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Last time

• implications of Gauss’s law

• introduced electric potential energy



Warm Up Questions

In the figure, a proton moves from point i to point f in a uniform
electric field directed as shown.

(a) Does the force of the electric field do positive or negative work
on the proton?
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E L E C T R I C  
P O T E N T I A L24
24-1 One goal of physics is to identify basic forces in our world, such as the
electric force we discussed in Chapter 21. A related goal is to determine whether
a force is conservative—that is, whether a potential energy can be associated with
it. The motivation for associating a potential energy with a force is that we can
then apply the principle of the conservation of mechanical energy to closed sys-
tems involving the force. This extremely powerful principle allows us to calculate
the results of experiments for which force calculations alone would be very diffi-
cult. Experimentally, physicists and engineers discovered that the electric force is
conservative and thus has an associated electric potential energy. In this chapter
we first define this type of potential energy and then put it to use.

24-2 Electric Potential Energy
When an electrostatic force acts between two or more charged particles within
a system of particles, we can assign an electric potential energy U to the system.
If the system changes its configuration from an initial state i to a different final
state f, the electrostatic force does work W on the particles. From Eq. 8-1, we then
know that the resulting change !U in the potential energy of the system is

!U " Uf # Ui " #W. (24-1)

As with other conservative forces, the work done by the electrostatic force is path
independent. Suppose a charged particle within the system moves from point i to
point f while an electrostatic force between it and the rest of the system acts on it.
Provided the rest of the system does not change, the work W done by the force on
the particle is the same for all paths between points i and f.

For convenience, we usually take the reference configuration of a system of
charged particles to be that in which the particles are all infinitely separated from
one another. Also, we usually set the corresponding reference potential energy to
be zero. Suppose that several charged particles come together from initially infi-
nite separations (state i) to form a system of neighboring particles (state f ). Let
the initial potential energy Ui be zero, and let W$ represent the work done by the
electrostatic forces between the particles during the move in from infinity. Then
from Eq. 24-1, the final potential energy U of the system is

U " #W$. (24-2)

W H AT  I S  P H YS I C S ?

CHECKPOINT 1

In the figure, a proton moves from point i to point f in a
uniform electric field directed as shown. (a) Does the
electric field do positive or negative work on the proton?
(b) Does the electric potential energy of the proton increase or decrease?
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(A) positive

(B) negative
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Warm Up Questions

Now we move the proton from point i to point f in a uniform
electric field directed as shown with an applied force.

(a) Does our applied force do positive or negative work?
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Overview

• electric potential energy

• potential energy of a pair of charges

• potential energy of a configuration of many charges

• force vector fields and potential energy

• Electric potential



Potential Energy and the Electrostatic Force

The electrostatic force is a conservative force.

We can ask what is the stored energy (potential energy) of some
particular configuration of charge.

electric potential energy

The electric potential energy of a system of fixed point charges is
equal to the work that must be done on the system by an external
agent to assemble the system, bringing each charge in from an
infinite distance.



Potential Energy of two point charges

Consider two charges q1 and q2 at a distance r .

They repel each other. Bringing them to that configuration
requires work.

r
q1 q2
+ +

Fig. 24-15 Two charges held a
fixed distance r apart.

The electric potential energy of a system of fixed point charges is equal to the work
that must be done by an external agent to assemble the system, bringing each charge in
from an infinite distance.

24-11 Electric Potential Energy of a System 
of Point Charges

In Section 24-2, we discussed the electric potential energy of a charged particle as
an electrostatic force does work on it. In that section, we assumed that the charges
that produced the force were fixed in place, so that neither the force nor the corre-
sponding electric field could be influenced by the presence of the test charge. In
this section we can take a broader view, to find the electric potential energy of a
system of charges due to the electric field produced by those same charges.

For a simple example, suppose you push together two bodies that have
charges of the same electrical sign.The work that you must do is stored as electric
potential energy in the two-body system (provided the kinetic energy of the bod-
ies does not change). If you later release the charges, you can recover this stored
energy, in whole or in part, as kinetic energy of the charged bodies as they rush
away from each other.

We define the electric potential energy of a system of point charges, held in
fixed positions by forces not specified, as follows:

CHAPTE R 24 E LECTR IC POTE NTIAL642

Sample Problem

try about that axis. Thus, we want the component Ez of in
the direction of z.This component is the negative of the rate
at which the electric potential changes with distance z.

Calculation: Thus, from the last of Eqs.24-41,we can write

(Answer)

This is the same expression that we derived in Section 22-7
by integration, using Coulomb’s law.

 !
"

2#0
 !1 $

z2z2 %  R2 ".

 Ez ! $
&V
&z

! $
"

2#0
 

d
dz

 (2z2 % R2 $ z)

E
:

Additional examples, video, and practice available at WileyPLUS

Finding the field from the potential

The electric potential at any point on the central axis of a
uniformly charged disk is given by Eq. 24-37,

Starting with this expression, derive an expression for the
electric field at any point on the axis of the disk.

We want the electric field as a function of distance z along
the axis of the disk. For any value of z, the direction of 
must be along that axis because the disk has circular symme-

E
:

E
:

V !
"

2#0
 (√z2 % R2 $ z).

KEY I DEAS

We assume that the charges are stationary both in their initial infinitely distant
positions and in their final assembled configuration.

Figure 24-15 shows two point charges q1 and q2, separated by a distance r. To
find the electric potential energy of this two-charge system, we must mentally build
the system, starting with both charges infinitely far away and at rest.When we bring
q1 in from infinity and put it in place, we do no work because no electrostatic force
acts on q1. However, when we next bring q2 in from infinity and put it in place, we
must do work because q1 exerts an electrostatic force on q2 during the move.

We can calculate that work with Eq. 24-8 by dropping the minus sign (so that
the equation gives the work we do rather than the field’s work) and substituting q2

for the general charge q. Our work is then equal to q2V, where V is the potential that
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Define U(∞) = 0 so that U(r) = ∆U = U(r) − U(∞)

Then, the potential energy of two point charges is:

U(r) =
kq1q2
r



Potential Energy of two point charges
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+ +

Fig. 24-15 Two charges held a
fixed distance r apart.
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Define U(∞) = 0 so that U(r) = ∆U = U(r) − U(∞)

Then, the potential energy of this charge configuration is:

U(r) = −

∫ r
∞ F · ds

= −

∫ r
∞

kq1q2
(r ′)2

dr ′

= k q1q2

[
1

r ′

]r
∞

=
k q1q2

r



Potential Energy of many point charges

Suppose we have three point charges.

Let

U12 =
k q1q2
r12

Then the total potential energy of the configuration is:

Unet = U12 + U13 + U23

Just add up all the pairwise potential energies!

Unet =
∑
ij

Uij
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Suppose we have three point charges.
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U12 =
k q1q2
r12

Then the total potential energy of the configuration is:

Unet = U12 + U13 + U23

Just add up all the pairwise potential energies!

Unet =
∑
ij

Uij



Energy Diagrams
Potential energy can be plotted as a function of position. eg.
potential energy of a spring:

200 Chapter 7 Energy of a System

energy function for a block–spring system, given by Us 5 1
2kx2. This function is 

plotted versus x in Figure 7.20a, where x is the position of the block. The force Fs 
exerted by the spring on the block is related to Us through Equation 7.29:

Fs 5 2
dUs

dx
5 2kx

As we saw in Quick Quiz 7.8, the x component of the force is equal to the nega-
tive of the slope of the U -versus-x curve. When the block is placed at rest at the 
equilibrium position of the spring (x 5 0), where Fs 5 0, it will remain there unless 
some external force Fext acts on it. If this external force stretches the spring from 
equilibrium, x is positive and the slope dU/dx is positive; therefore, the force Fs 
exerted by the spring is negative and the block accelerates back toward x 5 0 when 
released. If the external force compresses the spring, x is negative and the slope is 
negative; therefore, Fs is positive and again the mass accelerates toward x 5 0 upon 
release.
 From this analysis, we conclude that the x 5 0 position for a block–spring sys-
tem is one of stable equilibrium. That is, any movement away from this position 
results in a force directed back toward x 5 0. In general, configurations of a sys-
tem in stable equilibrium correspond to those for which U(x) for the system is a 
minimum.
 If the block in Figure 7.20 is moved to an initial position xmax and then released 
from rest, its total energy initially is the potential energy 12kx2

max stored in the spring. 
As the block starts to move, the system acquires kinetic energy and loses potential 
energy. The block oscillates (moves back and forth) between the two points x 5 
2xmax and x 5 1xmax, called the turning points. In fact, because no energy is trans-
formed to internal energy due to friction, the block oscillates between 2xmax and 
1xmax forever. (We will discuss these oscillations further in Chapter 15.)
 Another simple mechanical system with a configuration of stable equilibrium is 
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its 
lowest position, it tends to return to that position when released.
 Now consider a particle moving along the x axis under the influence of a conser-
vative force Fx, where the U -versus-x curve is as shown in Figure 7.21. Once again,  
Fx 5 0 at x 5 0, and so the particle is in equilibrium at this point. This position, 
 however, is one of unstable equilibrium for the following reason. Suppose the 
particle is displaced to the right (x . 0). Because the slope is negative for x . 0,  
Fx 5 2dU/dx is positive and the particle accelerates away from x 5 0. If instead the 
particle is at x 5 0 and is displaced to the left (x , 0), the force is negative because 
the slope is positive for x , 0 and the particle again accelerates away from the equi-
librium position. The position x 5 0 in this situation is one of unstable equilibrium 
because for any displacement from this point, the force pushes the particle farther 
away from equilibrium and toward a position of lower potential energy. A pencil 
balanced on its point is in a position of unstable equilibrium. If the pencil is dis-
placed slightly from its absolutely vertical position and is then released, it will surely 
fall over. In general, configurations of a system in unstable equilibrium correspond 
to those for which U(x) for the system is a maximum.
 Finally, a configuration called neutral equilibrium arises when U is constant 
over some region. Small displacements of an object from a position in this region 
produce neither restoring nor disrupting forces. A ball lying on a flat, horizontal 
surface is an example of an object in neutral equilibrium.

0
x

U

Negative slopePositive slope
x ! 0 x " 0

Figure 7.21  A plot of U versus  
x for a particle that has a position 
of unstable equilibrium located 
at x 5 0. For any finite displace-
ment of the particle, the force on 
the particle is directed away from 
x 5 0.

Pitfall Prevention 7.10
Energy Diagrams A common 
mistake is to think that potential 
energy on the graph in an energy 
diagram represents the height of 
some object. For example, that 
is not the case in Figure 7.20, 
where the block is only moving 
horizontally.

E

#xmax 0

Us

x

$ # kx21
2Us

xmax

xmaxx $ 0

m

Fs
S

The restoring force exerted by the 
spring always acts toward x $ 0, 
the position of stable equilibrium.

a

b

Figure 7.20 (a) Potential energy 
as a function of x for the friction-
less block–spring system shown in 
(b). For a given energy E of the sys-
tem, the block oscillates between 
the turning points, which have the 
coordinates x 5 6xmax.
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energy function for a block–spring system, given by Us 5 1
2kx2. This function is 

plotted versus x in Figure 7.20a, where x is the position of the block. The force Fs 
exerted by the spring on the block is related to Us through Equation 7.29:

Fs 5 2
dUs

dx
5 2kx

As we saw in Quick Quiz 7.8, the x component of the force is equal to the nega-
tive of the slope of the U -versus-x curve. When the block is placed at rest at the 
equilibrium position of the spring (x 5 0), where Fs 5 0, it will remain there unless 
some external force Fext acts on it. If this external force stretches the spring from 
equilibrium, x is positive and the slope dU/dx is positive; therefore, the force Fs 
exerted by the spring is negative and the block accelerates back toward x 5 0 when 
released. If the external force compresses the spring, x is negative and the slope is 
negative; therefore, Fs is positive and again the mass accelerates toward x 5 0 upon 
release.
 From this analysis, we conclude that the x 5 0 position for a block–spring sys-
tem is one of stable equilibrium. That is, any movement away from this position 
results in a force directed back toward x 5 0. In general, configurations of a sys-
tem in stable equilibrium correspond to those for which U(x) for the system is a 
minimum.
 If the block in Figure 7.20 is moved to an initial position xmax and then released 
from rest, its total energy initially is the potential energy 12kx2

max stored in the spring. 
As the block starts to move, the system acquires kinetic energy and loses potential 
energy. The block oscillates (moves back and forth) between the two points x 5 
2xmax and x 5 1xmax, called the turning points. In fact, because no energy is trans-
formed to internal energy due to friction, the block oscillates between 2xmax and 
1xmax forever. (We will discuss these oscillations further in Chapter 15.)
 Another simple mechanical system with a configuration of stable equilibrium is 
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its 
lowest position, it tends to return to that position when released.
 Now consider a particle moving along the x axis under the influence of a conser-
vative force Fx, where the U -versus-x curve is as shown in Figure 7.21. Once again,  
Fx 5 0 at x 5 0, and so the particle is in equilibrium at this point. This position, 
 however, is one of unstable equilibrium for the following reason. Suppose the 
particle is displaced to the right (x . 0). Because the slope is negative for x . 0,  
Fx 5 2dU/dx is positive and the particle accelerates away from x 5 0. If instead the 
particle is at x 5 0 and is displaced to the left (x , 0), the force is negative because 
the slope is positive for x , 0 and the particle again accelerates away from the equi-
librium position. The position x 5 0 in this situation is one of unstable equilibrium 
because for any displacement from this point, the force pushes the particle farther 
away from equilibrium and toward a position of lower potential energy. A pencil 
balanced on its point is in a position of unstable equilibrium. If the pencil is dis-
placed slightly from its absolutely vertical position and is then released, it will surely 
fall over. In general, configurations of a system in unstable equilibrium correspond 
to those for which U(x) for the system is a maximum.
 Finally, a configuration called neutral equilibrium arises when U is constant 
over some region. Small displacements of an object from a position in this region 
produce neither restoring nor disrupting forces. A ball lying on a flat, horizontal 
surface is an example of an object in neutral equilibrium.

0
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U
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x ! 0 x " 0

Figure 7.21  A plot of U versus  
x for a particle that has a position 
of unstable equilibrium located 
at x 5 0. For any finite displace-
ment of the particle, the force on 
the particle is directed away from 
x 5 0.

Pitfall Prevention 7.10
Energy Diagrams A common 
mistake is to think that potential 
energy on the graph in an energy 
diagram represents the height of 
some object. For example, that 
is not the case in Figure 7.20, 
where the block is only moving 
horizontally.
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Fs,x = −
dUs

dx
= −kx



Fields and Potentials: Reminder Conservative Forces
& Potential Energy

For conservative forces:

Wint = −∆U

This means that for a displacement along the x-axis:

∆U = −

∫ xf
xi

Fx dx

and

Fx = −
dU

dx



Fields and Potentials: Reminder Conservative Forces
& Potential Energy

In general, potential energy can be found by a path integral

∆U = −

∫
F · ds

And the conservative force is the gradient of the potential energy
function:

F = −∇U



Vector Differential Operations
Gradient of a scalar field at a point, f :

∇f =
∂

∂x
f i +

∂

∂y
f j +

∂

∂z
f k

Measures the rate and direction of change in a scalar field.

1Figure from Wikipedia by IkamusumeFan.



Vector Differential Operations

1Figure from http://farside.ph.utexas.edu/teaching (left); Wikipedia by
IkamusumeFan (right)



Partial Derivatives
Consider a scalar function f (x , y):

f (x , y) = x2 + xy + y2

∂

∂x
f (x , y) = 2x + y

∂

∂y
f (x , y) = x + 2y

1Figure from Wikipedia by IkamusumeFan.



Vector Differential Operations

Gradient of a scalar field at a point, f :

∇f =
∂

∂x
f i +

∂

∂y
f j +

∂

∂z
f k

Divergence of a vector field at a point v = [vx , vy , vz ]:

∇ · v =
∂

∂x
vx +

∂

∂y
vy +

∂

∂z
vz

Curl of a vector field at a point v:

∇×v =

(
∂

∂y
vz −

∂

∂z
vy

)
i+

(
∂

∂z
vx −

∂

∂x
vz

)
j+

(
∂

∂x
vy −

∂

∂y
vx

)
k



Vector Operations

A couple of useful identities:

For any scalar field f (with continuous 2nd derivatives),

∇× (∇f ) = 0

∇f is an irrotational (curl-free) vector field. (Using now.)

For any vector field v (with continuous 2nd derivatives),

∇ · (∇× v) = 0

∇× v is an solenoidal (divergence-free) vector field. (Useful
later.)
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Connection to Vector Fields

Electrical forces, F, can be represented as vector fields.1

Electrostatic force F is conservative (∇× F = 0), we can define
F = −∇U, where U is a scalar field.

For any scalar field U (with continuous 2nd derivatives),

∇× (∇U) = 0

⇒ ∇U is an irrotational (curl-free) vector field.

Conservative forces are associated with curl-free fields.

1Warning: some forces can not be!



Vector Field of a Conservative Force Example
2 - dimensional example: a vector force field F = 2x i + 2y j:

It is an irrotational field, so we can write F = −∇U, where U is a
scalar potential function.

Here U(x , y) = −(x2 + y2).



Vector Field of a Conservative Force Example
A force field F that can be expressed as F = −∇U:

U(x , y) = −(x2 + y2).

The potential function U is constant along each red line.



Non-Conservative Forces

Some forces do not conserve mechanical energy (Emech = K +U).

The work done by the force taking the system around a closed
path is not zero.

These forces are non-conservative forces.

Examples of non-conservative forces:

• friction

• air resistance

• external applied forces

Mechanical energy can increase, or it can decrease as it is
converted to heat or other inaccessible forms.



Non-Conservative Forces

Non-conservative vector fields
cannot be represented with a
topological map.

1Lithograph in the mathematically-inspired impossible reality style, by M.C.
Escher.



Electric Potential

Electric potential is a new quantity that relates the effect of a
charge configuration to the potential energy that a test charge
would have in that environment.

It is denoted V .

electric potential, V

the potential energy per unit charge:

V =
U

q

V has a unique value at any point in an electric field.

It is characteristic only of the electric field, meaning it can be
determined just from the field.



Electric Potential

Potential is potential energy per unit charge:

V =
U

q

The units are Volts, V.

1 V = 1 J/C = 1 A Ω = 1 kg m2

A s3

Volts are also the units of potential difference, the change in
potential: ∆V .



Electric Field and Electric Potential

Potential, V , is potential energy per unit charge:

U = qV

Electric field, E, is force per unit charge:

F = q E

Notice the relation! Both quantities are defined so that we can
predict physical quantities associated with putting a charge at a
certain point.



The electron volt

U = qV

This relation also gives us a unit of energy which is very convenient
for particle physics.

The fundamental unit of charge is e = 1.60× 10−19 C.

Energy can be measured in terms of electron volts, eV.

1 eV = 1.60× 10−19 J

This unit is much smaller than the Joule!



Gravitational Potential

Potential, V , is potential energy per unit charge:

U = qV

For comparison, gravitational potential, φ, is also a defined
quantity, for a test mass m:

U = mφ

Gravitational potential at a distance r from a sphere of mass M
radius R < r :

φM = −
GM

r



Electric Potential and Potential Energy

Electric potential gives the potential energy that would be
associated with test charge q0 if it were at a certain point P.

UP,q0 = q0Vp
 25.3 Electric Potential and Potential Energy Due to Point Charges 753

 We obtain the electric potential resulting from two or more point charges by 
applying the superposition principle. That is, the total electric potential at some 
point P due to several point charges is the sum of the potentials due to the individual 
charges. For a group of point charges, we can write the total electric potential at P as

 V 5 ke a
i

 
qi

ri
 (25.12)

Figure 25.8a shows a charge q1, which sets up an electric field throughout space. 
The charge also establishes an electric potential at all points, including point P, 
where the electric potential is V1. Now imagine that an external agent brings a 
charge q2 from infinity to point P. The work that must be done to do this is given 
by Equation 25.4, W 5 q2DV. This work represents a transfer of energy across the 
boundary of the two-charge system, and the energy appears in the system as poten-
tial energy U when the particles are separated by a distance r12 as in Figure 25.8b. 
From Equation 8.2, we have W 5 DU. Therefore, the electric potential energy of a 
pair of point charges1 can be found as follows:

 DU 5 W 5 q2DV    S   U 2 0 5 q 2 ake

q 1

r12
2 0b 

 U 5 ke 
q1q2

r12
 (25.13)

If the charges are of the same sign, then U is positive. Positive work must be done by 
an external agent on the system to bring the two charges near each other (because 
charges of the same sign repel). If the charges are of opposite sign, as in Figure 25.8b, 
then U is negative. Negative work is done by an external agent against the attractive 
force between the charges of opposite sign as they are brought near each other; a force 
must be applied opposite the displacement to prevent q2 from accelerating toward q1.
 If the system consists of more than two charged particles, we can obtain the total 
potential energy of the system by calculating U for every pair of charges and sum-
ming the terms algebraically. For example, the total potential energy of the system 
of three charges shown in Figure 25.9 is

 U 5 ke aq1q2

r12
1

q1q3

r13
1

q2q3

r23
b  (25.14)

Physically, this result can be interpreted as follows. Imagine q1 is fixed at the posi-
tion shown in Figure 25.9 but q2 and q3 are at infinity. The work an external agent 
must do to bring q2 from infinity to its position near q1 is keq1q2/r12, which is the first 
term in Equation 25.14. The last two terms represent the work required to bring q3 
from infinity to its position near q1 and q2. (The result is independent of the order 
in which the charges are transported.)

�W  Electric potential due to  
several point charges

1The expression for the electric potential energy of a system made up of two point charges, Equation 25.13, is of the 
same form as the equation for the gravitational potential energy of a system made up of two point masses, 2Gm1m2/r 
(see Chapter 13). The similarity is not surprising considering that both expressions are derived from an inverse-
square force law.

q 1r12

V1 ! ke
q 1
r12

P

"

q2

q 1r12

"

#

The potential energy of 
the pair of charges is
given by keq1q2/r12.

A potential keq1/r12 
exists at point P due to 
charge q1.

a b

Figure 25.8 (a) Charge q1  
establishes an electric potential 
V1 at point P. (b) Charge q2 is 
brought from infinity to point P.

q 2

q1

q3

r13

r12

r23

"

"

"

The potential energy of this 
system of charges is given by 
Equation 25.14.

Figure 25.9  Three point 
charges are fixed at the positions 
shown.

1Figure from Serway and Jewett, 9th ed.



Electric Potential and Potential Energy
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For a point charge q2, its potential energy when near another point
charge q1 is

U =
k q1q2

r

We say that the electric potential at point P due to q1 is

V =
k q1
r

so that if a charge q2 is placed there:

q2V = q2

(
k q1
r

)
= U

gives the potential energy of the 2-charge configuration!



Electric Potential and Potential Energy

 25.3 Electric Potential and Potential Energy Due to Point Charges 753

 We obtain the electric potential resulting from two or more point charges by 
applying the superposition principle. That is, the total electric potential at some 
point P due to several point charges is the sum of the potentials due to the individual 
charges. For a group of point charges, we can write the total electric potential at P as

 V 5 ke a
i

 
qi

ri
 (25.12)

Figure 25.8a shows a charge q1, which sets up an electric field throughout space. 
The charge also establishes an electric potential at all points, including point P, 
where the electric potential is V1. Now imagine that an external agent brings a 
charge q2 from infinity to point P. The work that must be done to do this is given 
by Equation 25.4, W 5 q2DV. This work represents a transfer of energy across the 
boundary of the two-charge system, and the energy appears in the system as poten-
tial energy U when the particles are separated by a distance r12 as in Figure 25.8b. 
From Equation 8.2, we have W 5 DU. Therefore, the electric potential energy of a 
pair of point charges1 can be found as follows:

 DU 5 W 5 q2DV    S   U 2 0 5 q 2 ake

q 1

r12
2 0b 

 U 5 ke 
q1q2

r12
 (25.13)

If the charges are of the same sign, then U is positive. Positive work must be done by 
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Electric Field and Electric Potential

Table of quantities for the field and potential of a point charge Q.

electric field electric potential

at point P E = k Q
r2 V = k Q

r

charge q0 at P Fq0 =
k Q q0
r2 U = k Q q0

r



Work and Potential

Recall, since the electrostatic force is a conservative force:

WE = −∆UE

where WE is the work done by the internal electrostatic force.

So, we can relate this work to potential difference:

WE = −q ∆V

If a charge moves along an equipotential surface, ∆V = 0 so
WE = 0.



Work and Potential

For conservative forces:

−∆U = Wint =

∫
F · ds

Considering the potential energy of the electrostatic force:

∆UE = −

∫
F · ds

q0∆V = −

∫
q0E · ds

giving:

∆V = −

∫
E · ds

(This is the integral form.)



Work and Potential

∆V = −

∫
E · ds

The change in potential energy can also be deduced from the field:

∆U = −q

∫
E · ds

This is also the work done by an external applied force moving a
charge along a path s:

Wapp = −q

∫
E · ds



Summary

• potential energy and vector fields

• introduced electric potential

• related potential and work

• related potential and field

First Test this Friday, Jan 26, covering Ch 23-25.

Homework Serway & Jewett:

• Ch 25, onward from page 767. Obj. Qs: 1, 7; Concep. Qs: 5;
Problems: 1, 3, 7, 13, 15, 17


