

2D Kinematics Projectiles

Lana Sheridan

De Anza College

Jan 15, 2020

Last time

- varying acceleration example
- vectors
- addition of vectors

Overview

- subtraction of vectors
- motion in 2 dimesions
- projectiles
- height of a projectile
- range of a projectile

Vectors Properties and Operations

Negation If $\vec{u} = -\vec{v}$ then \vec{u} has the same magnitude as \vec{v} but points in

the opposite direction.

 $\vec{\mathbf{A}} - \vec{\mathbf{B}} = \vec{\mathbf{A}} + (-\vec{\mathbf{B}})$

All the same kinematics definitions and equations apply in 2 dimensions.

We can use our knowledge of vectors to solve separately the motion in the x and y directions.

Motion in 2 Dimensions

Motion in 2 Dimensions

Velocity in 2 Dimensions

Different directions are independent \Rightarrow differentiate separately!

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}}$$
$$\vec{\mathbf{v}} = \frac{d\vec{\mathbf{r}}}{dt}$$
$$= \frac{dx}{dt}\hat{\mathbf{i}} + \frac{dy}{dt}\hat{\mathbf{j}}$$
$$\vec{\mathbf{v}} = v_x\hat{\mathbf{i}} + v_y\hat{\mathbf{j}}$$

(Differentiation is a linear operation.)

Acceleration in 2 Dimensions

$$\overrightarrow{\Delta \mathbf{v}} = \overrightarrow{\mathbf{v}}(t + \Delta t) - \overrightarrow{\mathbf{v}}(t) = \overrightarrow{\mathbf{v}}_f - \overrightarrow{\mathbf{v}}_i$$

$$\vec{\mathbf{a}} = \lim_{\Delta t \to 0} \frac{\vec{\mathbf{v}}(t + \Delta t) - \vec{\mathbf{v}}(t)}{\Delta t} = \frac{\mathsf{d}\vec{\mathbf{v}}}{\mathsf{d}t}$$

Kinematic Equations in 2 Dimensions

$$\vec{\mathbf{v}}_f = \vec{\mathbf{v}}_i + \vec{\mathbf{a}} t$$

Kinematic Equations in 2 Dimensions

Equating *x*-components (**i**-components):

$$v_x = v_{x,i} + a_x t$$

Equating *y*-components (**j**-components):

$$v_y = v_{y,i} + a_y t$$

Kinematic Equations in 2 Dimensions

The other kinematics equations work basically the same way as $\vec{\mathbf{v}}_f = \vec{\mathbf{v}}_i + \vec{\mathbf{a}} t$.

For the scalar equation, it holds for each component:

$$v_{f,x}^2 = v_{i,x}^2 + 2a_x\Delta x$$
$$v_{f,y}^2 = v_{i,y}^2 + 2a_y\Delta y$$

Projectiles

projectile

Any object that is thrown. We will use this word specifically to refer to thrown objects that experience a vertical acceleration g.

Assumption

Air resistance is negligible.

Why do we care?

Projectiles

projectile

Any object that is thrown. We will use this word specifically to refer to thrown objects that experience a vertical acceleration g.

Assumption

Air resistance is negligible.

Why do we care?

Historically...

Projectile Velocity

Vector Addition can give a Projectile's Trajectory

$$\Delta \mathbf{r} = \vec{\mathbf{r}}_f - 0 = \vec{\mathbf{v}}_i t + \frac{1}{2} \vec{\mathbf{a}} t^2$$

Principle Equations of Projectile Motion

(Notice, these are just special cases of the kinematics equations!)

$\Delta x = v_{ix}t$	$v_x = v_{ix}$	$v_x^2 = v_{ix}^2$
$\Delta y = v_{iy}t - \frac{1}{2}gt^2$	$v_y = v_{iy} - gt$	$v_y^2 = v_{iy}^2 - 2g(\Delta y)$

How can we find the maximum height that a projectile reaches?

How can we find the maximum height that a projectile reaches? Find the height when $v_v = 0$.

How can we find the maximum height that a projectile reaches?

Find the height when $v_y = 0$.

$$v_{f,y}^2 = v_{i,y}^2 - 2g\Delta y$$

How can we find the maximum height that a projectile reaches?

Find the height when $v_y = 0$.

$$v_{f,y}^2 = v_{i,y}^2 - 2g\Delta y$$

time of flight

The time from launch to when projectile hits the ground.

How can we find the time of flight of a projectile?

Assuming that it is launched from the ground and lands on the ground at the same height...

There are several ways to find an expression for this time.

One way: Notice that just when striking the ground, $\Delta y = 0$.

$$\Delta y = v_{y,i}t + \frac{1}{2}a_yt^2$$
$$0 = v_i\sin\theta t - \frac{1}{2}gt^2$$

Now cancel a factor of t. Warning! This will remove one solution to this equation in t. What is it?

There are several ways to find an expression for this time.

One way: Notice that just when striking the ground, $\Delta y = 0$.

$$\Delta y = v_{y,i}t + \frac{1}{2}a_yt^2$$
$$0 = v_i\sin\theta t - \frac{1}{2}gt^2$$

Now cancel a factor of t. Warning! This will remove one solution to this equation in t. What is it?

$$\frac{1}{2}gt = v_i \sin \theta$$

Quick Quiz 4.3¹ Rank the launch angles for the five paths in the figure with respect to time of flight from the shortest time of flight to the longest. (Assume the magnitude v_i remains the same.)

- A 15°, 30°, 45°, 60°, 75°
- **B** 45°, 30°, 60°, 15°, 75°
- **C** 15°, 75°, 30°, 60°, 45°

D 75°.60°.45°.30°.15°

¹Page 86, Serway & Jewett

Quick Quiz 4.3¹ Rank the launch angles for the five paths in the figure with respect to time of flight from the shortest time of flight to the longest. (Assume the magnitude v_i remains the same.)

- A 15°, 30°, 45°, 60°, 75° ←
- **B** 45°, 30°, 60°, 15°, 75°
- **C** 15°, 75°, 30°, 60°, 45°

D 75°.60°.45°.30°.15°

¹Page 86, Serway & Jewett

range

The distance in the horizontal direction that a projectile covers before hitting the ground.

How can we find the range of a projectile?

There is no acceleration in the x-direction! $(a_x = 0)$

$$\Delta x = v_x t$$

We just need t. But t is the time of flight!

A long jumper leaves the ground at an angle of 20.0° above the horizontal and at a speed of 11.0 m/s. How far does he jump in the horizontal direction?

A long jumper leaves the ground at an angle of 20.0° above the horizontal and at a speed of 11.0 m/s. How far does he jump in the horizontal direction?

$$R = \frac{v_i^2 \sin(2\theta)}{g}$$

= $\frac{(11.0 \text{ m/s})^2 \sin(2 \times 20.0)}{9.8 \text{ m/s}^2}$
= $\frac{7.94 \text{ m}}{2}$

Summary

- motion in 2 dimesions
- projectile motion

Quiz start of class, Friday, Jan 17.

Assignment due tomorrow.

(Uncollected) Homework Serway & Jewett,

- Ch 4, onward from page 102. Conc Qs: 1, 3; Probs: 7
- Ch 4 Probs: 11[†], 15, 13, 19, 21, 29, 56, 59

[†]Go Mountain Lions!