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Some Implications of Gauss’s Law
Excess Charge on a Conductor

We can argue that if an excess charge is placed on an isolated
conductor, that amount of charge will move entirely to the surface
of the conductor. None of the excess charge will be found within
the body of the conductor.
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24.4 Conductors in Electrostatic Equilibrium
As we learned in Section 23.2, a good electrical conductor contains charges (elec-
trons) that are not bound to any atom and therefore are free to move about within 
the material. When there is no net motion of charge within a conductor, the 
 conductor is in electrostatic equilibrium. A conductor in electrostatic equilibrium 
has the following properties:

 1. The electric field is zero everywhere inside the conductor, whether the con-
ductor is solid or hollow.

 2. If the conductor is isolated and carries a charge, the charge resides on its 
surface.

 3. The electric field at a point just outside a charged conductor is perpendicu-
lar to the surface of the conductor and has a magnitude s/P0, where s is 
the surface charge density at that point.

 4. On an irregularly shaped conductor, the surface charge density is greatest 
at locations where the radius of curvature of the surface is smallest.

 We verify the first three properties in the discussion that follows. The fourth 
property is presented here (but not verified until we have studied the appropriate 
material in Chapter 25) to provide a complete list of properties for conductors in 
electrostatic equilibrium.
 We can understand the first property by considering a conducting slab placed 
in an external field E

S
 (Fig. 24.16). The electric field inside the conductor must be 

zero, assuming electrostatic equilibrium exists. If the field were not zero, free elec-
trons in the conductor would experience an electric force ( F

S
5 q E

S
) and would 

accelerate due to this force. This motion of electrons, however, would mean that 
the conductor is not in electrostatic equilibrium. Therefore, the existence of elec-
trostatic equilibrium is consistent only with a zero field in the conductor.
 Let’s investigate how this zero field is accomplished. Before the external field is 
applied, free electrons are uniformly distributed throughout the conductor. When 
the external field is applied, the free electrons accelerate to the left in Figure 
24.16, causing a plane of negative charge to accumulate on the left surface. The 
movement of electrons to the left results in a plane of positive charge on the right 
surface. These planes of charge create an additional electric field inside the con-
ductor that opposes the external field. As the electrons move, the surface charge 
densities on the left and right surfaces increase until the magnitude of the inter-
nal field equals that of the external field, resulting in a net field of zero inside 
the conductor. The time it takes a good conductor to reach equilibrium is on the 
order of 10216 s, which for most purposes can be considered instantaneous.
 If the conductor is hollow, the electric field inside the conductor is also zero, 
whether we consider points in the conductor or in the cavity within the conductor. 
The zero value of the electric field in the cavity is easiest to argue with the concept 
of electric potential, so we will address this issue in Section 25.6.
 Gauss’s law can be used to verify the second property of a conductor in electro-
static equilibrium. Figure 24.17 shows an arbitrarily shaped conductor. A gaussian  

�W  Properties of a conductor in 
electrostatic equilibrium

Gaussian
surface

Figure 24.17  A conductor of 
arbitrary shape. The broken line 
represents a gaussian surface  
that can be just inside the conduc-
tor’s surface.

The charge distributions of all these configurations do not have sufficient symmetry to make the use of Gauss’s law 
practical. We cannot find a closed surface surrounding any of these distributions for which all portions of the surface 
satisfy one or more of conditions (1) through (4) listed at the beginning of this section.

S O L U T I O N
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Figure 24.16  A conducting 
slab in an external electric field 
E
S

. The charges induced on the 
two surfaces of the slab produce 
an electric field that opposes the 
external field, giving a resultant 
field of zero inside the slab.

E = 0 inside the conductor, so the Gaussian surface shown cannot
enclose a net charge. ⇒ All excess charge is on the surface.



Charges and Conductors

Excess charge sits on the outside surface of a conductor.

Close to the surface, the electric field lines are perpendicular to the
surface.

1Figure from OpenStax College Physics.



Some Implications of Gauss’s Law
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Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).
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Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.
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charge of &5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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A charge placed inside a conducting shell appears on the outside of
the conductor.

(E = 0 for the Gaussian surface shown.)



Questions about applying Gauss’s law

What shape would you pick for the Gaussian surface if you wanted
to find the electric field at a perpendicular distance r from a line
charge of uniform charge density λ?

(A) cube

(B) rectangle

(C) sphere

(D) cylinder
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charge of uniform charge density λ?

(A) cube

(B) rectangle

(C) sphere
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Questions about applying Gauss’s law

What shape would you pick for the Gaussian surface if you wanted
to find the electric field at a distance r from the center of a
spherical conductor carrying a net charge?

(A) cube

(B) rectangle

(C) sphere

(D) cylinder



Questions about applying Gauss’s law

What shape would you pick for the Gaussian surface if you wanted
to find the electric field at a distance r from the center of a
spherical conductor carrying a net charge?

(A) cube

(B) rectangle

(C) sphere←
(D) cylinder



Some Implications of Gauss’s Law

Uniform Shell of Charge

• A shell of uniform charge attracts or repels a charged particle
that is outside the shell as if all the shell’s charge were
concentrated at the center of the shell.

• If a charged particle is located inside a shell of uniform charge,
there is no electrostatic force on the particle from the shell.



Uniform Sphere of Charge
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Example 24.3   A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform 
volume charge density r and carries a total positive 
charge Q (Fig. 24.10).

(A)  Calculate the magnitude of the electric field at a 
point outside the sphere.

Conceptualize  Notice how this problem differs from 
our previous discussion of Gauss’s law. The electric 
field due to point charges was discussed in Section 
24.2. Now we are considering the electric field due 
to a distribution of charge. We found the field for 
various distributions of charge in Chapter 23 by inte-
grating over the distribution. This example demon-
strates a difference from our discussions in Chapter 
23. In this chapter, we find the electric field using 
Gauss’s law.

Categorize  Because the charge is distributed uni-
formly throughout the sphere, the charge distribution 
has spherical symmetry and we can apply Gauss’s law to find the electric field.

Analyze To reflect the spherical symmetry, let’s choose a spherical gaussian surface of radius r, concentric with the 
sphere, as shown in Figure 24.10a. For this choice, condition (2) is satisfied everywhere on the surface and E

S
? d A

S
5 E dA.

S O L U T I O N

24.3  Application of Gauss’s Law to Various  
Charge Distributions

As mentioned earlier, Gauss’s law is useful for determining electric fields when the 
charge distribution is highly symmetric. The following examples demonstrate ways 
of choosing the gaussian surface over which the surface integral given by Equation 
24.6 can be simplified and the electric field determined. In choosing the surface, 
always take advantage of the symmetry of the charge distribution so that E can be 
removed from the integral. The goal in this type of calculation is to determine a 
surface for which each portion of the surface satisfies one or more of the following 
conditions:

 1. The value of the electric field can be argued by symmetry to be constant 
over the portion of the surface.

 2. The dot product in Equation 24.6 can be expressed as a simple algebraic 
product E dA because E

S
 and d A

S
 are parallel.

 3. The dot product in Equation 24.6 is zero because E
S

 and d A
S

 are 
perpendicular.

 4. The electric field is zero over the portion of the surface.

 Different portions of the gaussian surface can satisfy different conditions as 
long as every portion satisfies at least one condition. All four conditions are used in 
examples throughout the remainder of this chapter and will be identified by num-
ber. If the charge distribution does not have sufficient symmetry such that a gauss-
ian surface that satisfies these conditions can be found, Gauss’s law is still true, but 
is not useful for determining the electric field for that charge distribution.

Gaussian
sphere

Gaussian
sphere

For points outside the sphere, 
a large, spherical gaussian 
surface is drawn concentric 
with the sphere.

For points inside the sphere, 
a spherical gaussian surface 
smaller than the sphere is 
drawn.

r

a

r
a

Q

a b

Figure 24.10  (Example 24.3) A uniformly charged insulating 
sphere of radius a and total charge Q. In diagrams such as this one, 
the dotted line represents the intersection of the gaussian surface 
with the plane of the page.

Pitfall Prevention 24.2
Gaussian Surfaces Are Not Real  
A gaussian surface is an imaginary 
surface you construct to satisfy the 
conditions listed here. It does not 
have to coincide with a physical 
surface in the situation.

continued

Consider a uniform insulating sphere of charge, radius a, charge
density ρ, total charge Q.

How does the electric field strength change with distance from the
center?



Uniform Sphere of Charge
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continued

∮
E · dA =

qenc
ε0

Outside sphere (for r > a):

4πr2E =
1

ε0
Q

E =
Q

4πε0r2

E =
keQ

r2

Inside sphere (for r < a):

4πr2E =
1

ε0
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=
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Uniform Sphere of Charge

732 Chapter 24 Gauss’s Law

Replace E
S

? d A
S

 in Gauss’s law with E dA: FE 5 C E
S

? d A
S

5 C E dA 5
Q
P0

By symmetry, E has the same value everywhere on the 
surface, which satisfies condition (1), so we can remove  
E from the integral:

C E dA 5 E C dA 5 E 14pr 2 2 5
Q
P0

Solve for E : (1)   E 5
Q

4pP0r 2 5 ke 
Q

r 2    1 for r .  a 2
Finalize  This field is identical to that for a point charge. Therefore, the electric field due to a uniformly charged 
sphere in the region external to the sphere is equivalent to that of a point charge located at the center of the sphere.

(B)  Find the magnitude of the electric field at a point inside the sphere.

Analyze  In this case, let’s choose a spherical gaussian surface having radius r , a, concentric with the insulating 
sphere (Fig. 24.10b). Let V 9 be the volume of this smaller sphere. To apply Gauss’s law in this situation, recognize that 
the charge q in within the gaussian surface of volume V 9 is less than Q.

S O L U T I O N

Notice that conditions (1) and (2) are satisfied every-
where on the gaussian surface in Figure 24.10b. Apply 
Gauss’s law in the region r , a :

C E dA 5 E C dA 5 E 14pr 2 2 5
q in

P0

Calculate q in by using q in5 rV 9: q in 5 rV r 5 r 1 4
3pr 3 2

Solve for E and substitute for q in: E 5
q in

4pP0r 2 5
r 1 4

3pr 3 2
4pP0r 2 5

r

3P0
 r

Substitute r 5 Q /4
3pa3 and P0 5 1/4pke : (2)   E 5

Q /4
3 pa 3

3 11/4pke 2  r 5 ke 
Q

a 3 r 1 for r ,  a 2  

Finalize  This result for E differs from the one obtained in part (A). It shows that 
E  S 0 as r S 0. Therefore, the result eliminates the problem that would exist at  
r 5 0 if E varied as 1/r 2 inside the sphere as it does outside the sphere. That is, if  
E ~ 1/r 2 for r , a, the field would be infinite at r 5 0, which is physically impossible.

Suppose the radial position r 5 a is approached from inside the 
sphere and from outside. Do we obtain the same value of the electric field from 
both directions?

Answer  Equation (1) shows that the electric field approaches a value from the out-
side given by

E 5 lim
r S a

ake 
Q

r 2 b 5 ke 
Q

a 2

From the inside, Equation (2) gives

E 5 lim
r S a

ake 
Q

a 3 rb 5 ke 
Q

a 3 a 5 ke 
Q

a 2

Therefore, the value of the field is the same as the surface is approached from 
both directions. A plot of E versus r is shown in Figure 24.11. Notice that the mag-
nitude of the field is continuous.

WHAT IF ?

a

E

a r

E 
keQ
r2

E !

!

keQ
a3 r

Figure 24.11  (Example 24.3)  
A plot of E versus r for a uniformly 
charged insulating sphere. The 
electric field inside the sphere  
(r , a) varies linearly with r. The 
field outside the sphere (r . a) is 
the same as that of a point charge  
Q located at r 5 0.

▸ 24.3 c o n t i n u e d

 

Outside the sphere, the electric field is the same as for a point
charge, strength Q, located at the center of the sphere.

Inside the sphere, field varies linearly in the distance from the
center and all charge outside the distance r cancels out!



Question
The figure shows four solid spheres, each with charge Q uniformly
distributed through its volume.

621QU E STION S
PART 3

HALLIDAY REVISED

1 A surface has the area vector What is the
flux of a uniform electric field through the area if the field is
(a) and (b) 

2 Figure 23-20 shows, in cross section, three solid cylinders, each of
length L and uniform charge Q. Concentric with each cylinder is a
cylindrical Gaussian surface, with all three surfaces having the same
radius. Rank the Gaussian surfaces according to the electric field at
any point on the surface,greatest first.

4k̂ N/C?E
:

!E
:

! 4î N/C

A
:

! (2î " 3ĵ) m2. 6 Three infinite nonconducting sheets, with uniform positive sur-
face charge densities s, 2s, and 3s, are arranged to be parallel like
the two sheets in Fig. 23-17a. What is their order, from left to right,
if the electric field produced by the arrangement has magnitude
E ! 0 in one region and E ! 2s/#0 in another region?

7 Figure 23-24 shows four situations in which four very long
rods extend into and out of the page (we see only their cross sec-
tions). The value below each cross section gives that particular
rod’s uniform charge density in microcoulombs per meter. The
rods are separated by either d or 2d as drawn, and a central point
is shown midway between the inner rods. Rank the situations ac-
cording to the magnitude of the net electric field at that central
point, greatest first.

E
:

Fig. 23-20 Question 2.

(a) (b) (c)

Gaussian
surface

Cylinder

3 Figure 23-21 shows, in cross sec-
tion, a central metal ball, two spheri-
cal metal shells, and three spherical
Gaussian surfaces of radii R, 2R, and
3R, all with the same center.The uni-
form charges on the three objects
are: ball, Q; smaller shell, 3Q; larger
shell, 5Q. Rank the Gaussian sur-
faces according to the magnitude of
the electric field at any point on the
surface, greatest first.

4 Figure 23-22 shows, in cross sec-
tion, two Gaussian spheres and two
Gaussian cubes that are centered on
a positively charged particle. (a)
Rank the net flux through the four
Gaussian surfaces, greatest first. (b)
Rank the magnitudes of the electric
fields on the surfaces, greatest first,
and indicate whether the magni-
tudes are uniform or variable along
each surface.
5 In Fig. 23-23, an electron is re-
leased between two infinite noncon-
ducting sheets that are horizontal and
have uniform surface charge densities
s(") and s($),as indicated.The electron
is subjected to the following three situ-
ations involving surface charge densi-
ties and sheet separations. Rank the
magnitudes of the electron’s accelera-
tion,greatest first.

Situation s(") s($) Separation

1 "4s $4s d
2 "7s $s 4d
3 "3s $5s 9d

Fig. 23-21 Question 3.

3R

2R

R

Shell

Gaussian
surface

Fig. 23-22 Question 4.

a
b

c

d

+q

Fig. 23-23 Question 5.

+ + + + + + +

– – – – – – –

e

(–)σ

(+)σ

(a) (b) (c) (d)

P P P P

Fig. 23-25 Question 8.

8 Figure 23-25 shows four solid spheres, each with charge 
Q uniformly distributed through its volume. (a) Rank the spheres
according to their volume charge density, greatest first. The figure
also shows a point P for each sphere, all at the same distance
from the center of the sphere. (b) Rank the spheres according to
the magnitude of the electric field they produce at point P, great-
est first.

Fig. 23-24 Question 7.

(a)

(b)

(c)

(d)

+3 +2 –2 –3

–2 +2 +8

+5

+8

–6 +5 –6

+2 –4 –4 +2

9 A small charged ball lies within the hollow of a metallic
spherical shell of radius R. For three situations, the net charges on
the ball and shell, respectively, are (1) "4q, 0; (2) $6q, "10q; (3)
"16q, $12q. Rank the situations according to the charge on (a)
the inner surface of the shell and (b) the outer surface, most posi-
tive first.

10 Rank the situations of Question 9 according to the magnitude
of the electric field (a) halfway through the shell and (b) at a point
2R from the center of the shell, greatest first.
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Rank the spheres according to their volume charge density,
greatest first. The figure also shows a point P for each sphere, all
at the same distance from the center of the sphere.

(A) a, b, c, d

(B) d, c, b, a

(C) a and b, c, d

(D) a, b, c and d
1Halliday, Resnik, Walker
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the magnitude of the electric field they produce at point P, great-
est first.

Fig. 23-24 Question 7.

(a)

(b)

(c)

(d)

+3 +2 –2 –3

–2 +2 +8

+5

+8

–6 +5 –6

+2 –4 –4 +2

9 A small charged ball lies within the hollow of a metallic
spherical shell of radius R. For three situations, the net charges on
the ball and shell, respectively, are (1) "4q, 0; (2) $6q, "10q; (3)
"16q, $12q. Rank the situations according to the charge on (a)
the inner surface of the shell and (b) the outer surface, most posi-
tive first.

10 Rank the situations of Question 9 according to the magnitude
of the electric field (a) halfway through the shell and (b) at a point
2R from the center of the shell, greatest first.
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Rank the spheres according to their volume charge density,
greatest first. The figure also shows a point P for each sphere, all
at the same distance from the center of the sphere.

(A) a, b, c, d←
(B) d, c, b, a

(C) a and b, c, d

(D) a, b, c and d
1Halliday, Resnik, Walker



Question
The figure shows four solid spheres, each with charge Q uniformly
distributed through its volume.

621QU E STION S
PART 3

HALLIDAY REVISED

1 A surface has the area vector What is the
flux of a uniform electric field through the area if the field is
(a) and (b) 

2 Figure 23-20 shows, in cross section, three solid cylinders, each of
length L and uniform charge Q. Concentric with each cylinder is a
cylindrical Gaussian surface, with all three surfaces having the same
radius. Rank the Gaussian surfaces according to the electric field at
any point on the surface,greatest first.

4k̂ N/C?E
:

!E
:

! 4î N/C

A
:

! (2î " 3ĵ) m2. 6 Three infinite nonconducting sheets, with uniform positive sur-
face charge densities s, 2s, and 3s, are arranged to be parallel like
the two sheets in Fig. 23-17a. What is their order, from left to right,
if the electric field produced by the arrangement has magnitude
E ! 0 in one region and E ! 2s/#0 in another region?

7 Figure 23-24 shows four situations in which four very long
rods extend into and out of the page (we see only their cross sec-
tions). The value below each cross section gives that particular
rod’s uniform charge density in microcoulombs per meter. The
rods are separated by either d or 2d as drawn, and a central point
is shown midway between the inner rods. Rank the situations ac-
cording to the magnitude of the net electric field at that central
point, greatest first.

E
:

Fig. 23-20 Question 2.

(a) (b) (c)

Gaussian
surface

Cylinder

3 Figure 23-21 shows, in cross sec-
tion, a central metal ball, two spheri-
cal metal shells, and three spherical
Gaussian surfaces of radii R, 2R, and
3R, all with the same center.The uni-
form charges on the three objects
are: ball, Q; smaller shell, 3Q; larger
shell, 5Q. Rank the Gaussian sur-
faces according to the magnitude of
the electric field at any point on the
surface, greatest first.

4 Figure 23-22 shows, in cross sec-
tion, two Gaussian spheres and two
Gaussian cubes that are centered on
a positively charged particle. (a)
Rank the net flux through the four
Gaussian surfaces, greatest first. (b)
Rank the magnitudes of the electric
fields on the surfaces, greatest first,
and indicate whether the magni-
tudes are uniform or variable along
each surface.
5 In Fig. 23-23, an electron is re-
leased between two infinite noncon-
ducting sheets that are horizontal and
have uniform surface charge densities
s(") and s($),as indicated.The electron
is subjected to the following three situ-
ations involving surface charge densi-
ties and sheet separations. Rank the
magnitudes of the electron’s accelera-
tion,greatest first.

Situation s(") s($) Separation

1 "4s $4s d
2 "7s $s 4d
3 "3s $5s 9d

Fig. 23-21 Question 3.
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Fig. 23-22 Question 4.
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8 Figure 23-25 shows four solid spheres, each with charge 
Q uniformly distributed through its volume. (a) Rank the spheres
according to their volume charge density, greatest first. The figure
also shows a point P for each sphere, all at the same distance
from the center of the sphere. (b) Rank the spheres according to
the magnitude of the electric field they produce at point P, great-
est first.
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9 A small charged ball lies within the hollow of a metallic
spherical shell of radius R. For three situations, the net charges on
the ball and shell, respectively, are (1) "4q, 0; (2) $6q, "10q; (3)
"16q, $12q. Rank the situations according to the charge on (a)
the inner surface of the shell and (b) the outer surface, most posi-
tive first.

10 Rank the situations of Question 9 according to the magnitude
of the electric field (a) halfway through the shell and (b) at a point
2R from the center of the shell, greatest first.
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Rank the spheres according to the magnitude of the electric field
they produce at point P, greatest first.

(A) a, b, c, d

(B) d, c, b, a

(C) a and b, c, d

(D) a, b, c and d

1Halliday, Resnik, Walker



Question
The figure shows four solid spheres, each with charge Q uniformly
distributed through its volume.
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1 A surface has the area vector What is the
flux of a uniform electric field through the area if the field is
(a) and (b) 

2 Figure 23-20 shows, in cross section, three solid cylinders, each of
length L and uniform charge Q. Concentric with each cylinder is a
cylindrical Gaussian surface, with all three surfaces having the same
radius. Rank the Gaussian surfaces according to the electric field at
any point on the surface,greatest first.
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face charge densities s, 2s, and 3s, are arranged to be parallel like
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if the electric field produced by the arrangement has magnitude
E ! 0 in one region and E ! 2s/#0 in another region?

7 Figure 23-24 shows four situations in which four very long
rods extend into and out of the page (we see only their cross sec-
tions). The value below each cross section gives that particular
rod’s uniform charge density in microcoulombs per meter. The
rods are separated by either d or 2d as drawn, and a central point
is shown midway between the inner rods. Rank the situations ac-
cording to the magnitude of the net electric field at that central
point, greatest first.
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3 Figure 23-21 shows, in cross sec-
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cal metal shells, and three spherical
Gaussian surfaces of radii R, 2R, and
3R, all with the same center.The uni-
form charges on the three objects
are: ball, Q; smaller shell, 3Q; larger
shell, 5Q. Rank the Gaussian sur-
faces according to the magnitude of
the electric field at any point on the
surface, greatest first.

4 Figure 23-22 shows, in cross sec-
tion, two Gaussian spheres and two
Gaussian cubes that are centered on
a positively charged particle. (a)
Rank the net flux through the four
Gaussian surfaces, greatest first. (b)
Rank the magnitudes of the electric
fields on the surfaces, greatest first,
and indicate whether the magni-
tudes are uniform or variable along
each surface.
5 In Fig. 23-23, an electron is re-
leased between two infinite noncon-
ducting sheets that are horizontal and
have uniform surface charge densities
s(") and s($),as indicated.The electron
is subjected to the following three situ-
ations involving surface charge densi-
ties and sheet separations. Rank the
magnitudes of the electron’s accelera-
tion,greatest first.

Situation s(") s($) Separation

1 "4s $4s d
2 "7s $s 4d
3 "3s $5s 9d

Fig. 23-21 Question 3.

3R

2R

R

Shell

Gaussian
surface

Fig. 23-22 Question 4.

a
b

c

d

+q

Fig. 23-23 Question 5.

+ + + + + + +

– – – – – – –

e

(–)σ

(+)σ

(a) (b) (c) (d)

P P P P

Fig. 23-25 Question 8.

8 Figure 23-25 shows four solid spheres, each with charge 
Q uniformly distributed through its volume. (a) Rank the spheres
according to their volume charge density, greatest first. The figure
also shows a point P for each sphere, all at the same distance
from the center of the sphere. (b) Rank the spheres according to
the magnitude of the electric field they produce at point P, great-
est first.
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9 A small charged ball lies within the hollow of a metallic
spherical shell of radius R. For three situations, the net charges on
the ball and shell, respectively, are (1) "4q, 0; (2) $6q, "10q; (3)
"16q, $12q. Rank the situations according to the charge on (a)
the inner surface of the shell and (b) the outer surface, most posi-
tive first.

10 Rank the situations of Question 9 according to the magnitude
of the electric field (a) halfway through the shell and (b) at a point
2R from the center of the shell, greatest first.
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Rank the spheres according to the magnitude of the electric field
they produce at point P, greatest first.

(A) a, b, c, d

(B) d, c, b, a

(C) a and b, c, d←
(D) a, b, c and d

1Halliday, Resnik, Walker



Potential Energy

What is the potential energy that a charge has due to the electric
field of other charges in its vicinity?



Potential Energy

Recall from 4A, there are many kinds of potential or stored energy:

• gravitational (U = mgh, or U = −GMm
r )

• elastic (U = 1
2kx

2)

potential energy

energy that a system has as a result of its configuration; stored
energy; this always results from the action of a conservative force

mechanical energy

the sum of a system’s kinetic and potential energies,
Emech = K + U



Conservative Forces

Conservative force

acts on a part of the system such that following any closed path
(one that ends back at the starting point) the work done on the
system by the force is zero.

Conservative forces are forces that do not dissipate energy.

They conserve mechanical energy.

For conservative forces, it is possible to define a potential energy
function.

Wint = −∆U

where Wint is the work done by the conservative force internal to
the system and ∆U is the change in the potential energy of the
system.



Conservative Forces

Conservative force

acts on a part of the system such that following any closed path
(one that ends back at the starting point) the work done on the
system by the force is zero.

Conservative forces are forces that do not dissipate energy.

They conserve mechanical energy.

For conservative forces, it is possible to define a potential energy
function.

Wint = −∆U

where Wint is the work done by the conservative force internal to
the system and ∆U is the change in the potential energy of the
system.



Example: Potential Energy in a Uniform Field
Potential energy change of a charge q moving a distance d?
(Similar to lifting/lowering a mass.)

 25.2 Potential Difference in a Uniform Electric Field 749

tance d, where the displacement sS points from ! toward " and is parallel to the 
field lines. Equation 25.3 gives

 V" 2 V! 5 DV 5 23
"

!

E
S

? d sS 5 23
"

!

E ds 1cos 08 2 5 23
"

!

E ds 

Because E is constant, it can be removed from the integral sign, which gives

 DV 5 2E 3"

!

ds 

 DV 5 2Ed (25.6)

The negative sign indicates that the electric potential at point " is lower than 
at point !; that is, V" , V!. Electric field lines always point in the direction of 
decreasing electric potential as shown in Figure 25.2a.
 Now suppose a charge q moves from ! to ". We can calculate the change in the 
potential energy of the charge–field system from Equations 25.3 and 25.6:

 DU 5 q DV 5 2qEd (25.7)

This result shows that if q is positive, then DU is negative. Therefore, in a system 
consisting of a positive charge and an electric field, the electric potential energy 
of the system decreases when the charge moves in the direction of the field. If a 
positive charge is released from rest in this electric field, it experiences an electric 
force q E

S
 in the direction of E

S
 (downward in Fig. 25.2a). Therefore, it accelerates 

downward, gaining kinetic energy. As the charged particle gains kinetic energy, the 
electric potential energy of the charge–field system decreases by an equal amount. 
This equivalence should not be surprising; it is simply conservation of mechanical 
energy in an isolated system as introduced in Chapter 8.
 Figure 25.2b shows an analogous situation with a gravitational field. When a 
particle with mass m is released in a gravitational field, it accelerates downward, 
gaining kinetic energy. At the same time, the gravitational potential energy of the 
object–field system decreases.
 The comparison between a system of a positive charge residing in an electrical 
field and an object with mass residing in a gravitational field in Figure 25.2 is use-
ful for conceptualizing electrical behavior. The electrical situation, however, has 
one feature that the gravitational situation does not: the charge can be negative. 
If q is negative, then DU in Equation 25.7 is positive and the situation is reversed.  

�W  Potential difference between 
two points in a uniform 
electric field

When a positive charge moves 
from point ! to point ", the 
electric potential energy of the 
charge–field system decreases.

When an object with mass moves 
from point ! to point ", the 
gravitational potential energy of 
the object–field system decreases.

E
S

 

!

d

q

"

!

a

gS 

d

m
"

!

b

Figure 25.2 (a) When the elec-
tric field E

S
 is directed downward, 

point " is at a lower electric 
potential than point !. (b) A 
gravitational analog to the situa-
tion in (a).

Pitfall Prevention 25.4
The Sign of DV The negative sign 
in Equation 25.6 is due to the 
fact that we started at point ! 
and moved to a new point in the 
same direction as the electric field 
lines. If we started from " and 
moved to !, the potential differ-
ence would be 1Ed. In a uniform 
electric field, the magnitude of 
the potential difference is Ed and 
the sign can be determined by the 
direction of travel.

|∆UE | = |q|Ed |∆Ug | = mgd



Summary

• implications of Gauss’s law

• Faraday ice pail

• electric potential energy

Homework Serway & Jewett:

• PREVIOUS: Ch 24, Section Qs: 25, 29, 31, 33, 39, 41, 43,
55, 61, 65

• NEW: Ch 25, onward from page 767. Obj. Qs: 5, 9, 11;
Concep. Qs: 3; Problems: 31, 33, 35, 55, 57


