starting points because they give 
the position and velocity compo-
nents of any projectile moving  
with constant acceleration in two 
dimensions at any time t.

A 15◦, 30◦, 45◦, 60◦, 75◦←
B 45◦, 30◦, 60◦, 15◦, 75◦

C 15◦, 75◦, 30◦, 60◦, 45◦

D 75◦, 60◦, 45◦, 30◦, 15◦

1Page 86, Serway & Jewett



Range of a Projectile

range

The distance in the horizontal direction that a projectile covers
before hitting the ground.

How can we find the range of a projectile?

 4.3 Projectile Motion 85

Figure 4.7 The parabolic path 
of a projectile that leaves the ori-
gin with a velocity vSi . The velocity 
vector vS changes with time in 
both magnitude and direction. 
This change is the result of accel-
eration aS 5 gS in the negative  
y direction.
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Figure 4.8  The position vector 
rSf  of a projectile launched from 
the origin whose initial velocity 
at the origin is vSi . The vector vSit 
would be the displacement of the 
projectile if gravity were absent, 
and the vector 12 gSt 2 is its vertical 
displacement from a straight-line 
path due to its downward gravita-
tional acceleration.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):

vyf 5 vyi 2 gt

vy,avg 5
vyi 1 vyf

2

   yf 5 yi 1 1
2 1vyi 1 vyf 2 t 

 yf 5 yi 1 vyit 2 1
2gt 2

vyf
2 5 vyi

2
 2 2g 1 yf 2 yi 2

The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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The y component of 
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Figure 4.7 The parabolic path 
of a projectile that leaves the ori-
gin with a velocity vSi . The velocity 
vector vS changes with time in 
both magnitude and direction. 
This change is the result of accel-
eration aS 5 gS in the negative  
y direction.
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Figure 4.8  The position vector 
rSf  of a projectile launched from 
the origin whose initial velocity 
at the origin is vSi . The vector vSit 
would be the displacement of the 
projectile if gravity were absent, 
and the vector 12 gSt 2 is its vertical 
displacement from a straight-line 
path due to its downward gravita-
tional acceleration.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):

vyf 5 vyi 2 gt

vy,avg 5
vyi 1 vyf

2

   yf 5 yi 1 1
2 1vyi 1 vyf 2 t 

 yf 5 yi 1 vyit 2 1
2gt 2

vyf
2 5 vyi

2
 2 2g 1 yf 2 yi 2

The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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The y component of 
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We just need t. But t is the time of flight!
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Figure 4.7 The parabolic path 
of a projectile that leaves the ori-
gin with a velocity vSi . The velocity 
vector vS changes with time in 
both magnitude and direction. 
This change is the result of accel-
eration aS 5 gS in the negative  
y direction.
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Figure 4.8  The position vector 
rSf  of a projectile launched from 
the origin whose initial velocity 
at the origin is vSi . The vector vSit 
would be the displacement of the 
projectile if gravity were absent, 
and the vector 12 gSt 2 is its vertical 
displacement from a straight-line 
path due to its downward gravita-
tional acceleration.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):

vyf 5 vyi 2 gt

vy,avg 5
vyi 1 vyf

2

   yf 5 yi 1 1
2 1vyi 1 vyf 2 t 

 yf 5 yi 1 vyit 2 1
2gt 2

vyf
2 5 vyi

2
 2 2g 1 yf 2 yi 2

The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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Range of a Projectile

A long jumper leaves the ground at an angle of 20.0◦ above the
horizontal and at a speed of 11.0 m/s. How far does he jump in
the horizontal direction?

R =
v2
i sin(2θ)

g

=
(11.0 m/s)2 sin(2× 20.0)

9.8 m/s2

= 7.94 m



Range of a Projectile

A long jumper leaves the ground at an angle of 20.0◦ above the
horizontal and at a speed of 11.0 m/s. How far does he jump in
the horizontal direction?

R =
v2
i sin(2θ)

g

=
(11.0 m/s)2 sin(2× 20.0)

9.8 m/s2

= 7.94 m



Summary

• motion in 2 dimesions

• projectile motion

Quiz start of class, Friday, Jan 17.

Assignment due tomorrow.

(Uncollected) Homework Serway & Jewett,

• Ch 4, onward from page 102. Conc Qs: 1, 3; Probs: 7

• Ch 4 Probs: 11†, 15, 13, 19, 21, 29, 56, 59

†Go Mountain Lions!


