2D Kinematics Projectiles

Lana Sheridan

De Anza College

Jan 15, 2020

Last time

- varying acceleration example
- vectors
- addition of vectors

Overview

- subtraction of vectors
- motion in 2 dimesions
- projectiles
- height of a projectile
- range of a projectile

Vectors Properties and Operations

Negation

If $\overrightarrow{\mathbf{u}}=-\overrightarrow{\mathbf{v}}$ then $\overrightarrow{\mathbf{u}}$ has the same magnitude as $\overrightarrow{\mathbf{v}}$ but points in the opposite direction.

Subtraction

$\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{A}}+(-\overrightarrow{\mathbf{B}})$

Motion in 2 Dimensions

All the same kinematics definitions and equations apply in 2 dimensions.

We can use our knowledge of vectors to solve separately the motion in the x and y directions.

Motion in 2 Dimensions

Motion in 2 Dimensions

Velocity in 2 Dimensions

Different directions are independent \Rightarrow differentiate separately!

$$
\begin{aligned}
\overrightarrow{\mathbf{r}} & =x \hat{\mathbf{i}}+y \hat{\mathbf{j}} \\
\overrightarrow{\mathbf{v}} & =\frac{\mathrm{d} \overrightarrow{\mathbf{r}}}{\mathrm{dt}} \\
& =\frac{\mathrm{d} x}{\mathrm{dt}} \hat{\mathbf{i}}+\frac{\mathrm{dy}}{\mathrm{dt}} \hat{\mathbf{j}} \\
\overrightarrow{\mathbf{v}} & =v_{x} \hat{\mathbf{i}}+v_{y} \hat{\mathbf{j}}
\end{aligned}
$$

(Differentiation is a linear operation.)

Acceleration in 2 Dimensions

$$
\begin{aligned}
& \overrightarrow{\Delta \mathbf{v}}=\overrightarrow{\mathbf{v}}(t+\Delta t)-\overrightarrow{\mathbf{v}}(t)=\overrightarrow{\mathbf{v}}_{f}-\overrightarrow{\mathbf{v}}_{i} \\
& \overrightarrow{\mathbf{a}}=\lim _{\Delta t \rightarrow 0} \frac{\overrightarrow{\mathbf{v}}(t+\Delta t)-\overrightarrow{\mathbf{v}}(t)}{\Delta t}=\frac{\mathrm{d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}
\end{aligned}
$$

Kinematic Equations in 2 Dimensions

$$
\vec{v}_{f}=\vec{v}_{i}+\overrightarrow{\mathbf{a}} t
$$

Kinematic Equations in 2 Dimensions

$$
\begin{aligned}
\overrightarrow{\mathbf{v}}_{f} & =\overrightarrow{\mathbf{v}}_{i}+\overrightarrow{\mathbf{a}} t \\
\overrightarrow{\mathbf{v}}_{f} & =\left(v_{x, i} \hat{\mathbf{i}}+v_{y, i} \hat{\mathbf{j}}\right)+\left(a_{x} \hat{\mathbf{i}}+a_{y} \hat{\mathbf{j}}\right) t \\
v_{x} \hat{\mathbf{i}}+v_{y} \hat{\mathbf{j}} & =\left(v_{x, i}+a_{x} t\right) \hat{\mathbf{i}}+\left(v_{y, i}+a_{y} t\right)
\end{aligned}
$$

Equating x-components (i-components):

$$
v_{x}=v_{x, i}+a_{x} t
$$

Equating y-components (j-components):

$$
v_{y}=v_{y, i}+a_{y} t
$$

Kinematic Equations in 2 Dimensions

The other kinematics equations work basically the same way as $\overrightarrow{\mathbf{v}}_{f}=\overrightarrow{\mathbf{v}}_{i}+\overrightarrow{\mathbf{a}} t$.

For the scalar equation, it holds for each component:

$$
\begin{aligned}
& v_{f, x}^{2}=v_{i, x}^{2}+2 a_{x} \Delta x \\
& v_{f, y}^{2}=v_{i, y}^{2}+2 a_{y} \Delta y
\end{aligned}
$$

Projectiles

projectile

Any object that is thrown. We will use this word specifically to refer to thrown objects that experience a vertical acceleration g.

Assumption

Air resistance is negligible.

Why do we care?

Projectiles

projectile

Any object that is thrown. We will use this word specifically to refer to thrown objects that experience a vertical acceleration g.

Assumption

Air resistance is negligible.

Why do we care?

Historically...

Projectile Velocity

Vector Addition can give a Projectile's Trajectory

$$
\Delta \boldsymbol{r}=\overrightarrow{\mathbf{r}}_{f}-0=\overrightarrow{\mathbf{v}}_{i} t+\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2}
$$

Principle Equations of Projectile Motion

(Notice, these are just special cases of the kinematics equations!)

$$
\begin{aligned}
& \Delta x=v_{i x} t \\
& \Delta y=v_{i y} t-\frac{1}{2} g t^{2}
\end{aligned}
$$

$$
\begin{aligned}
& v_{x}=v_{i x} \\
& v_{y}=v_{i y}-g t
\end{aligned}
$$

$$
\begin{aligned}
& v_{x}^{2}=v_{i x}^{2} \\
& v_{y}^{2}=v_{i y}^{2}-2 g(\Delta y)
\end{aligned}
$$

Height of a Projectile

How can we find the maximum height that a projectile reaches?

Height of a Projectile

How can we find the maximum height that a projectile reaches?
Find the height when $v_{y}=0$.

Height of a Projectile

How can we find the maximum height that a projectile reaches?
Find the height when $v_{y}=0$.

Height of a Projectile

How can we find the maximum height that a projectile reaches?
Find the height when $v_{y}=0$.

$$
v_{f, y}^{2}=v_{i, y}^{2}-2 g \Delta y
$$

$$
\begin{aligned}
0 & =v_{y, i}^{2}-2 g h \\
h & =\frac{v_{y, i}^{2}}{2 g}
\end{aligned}
$$

In the diagram, $v_{y, i}=v_{i} \sin \theta$.

$$
h=\frac{v_{i}^{2} \sin ^{2} \theta}{2 g}
$$

Time of Flight of a Projectile

time of flight

The time from launch to when projectile hits the ground.

How can we find the time of flight of a projectile?

Assuming that it is launched from the ground and lands on the ground at the same height...

Time of Flight of a Projectile

There are several ways to find an expression for this time.
One way: Notice that just when striking the ground, $\Delta y=0$.

$$
\begin{aligned}
\Delta y & =v_{y, i} t+\frac{1}{2} a_{y} t^{2} \\
0 & =v_{i} \sin \theta t-\frac{1}{2} g t^{2}
\end{aligned}
$$

Now cancel a factor of t. Warning! This will remove one solution to this equation in t. What is it?

Time of Flight of a Projectile

There are several ways to find an expression for this time.
One way: Notice that just when striking the ground, $\Delta y=0$.

$$
\begin{aligned}
\Delta y & =v_{y, i} t+\frac{1}{2} a_{y} t^{2} \\
0 & =v_{i} \sin \theta t-\frac{1}{2} g t^{2}
\end{aligned}
$$

Now cancel a factor of t. Warning! This will remove one solution to this equation in t. What is it?

$$
\frac{1}{2} g t=v_{i} \sin \theta
$$

$$
t_{f l i g h t}=\frac{2 v_{i} \sin \theta}{g}
$$

Time of Flight of a Projectile

Quick Quiz 4.3 ${ }^{1}$ Rank the launch angles for the five paths in the figure with respect to time of flight from the shortest time of flight to the longest. (Assume the magnitude v_{i} remains the same.)

A $15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}$
B $45^{\circ}, 30^{\circ}, 60^{\circ}, 15^{\circ}, 75^{\circ}$
C $15^{\circ}, 75^{\circ}, 30^{\circ}, 60^{\circ}, 45^{\circ}$
D $75^{\circ}, 60^{\circ}, 45^{\circ}, 30^{\circ}, 15^{\circ}$
${ }^{1}$ Page 86, Serway \& Jewett

Time of Flight of a Projectile

Quick Quiz 4.3 ${ }^{1}$ Rank the launch angles for the five paths in the figure with respect to time of flight from the shortest time of flight to the longest. (Assume the magnitude v_{i} remains the same.)

A $15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ} \leftarrow$
B $45^{\circ}, 30^{\circ}, 60^{\circ}, 15^{\circ}, 75^{\circ}$
C $15^{\circ}, 75^{\circ}, 30^{\circ}, 60^{\circ}, 45^{\circ}$
D $75^{\circ}, 60^{\circ}, 45^{\circ}, 30^{\circ}, 15^{\circ}$
${ }^{1}$ Page 86, Serway \& Jewett

Range of a Projectile

range

The distance in the horizontal direction that a projectile covers before hitting the ground.

How can we find the range of a projectile?

Range of a Projectile

There is no acceleration in the x-direction! $\left(a_{x}=0\right)$

$$
\Delta x=v_{x} t
$$

We just need t. But t is the time of flight!

Range of a Projectile

$$
\begin{gathered}
\Delta x=v_{x} t \\
R=v_{i} \cos \theta\left(\frac{2 v_{i} \sin \theta}{g}\right) \\
R=\frac{2 v_{i}^{2} \sin \theta \cos \theta}{g} \\
R=\frac{v_{i}^{2} \sin (2 \theta)}{g}
\end{gathered}
$$

Range of a Projectile

A long jumper leaves the ground at an angle of 20.0° above the horizontal and at a speed of $11.0 \mathrm{~m} / \mathrm{s}$. How far does he jump in the horizontal direction?

Range of a Projectile

A long jumper leaves the ground at an angle of 20.0° above the horizontal and at a speed of $11.0 \mathrm{~m} / \mathrm{s}$. How far does he jump in the horizontal direction?

$$
\begin{aligned}
R & =\frac{v_{i}^{2} \sin (2 \theta)}{g} \\
& =\frac{(11.0 \mathrm{~m} / \mathrm{s})^{2} \sin (2 \times 20.0)}{9.8 \mathrm{~m} / \mathrm{s}^{2}} \\
& =7.94 \mathrm{~m}
\end{aligned}
$$

Summary

- motion in 2 dimesions
- projectile motion

Quiz start of class, Friday, Jan 17.
Assignment due tomorrow.
(Uncollected) Homework Serway \& Jewett,

- Ch 4, onward from page 102. Conc Qs: 1, 3; Probs: 7
- Ch 4 Probs: $11^{\dagger}, 15,13,19,21,29,56,59$

