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Last time

• electric potential energy and force

• electric potential definition

• electric potential of point charge



Warm Up Question

Recalling that W =
∫

F · ds, which is a formula for the change in
the potential energy of a charge q moved through an electric field
E?

(A) ∆U = −
∫

E · ds

(B) ∆U = q0
∫

E · ds

(C) ∆U = −q0
∫

E · ds
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Overview

• electric field and potential

• equipotentials

• potential from many charges or charge distributions

• Electric potential difference of charged plates (?)



Work and Potential

Recall, since the electrostatic force is a conservative force:

WE = −∆UE

where WE is the work done by the internal electrostatic force.

So, we can relate this work to potential difference:

WE = −q ∆V

If a charge moves along an equipotential surface, ∆V = 0 so
WE = 0.



Work and Potential

For conservative forces:

−∆U = Wint =

∫
F · ds

Considering the potential energy of the electrostatic force:

∆UE = −

∫
F · ds

q0∆V = −

∫
q0E · ds

giving:

∆V = −

∫
E · ds

(This is the integral form.)



Work and Potential

∆V = −

∫
E · ds

The change in potential energy can also be deduced from the field:

∆U = −q

∫
E · ds

This is also the work done by an external applied force moving a
charge along a path s:

Wapp = −q

∫
E · ds



Relation between Electric Potential and Electric
Field

Remember F is related to E:

F = q0E
F

q0
= E

1

q0
(−∇U) = E

So,

E = −∇V



Meaning of “Electrostatics”

For the first part of this course we are considering electrostatic
situations.

In words, electrostatic means that all charges are either

• stationary or

• part of a current that is not changing with time,

and that all the electromagnetic fields can be treated as constant.

Formally, it means we can express the electric field as:

E = −∇V

Or “the electric field has no rotation”.

(Later we will see that this is not always the case.)
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Relation to Vector Fields
Earlier we represented the electrostatic force as a vector field:

However, by dividing out the test charge value q0 we get the
electric field. (Just re-scaling the vectors.)



Relation to Vector Fields

Now suppose this vector field is E, the electrostatic E-field:

E = −∇V

Now the red lines represent lines of equal electric potential. V is
also a scalar potential.



Equipotential Surfaces

The fields from charges extend out in 3 dimensions.

We can find 2-dimensional surfaces of constant electric potential.

These surfaces are called equipotentials.

750 Chapter 25 Electric Potential

Example 25.1   The Electric Field Between Two Parallel Plates of Opposite Charge

A battery has a specified potential difference DV between its terminals and establishes that potential difference between 
conductors attached to the terminals. A 12-V battery is connected between two parallel plates as shown in Figure 25.5. 
The separation between the plates is d 5 0.30 cm, and we assume the electric field between the plates to be uniform. 
(This assumption is reasonable if the plate separation is small relative to the plate dimensions and we do not consider 
locations near the plate edges.) Find the magnitude of the electric field between the plates.

A system consisting of a negative charge and an electric field gains electric potential 
energy when the charge moves in the direction of the field. If a negative charge is 
released from rest in an electric field, it accelerates in a direction opposite the direc-
tion of the field. For the negative charge to move in the direction of the field, an 
external agent must apply a force and do positive work on the charge.
 Now consider the more general case of a charged particle that moves between ! 
and " in a uniform electric field such that the vector sS is not parallel to the field 
lines as shown in Figure 25.3. In this case, Equation 25.3 gives

 DV 5 23
"

!

E
S

? d sS 5 2 E
S

?3
"

!

d sS 5 2 E
S

? sS (25.8)

where again E
S

 was removed from the integral because it is constant. The change in 
potential energy of the charge–field system is

 DU 5 q DV 5 2q E
S

? sS  (25.9)

 Finally, we conclude from Equation 25.8 that all points in a plane perpendicular 
to a uniform electric field are at the same electric potential. We can see that in 
Figure 25.3, where the potential difference V" 2 V! is equal to the potential dif-
ference V# 2 V!. (Prove this fact to yourself by working out two dot products for 
E
S

? sS: one for sS!S", where the angle u between E
S

 and sS is arbitrary as shown in 
Figure 25.3, and one for sS!S#, where u 5 0.) Therefore, V" 5 V#. The name equi-
potential surface is given to any surface consisting of a continuous distribution of 
points having the same electric potential.
 The equipotential surfaces associated with a uniform electric field consist of a 
family of parallel planes that are all perpendicular to the field. Equipotential sur-
faces associated with fields having other symmetries are described in later sections.

Q uick Quiz 25.2  The labeled points in Figure 25.4 are on a series of equipoten-
tial surfaces associated with an electric field. Rank (from greatest to least) the 
work done by the electric field on a positively charged particle that moves from 
! to ", from " to #, from # to $, and from $ to %.

  Change in potential between X
two points in a uniform 

electric field

9 V 

8 V 

7 V 

6 V 

%

$

"

!

#

Figure 25.4  (Quick Quiz 25.2) 
Four equipotential surfaces.

d!

"

#u

E
S

 

sS 

Point " is at a lower electric 
potential than point !.

Points " and # are at the 
same  electric potential.

Figure 25.3  A uniform 
electric field directed along 
the positive x axis. Three 
points in the electric field 
are labeled.

Sketching them sheds light on the potential energy a test charge
would have at certain points: in particular, it is takes a particular
constant value for any point on a surface.



Equipotential Surfaces: Examples
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on a charged particle as the particle moves from one end to the other of paths
I and II is zero because each of these paths begins and ends on the same
equipotential surface and thus there is no net change in potential. The work
done as the charged particle moves from one end to the other of paths III and
IV is not zero but has the same value for both these paths because the initial
and final potentials are identical for the two paths; that is, paths III and IV
connect the same pair of equipotential surfaces.

From symmetry, the equipotential surfaces produced by a point charge or
a spherically symmetrical charge distribution are a family of concentric
spheres. For a uniform electric field, the surfaces are a family of planes per-
pendicular to the field lines. In fact, equipotential surfaces are always perpen-
dicular to electric field lines and thus to , which is always tangent to these
lines. If were not perpendicular to an equipotential surface, it would have a
component lying along that surface. This component would then do work on a
charged particle as it moved along the surface. However, by Eq. 24-7 work
cannot be done if the surface is truly an equipotential surface; the only possi-
ble conclusion is that must be everywhere perpendicular to the surface.
Figure 24-3 shows electric field lines and cross sections of the equipotential
surfaces for a uniform electric field and for the field associated with a point
charge and with an electric dipole.

E
:

E
:

E
:

Equipotential surface 

Field line 

(b) 

(c)

(a) 

+ 

+

Fig. 24-3 Electric field lines (purple) and cross sections of equipotential surfaces (gold)
for (a) a uniform electric field, (b) the field due to a point charge, and (c) the field due to
an electric dipole.
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1Figure from Halliday, Resnick, Walker.
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for (a) a uniform electric field, (b) the field due to a point charge, and (c) the field due to
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Equipotential surfaces are always perpendicular to field lines.

If a charge is moved along an equipotential surface the work done
by the force of the electrostatic field is zero.



Equipotentials

I 

II 

III IV 

V1 

V2 

V3 

V4 

Equal work is done along
these paths between the
same surfaces.

No work is done along
this path on an
equipotential surface.

No work is done along this path 
that returns to the same surface.

63124-4 EQU I POTE NTIAL S U R FACE S
PART 3

the charge while the electric field does work W on it. By the work–kinetic energy
theorem of Eq. 7-10, the change !K in the kinetic energy of the particle is

!K " Kf # Ki " Wapp $ W. (24-11)

Now suppose the particle is stationary before and after the move. Then Kf and
Ki are both zero, and Eq. 24-11 reduces to

Wapp " #W. (24-12)

In words, the work Wapp done by our applied force during the move is equal to
the negative of the work W done by the electric field—provided there is no
change in kinetic energy.

By using Eq. 24-12 to substitute Wapp into Eq. 24-1, we can relate the work
done by our applied force to the change in the potential energy of the particle
during the move.We find

!U " Uf # Ui " Wapp. (24-13)

By similarly using Eq. 24-12 to substitute Wapp into Eq. 24-7, we can relate our work
Wapp to the electric potential difference !V between the initial and final locations of
the particle.We find

Wapp " q !V. (24-14)

Wapp can be positive, negative, or zero depending on the signs and magnitudes
of q and !V.

24-4 Equipotential Surfaces
Adjacent points that have the same electric potential form an equipotential
surface, which can be either an imaginary surface or a real, physical surface. No
net work W is done on a charged particle by an electric field when the particle
moves between two points i and f on the same equipotential surface. This follows
from Eq. 24-7, which tells us that W must be zero if Vf " Vi. Because of the path
independence of work (and thus of potential energy and potential), W " 0 for
any path connecting points i and f on a given equipotential surface regardless of
whether that path lies entirely on that surface.

Figure 24-2 shows a family of equipotential surfaces associated with the elec-
tric field due to some distribution of charges. The work done by the electric field

CHECKPOINT 2

In the figure of Checkpoint 1, we move
the proton from point i to point f in a
uniform electric field directed as
shown. (a) Does our force do positive
or negative work? (b) Does the proton
move to a point of higher or lower po-
tential?

Fig. 24-2 Portions of four equipotential surfaces at electric potentials V1 " 100 V, V2 "
80 V, V3 " 60 V, and V4 " 40 V. Four paths along which a test charge may move are shown.
Two electric field lines are also indicated.
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No work is done by the electrostatic force moving a charge along
an equipotential.

The same work is done moving a charge from one equipotential to
another, regardless of the path you move it along!

WE = −q ∆V



Example: Uniform E-field

∆Vi→f = −

∫ f
i

E · ds = −Ed (indep. of path)

Sample Problem

Finding the potential change from the electric field

(a) Figure 24-5a shows two points i and f in a uniform electric
field . The points lie on the same electric field line (not
shown) and are separated by a distance d. Find the potential
difference Vf ! Vi by moving a positive test charge q0 from i to
f along the path shown, which is parallel to the field direction.

We can find the potential difference between any two points
in an electric field by integrating along a path con-
necting those two points according to Eq. 24-18.

Calculations: We begin by mentally moving a test charge
q0 along that path, from initial point i to final point f. As we
move such a test charge along the path in Fig. 24-5a, its dif-
ferential displacement always has the same direction
as .Thus, the angle u between and is zero and the dot
product in Eq. 24-18 is

(24-20)

Equations 24-18 and 24-20 then give us

(24-21)

Since the field is uniform, E is constant over the path and
can be moved outside the integral, giving us

(Answer)

in which the integral is simply the length d of the path. The
minus sign in the result shows that the potential at point f in
Fig. 24-5a is lower than the potential at point i.This is a general

Vf ! Vi " !E !f

i
ds " !Ed,

Vf ! Vi " !!f

i
E
:

! d s: " !!f

i
E ds.

E
:

! d s: " E ds cos # " E ds.

d s:E
:

E
:

d s:

E
:

! d s:

E
:
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Additional examples, video, and practice available at WileyPLUS

(a) (b) 

d

i

f

q0
d 

i 
 

f 

q0 
 

q0 
 

c 

45° 

45° +

+ 

+ 

ds

ds 
 

ds 
 

E

E 

E 

The electric field points from 
higher potential to lower potential.

The field is perpendicular to this ic path, 
so there is no change in the potential.

The field has a component
along this cf path, so there
is a  change in the potential.

Higher potential

Lower potential

result:The potential always decreases along a path that extends
in the direction of the electric field lines.

(b) Now find the potential difference Vf ! Vi by moving the
positive test charge q0 from i to f along the path icf shown in
Fig.24-5b.

Calculations: The Key Idea of (a) applies here too, except
now we move the test charge along a path that consists of
two lines: ic and cf. At all points along line ic, the displace-
ment of the test charge is perpendicular to . Thus, the
angle u between and is 90°, and the dot product 
is 0. Equation 24-18 then tells us that points i and c are at the
same potential: Vc ! Vi " 0.

For line cf we have u " 45° and, from Eq. 24-18,

The integral in this equation is just the length of line cf ;
from Fig. 24-5b, that length is d/cos 45°.Thus,

(Answer)

This is the same result we obtained in (a), as it must be; the
potential difference between two points does not depend on
the path connecting them. Moral:When you want to find the
potential difference between two points by moving a test
charge between them, you can save time and work by choos-
ing a path that simplifies the use of Eq. 24-18.

Vf ! Vi " !E(cos 45$) 
d

cos 45$
" !Ed.

 " !E(cos 45$) !f

c
ds.

Vf ! Vi " !!f

c
E
:

! d s: " !!f

c
E(cos 45$) ds

E
:

! d s:d s:E
:

E
:

d s:

KEY I DEA

Fig. 24-5 (a) A test charge q0

moves in a straight line from point i
to point f, along the direction of a
uniform external electric field. (b)
Charge q0 moves along path icf in the
same electric field.
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Question
The figure shows a family of parallel equipotential surfaces (in
cross section) and five paths along which we shall move an
electron from one surface to another.

Electron has a
negative charge!

24-5 Calculating the Potential from the Field
We can calculate the potential difference between any two points i and f in an
electric field if we know the electric field vector all along any path connecting
those points. To make the calculation, we find the work done on a positive test
charge by the field as the charge moves from i to f, and then use Eq. 24-7.

Consider an arbitrary electric field, represented by the field lines in Fig. 24-4,
and a positive test charge q0 that moves along the path shown from point i to
point f. At any point on the path, an electrostatic force acts on the charge as it
moves through a differential displacement . From Chapter 7, we know that the
differential work dW done on a particle by a force during a displacement is
given by the dot product of the force and the displacement:

(24-15)

For the situation of Fig. 24-4, and Eq. 24-15 becomes

(24-16)

To find the total work W done on the particle by the field as the particle moves
from point i to point f, we sum—via integration—the differential works done on
the charge as it moves through all the displacements along the path:

If we substitute the total work W from Eq. 24-17 into Eq. 24-7, we find

(24-18)

Thus, the potential difference Vf ! Vi between any two points i and f in an electric
field is equal to the negative of the line integral (meaning the integral along a
particular path) of from i to f. However, because the electrostatic force is
conservative, all paths (whether easy or difficult to use) yield the same result.

Equation 24-18 allows us to calculate the difference in potential between any
two points in the field. If we set potential Vi " 0, then Eq. 24-18 becomes

(24-19)

in which we have dropped the subscript f on Vf . Equation 24-19 gives us the
potential V at any point f in the electric field relative to the zero potential at point i.
If we let point i be at infinity, then Eq. 24-19 gives us the potential V at any point f
relative to the zero potential at infinity.

V " !!f

i
E
:

! d s:,

E
:

! d s:

Vf ! Vi " !!f

i
E
:

! d s:.

W " q0 !f

i
E
:

! d s:.

d s:

dW " q0E
:

! d s:.

F
:

" q0E
:

dW " F
:

! d s:.

d s:F
:

d s:
q0E

:

E
:

CHECKPOINT 3

The figure here shows a family of par-
allel equipotential surfaces (in cross
section) and five paths along which we
shall move an electron from one sur-
face to another. (a) What is the direc-
tion of the electric field associated with
the surfaces? (b) For each path, is the
work we do positive, negative, or zero?
(c) Rank the paths according to the
work we do, greatest first.

90 V 80 V 70 V 60 V 50 V 40 V

5

3
4

2

1
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Fig. 24-4 A test charge q0 moves
from point i to point f along the path
shown in a nonuniform electric field.
During a displacement , an elec-
trostatic force acts on the test
charge.This force points in the direc-
tion of the field line at the location of
the test charge.

q0E
:

d s:

i

f

ds
q0

q0E

Field linePath

+

(24-17)
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1-(a) What is the direction of the electric field associated with the
surfaces?

(A) rightwards
(B) leftwards
(C) upwards
(D) downwards

1Halliday, Resnick, Walker, page 633.



Question
The figure shows a family of parallel equipotential surfaces (in
cross section) and five paths along which we shall move an
electron from one surface to another.

Electron has a
negative charge!

24-5 Calculating the Potential from the Field
We can calculate the potential difference between any two points i and f in an
electric field if we know the electric field vector all along any path connecting
those points. To make the calculation, we find the work done on a positive test
charge by the field as the charge moves from i to f, and then use Eq. 24-7.

Consider an arbitrary electric field, represented by the field lines in Fig. 24-4,
and a positive test charge q0 that moves along the path shown from point i to
point f. At any point on the path, an electrostatic force acts on the charge as it
moves through a differential displacement . From Chapter 7, we know that the
differential work dW done on a particle by a force during a displacement is
given by the dot product of the force and the displacement:

(24-15)

For the situation of Fig. 24-4, and Eq. 24-15 becomes

(24-16)

To find the total work W done on the particle by the field as the particle moves
from point i to point f, we sum—via integration—the differential works done on
the charge as it moves through all the displacements along the path:

If we substitute the total work W from Eq. 24-17 into Eq. 24-7, we find

(24-18)

Thus, the potential difference Vf ! Vi between any two points i and f in an electric
field is equal to the negative of the line integral (meaning the integral along a
particular path) of from i to f. However, because the electrostatic force is
conservative, all paths (whether easy or difficult to use) yield the same result.

Equation 24-18 allows us to calculate the difference in potential between any
two points in the field. If we set potential Vi " 0, then Eq. 24-18 becomes

(24-19)

in which we have dropped the subscript f on Vf . Equation 24-19 gives us the
potential V at any point f in the electric field relative to the zero potential at point i.
If we let point i be at infinity, then Eq. 24-19 gives us the potential V at any point f
relative to the zero potential at infinity.

V " !!f

i
E
:

! d s:,

E
:

! d s:

Vf ! Vi " !!f

i
E
:

! d s:.

W " q0 !f

i
E
:

! d s:.

d s:

dW " q0E
:

! d s:.

F
:

" q0E
:

dW " F
:

! d s:.

d s:F
:

d s:
q0E

:

E
:

CHECKPOINT 3

The figure here shows a family of par-
allel equipotential surfaces (in cross
section) and five paths along which we
shall move an electron from one sur-
face to another. (a) What is the direc-
tion of the electric field associated with
the surfaces? (b) For each path, is the
work we do positive, negative, or zero?
(c) Rank the paths according to the
work we do, greatest first.

90 V 80 V 70 V 60 V 50 V 40 V
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1
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Fig. 24-4 A test charge q0 moves
from point i to point f along the path
shown in a nonuniform electric field.
During a displacement , an elec-
trostatic force acts on the test
charge.This force points in the direc-
tion of the field line at the location of
the test charge.

q0E
:

d s:

i

f

ds
q0

q0E

Field linePath

+

(24-17)
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1-(a) What is the direction of the electric field associated with the
surfaces?

(A) rightwards←
(B) leftwards
(C) upwards
(D) downwards

1Halliday, Resnick, Walker, page 633.



Question
The figure shows a family of parallel equipotential surfaces (in
cross section) and five paths along which we shall move an
electron from one surface to another.

Electron has a
negative charge!

24-5 Calculating the Potential from the Field
We can calculate the potential difference between any two points i and f in an
electric field if we know the electric field vector all along any path connecting
those points. To make the calculation, we find the work done on a positive test
charge by the field as the charge moves from i to f, and then use Eq. 24-7.

Consider an arbitrary electric field, represented by the field lines in Fig. 24-4,
and a positive test charge q0 that moves along the path shown from point i to
point f. At any point on the path, an electrostatic force acts on the charge as it
moves through a differential displacement . From Chapter 7, we know that the
differential work dW done on a particle by a force during a displacement is
given by the dot product of the force and the displacement:

(24-15)

For the situation of Fig. 24-4, and Eq. 24-15 becomes

(24-16)

To find the total work W done on the particle by the field as the particle moves
from point i to point f, we sum—via integration—the differential works done on
the charge as it moves through all the displacements along the path:

If we substitute the total work W from Eq. 24-17 into Eq. 24-7, we find

(24-18)

Thus, the potential difference Vf ! Vi between any two points i and f in an electric
field is equal to the negative of the line integral (meaning the integral along a
particular path) of from i to f. However, because the electrostatic force is
conservative, all paths (whether easy or difficult to use) yield the same result.

Equation 24-18 allows us to calculate the difference in potential between any
two points in the field. If we set potential Vi " 0, then Eq. 24-18 becomes

(24-19)

in which we have dropped the subscript f on Vf . Equation 24-19 gives us the
potential V at any point f in the electric field relative to the zero potential at point i.
If we let point i be at infinity, then Eq. 24-19 gives us the potential V at any point f
relative to the zero potential at infinity.
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CHECKPOINT 3

The figure here shows a family of par-
allel equipotential surfaces (in cross
section) and five paths along which we
shall move an electron from one sur-
face to another. (a) What is the direc-
tion of the electric field associated with
the surfaces? (b) For each path, is the
work we do positive, negative, or zero?
(c) Rank the paths according to the
work we do, greatest first.
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1

63324-5 CALCU LATI NG TH E POTE NTIAL FROM TH E F I E LD
PART 3

Fig. 24-4 A test charge q0 moves
from point i to point f along the path
shown in a nonuniform electric field.
During a displacement , an elec-
trostatic force acts on the test
charge.This force points in the direc-
tion of the field line at the location of
the test charge.
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ds
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2-(c) Rank the paths according to the work we do, greatest first.

(A) 1, 2, 3, 4, 5

(B) 2, 4, 3, 5, 1

(C) 4, (1, 2, and 5), 3

(D) 3, (1, 2, and 5), 4
1Halliday, Resnick, Walker, page 633.



Question
The figure shows a family of parallel equipotential surfaces (in
cross section) and five paths along which we shall move an
electron from one surface to another.

Electron has a
negative charge!

24-5 Calculating the Potential from the Field
We can calculate the potential difference between any two points i and f in an
electric field if we know the electric field vector all along any path connecting
those points. To make the calculation, we find the work done on a positive test
charge by the field as the charge moves from i to f, and then use Eq. 24-7.

Consider an arbitrary electric field, represented by the field lines in Fig. 24-4,
and a positive test charge q0 that moves along the path shown from point i to
point f. At any point on the path, an electrostatic force acts on the charge as it
moves through a differential displacement . From Chapter 7, we know that the
differential work dW done on a particle by a force during a displacement is
given by the dot product of the force and the displacement:

(24-15)

For the situation of Fig. 24-4, and Eq. 24-15 becomes

(24-16)

To find the total work W done on the particle by the field as the particle moves
from point i to point f, we sum—via integration—the differential works done on
the charge as it moves through all the displacements along the path:

If we substitute the total work W from Eq. 24-17 into Eq. 24-7, we find

(24-18)

Thus, the potential difference Vf ! Vi between any two points i and f in an electric
field is equal to the negative of the line integral (meaning the integral along a
particular path) of from i to f. However, because the electrostatic force is
conservative, all paths (whether easy or difficult to use) yield the same result.

Equation 24-18 allows us to calculate the difference in potential between any
two points in the field. If we set potential Vi " 0, then Eq. 24-18 becomes

(24-19)

in which we have dropped the subscript f on Vf . Equation 24-19 gives us the
potential V at any point f in the electric field relative to the zero potential at point i.
If we let point i be at infinity, then Eq. 24-19 gives us the potential V at any point f
relative to the zero potential at infinity.
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CHECKPOINT 3

The figure here shows a family of par-
allel equipotential surfaces (in cross
section) and five paths along which we
shall move an electron from one sur-
face to another. (a) What is the direc-
tion of the electric field associated with
the surfaces? (b) For each path, is the
work we do positive, negative, or zero?
(c) Rank the paths according to the
work we do, greatest first.
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Fig. 24-4 A test charge q0 moves
from point i to point f along the path
shown in a nonuniform electric field.
During a displacement , an elec-
trostatic force acts on the test
charge.This force points in the direc-
tion of the field line at the location of
the test charge.

q0E
:

d s:

i

f

ds
q0

q0E

Field linePath

+

(24-17)

halliday_c24_628-655hr.qxd  9-12-2009  10:26  Page 633

2-(c) Rank the paths according to the work we do, greatest first.

(A) 1, 2, 3, 4, 5

(B) 2, 4, 3, 5, 1

(C) 4, (1, 2, and 5), 3

(D) 3, (1, 2, and 5), 4←
1Halliday, Resnick, Walker, page 633.



Question
The figure shows a family of parallel equipotential surfaces (in
cross section) and five paths along which we shall move an
electron from one surface to another.

Electron has a
negative charge!

Wapp = q ∆V

24-5 Calculating the Potential from the Field
We can calculate the potential difference between any two points i and f in an
electric field if we know the electric field vector all along any path connecting
those points. To make the calculation, we find the work done on a positive test
charge by the field as the charge moves from i to f, and then use Eq. 24-7.

Consider an arbitrary electric field, represented by the field lines in Fig. 24-4,
and a positive test charge q0 that moves along the path shown from point i to
point f. At any point on the path, an electrostatic force acts on the charge as it
moves through a differential displacement . From Chapter 7, we know that the
differential work dW done on a particle by a force during a displacement is
given by the dot product of the force and the displacement:

(24-15)

For the situation of Fig. 24-4, and Eq. 24-15 becomes

(24-16)

To find the total work W done on the particle by the field as the particle moves
from point i to point f, we sum—via integration—the differential works done on
the charge as it moves through all the displacements along the path:

If we substitute the total work W from Eq. 24-17 into Eq. 24-7, we find

(24-18)

Thus, the potential difference Vf ! Vi between any two points i and f in an electric
field is equal to the negative of the line integral (meaning the integral along a
particular path) of from i to f. However, because the electrostatic force is
conservative, all paths (whether easy or difficult to use) yield the same result.

Equation 24-18 allows us to calculate the difference in potential between any
two points in the field. If we set potential Vi " 0, then Eq. 24-18 becomes

(24-19)

in which we have dropped the subscript f on Vf . Equation 24-19 gives us the
potential V at any point f in the electric field relative to the zero potential at point i.
If we let point i be at infinity, then Eq. 24-19 gives us the potential V at any point f
relative to the zero potential at infinity.
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CHECKPOINT 3

The figure here shows a family of par-
allel equipotential surfaces (in cross
section) and five paths along which we
shall move an electron from one sur-
face to another. (a) What is the direc-
tion of the electric field associated with
the surfaces? (b) For each path, is the
work we do positive, negative, or zero?
(c) Rank the paths according to the
work we do, greatest first.
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Fig. 24-4 A test charge q0 moves
from point i to point f along the path
shown in a nonuniform electric field.
During a displacement , an elec-
trostatic force acts on the test
charge.This force points in the direc-
tion of the field line at the location of
the test charge.
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2-(c) Rank the paths according to the work we do, greatest first.

(A) 1, 2, 3, 4, 5

(B) 2, 4, 3, 5, 1

(C) 4, (1, 2, and 5), 3

(D) 3, (1, 2, and 5), 4←
1Halliday, Resnick, Walker, page 633.



Potential from many charges

The electric potential from many point charges could be found by
adding up the potential due to each separately:

Vnet = V1 + V2 + ... + Vn

This is

Vnet =
∑
i

Vi

Notice that this is a scalar equation, not a vector equation.



Question

The figure shows three arrangements of two protons. Rank the
arrangements according to the net electric potential produced at
point P by the protons, greatest first.

636 CHAPTE R 24 E LECTR IC POTE NTIAL

24-7 Potential Due to a Group of Point Charges
We can find the net potential at a point due to a group of point charges with the
help of the superposition principle. Using Eq. 24-26 with the sign of the charge
included, we calculate separately the potential resulting from each charge at
the given point.Then we sum the potentials. For n charges, the net potential is

(n point charges). (24-27)

Here qi is the value of the ith charge and ri is the radial distance of the given point
from the ith charge. The sum in Eq. 24-27 is an algebraic sum, not a vector sum
like the sum that would be used to calculate the electric field resulting from a group
of point charges. Herein lies an important computational advantage of potential
over electric field: It is a lot easier to sum several scalar quantities than to sum sev-
eral vector quantities whose directions and components must be considered.

V ! !
n

i!1
 Vi !

1
4"#0

 !
n

i!1

qi

ri

CHECKPOINT 4

The figure here shows
three arrangements of
two protons. Rank the
arrangements accord-
ing to the net electric
potential produced at point P by the protons, greatest first.

P
d

D

(b)
P

Dd
D

d

P
(a) (c)

Sample Problem

(Because electric potential is a scalar, the orientations of the
point charges do not matter.)

Calculations: From Eq. 24-27, we have

The distance r is , which is 0.919 m, and the sum of the
charges is

Thus,

(Answer)

Close to any of the three positive charges in Fig. 24-8a, the
potential has very large positive values. Close to the single nega-
tive charge, the potential has very large negative values.
Therefore, there must be points within the square that have the
same intermediate potential as that at point P.The curve in Fig.
24-8b shows the intersection of the plane of the figure with the
equipotential surface that contains point P.Any point along that
curve has the same potential as point P.

 " 350 V.

 V !
(8.99 $ 109 N %m2/C2)(36 $ 10&9 C)

0.919 m

 ! 36 $ 10&9 C.

q1 ' q2 ' q3 ' q4 ! (12 & 24 ' 31 ' 17) $ 10&9 C

d/√ 2
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1
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r
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r
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q4
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Net potential of several charged particles

What is the electric potential at point P, located at the cen-
ter of the square of point charges shown in Fig. 24-8a? The
distance d is 1.3 m, and the charges are

The electric potential V at point P is the algebraic sum of
the electric potentials contributed by the four point charges.

q2 ! &24 nC,  q4 ! '17 nC.

q1 ! '12 nC,  q3 ! '31 nC,

KEY I DEA

Fig. 24-8 (a) Four point charges are held fixed at the cor-
ners of a square. (b) The closed curve is a cross section, in the
plane of the figure, of the equipotential surface that contains
point P. (The curve is drawn only roughly.)

d d

d
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P

q1 q2

q3 q4
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q1 q2

q3 q4

V = 350 V

(a) (b)

Additional examples, video, and practice available at WileyPLUS
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(A) a, b, c

(B) c, b, a

(C) b, (a and c)

(D) all the same

1Halliday, Resnick, Walker, page 636.



Question

The figure shows three arrangements of two protons. Rank the
arrangements according to the net electric potential produced at
point P by the protons, greatest first.

636 CHAPTE R 24 E LECTR IC POTE NTIAL

24-7 Potential Due to a Group of Point Charges
We can find the net potential at a point due to a group of point charges with the
help of the superposition principle. Using Eq. 24-26 with the sign of the charge
included, we calculate separately the potential resulting from each charge at
the given point.Then we sum the potentials. For n charges, the net potential is

(n point charges). (24-27)

Here qi is the value of the ith charge and ri is the radial distance of the given point
from the ith charge. The sum in Eq. 24-27 is an algebraic sum, not a vector sum
like the sum that would be used to calculate the electric field resulting from a group
of point charges. Herein lies an important computational advantage of potential
over electric field: It is a lot easier to sum several scalar quantities than to sum sev-
eral vector quantities whose directions and components must be considered.
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CHECKPOINT 4

The figure here shows
three arrangements of
two protons. Rank the
arrangements accord-
ing to the net electric
potential produced at point P by the protons, greatest first.
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(Because electric potential is a scalar, the orientations of the
point charges do not matter.)

Calculations: From Eq. 24-27, we have

The distance r is , which is 0.919 m, and the sum of the
charges is

Thus,

(Answer)

Close to any of the three positive charges in Fig. 24-8a, the
potential has very large positive values. Close to the single nega-
tive charge, the potential has very large negative values.
Therefore, there must be points within the square that have the
same intermediate potential as that at point P.The curve in Fig.
24-8b shows the intersection of the plane of the figure with the
equipotential surface that contains point P.Any point along that
curve has the same potential as point P.
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Net potential of several charged particles

What is the electric potential at point P, located at the cen-
ter of the square of point charges shown in Fig. 24-8a? The
distance d is 1.3 m, and the charges are

The electric potential V at point P is the algebraic sum of
the electric potentials contributed by the four point charges.

q2 ! &24 nC,  q4 ! '17 nC.

q1 ! '12 nC,  q3 ! '31 nC,

KEY I DEA

Fig. 24-8 (a) Four point charges are held fixed at the cor-
ners of a square. (b) The closed curve is a cross section, in the
plane of the figure, of the equipotential surface that contains
point P. (The curve is drawn only roughly.)
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Additional examples, video, and practice available at WileyPLUS
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(A) a, b, c

(B) c, b, a

(C) b, (a and c)

(D) all the same←

1Halliday, Resnick, Walker, page 636.



More Practice with Electric Potential, Ex 25.4
What is the electric potential, V , along an axis through the middle
of a dipole at point P?

758 Chapter 25 Electric Potential

 

Example 25.4   The Electric Potential Due to a Dipole

An electric dipole consists of two charges of equal magnitude and opposite sign 
separated by a distance 2a as shown in Figure 25.13. The dipole is along the x axis 
and is centered at the origin.

(A)  Calculate the electric potential at point P on the y axis.

Conceptualize  Compare this situation to that in part (B) of Example 23.6. It is the 
same situation, but here we are seeking the electric potential rather than the electric 
field.

Categorize  We categorize the problem as one in which we have a small number of 
particles rather than a continuous distribution of charge. The electric potential can be evaluated by summing the 
potentials due to the individual charges.

S O L U T I O N
aa

q

R

P

x

x

y

!q
" !

y

Figure 25.13  (Example 25.4) 
An electric dipole located on the 
x axis.

Analyze  Use Equation 25.12 to find the electric potential 
at P due to the two charges:

VP 5 ke a
i

 
qi

ri
5 ke a q"a 2 1 y 2

1
2q"a 2 1 y 2

b 5 0

(B)  Calculate the electric potential at point R on the positive x axis.

S O L U T I O N

Use Equation 25.12 to find the electric potential at R due 
to the two charges:

VR 5 ke a
i

 
qi

ri
5 ke a 2q

x 2 a
1

q
x 1 a

b 5 2
2keqa

x 2 2 a 2

(C)  Calculate V and Ex at a point on the x axis far from the dipole.

S O L U T I O N

Use Equation 25.16 and this result to calculate the x 
component of the electric field at a point on the x axis 
far from the dipole:

Ex 5 2
dV
dx

5 2
d
dx

a2 2keqa

x 2 b
5 2ke qa 

d
dx

a 1
x 2b 5 2

4ke qa

x 3  1x .. a 2
For point R far from the dipole such that x .. a, neglect 
a2 in the denominator of the answer to part (B) and 
write V in this limit:

VR 5 lim
x ..a

 a2 2keqa

x 2 2 a 2b < 2
2keqa

x 2  1x .. a 2

Finalize  The potentials in parts (B) and (C) are negative because points on the positive x axis are closer to the nega-
tive charge than to the positive charge. For the same reason, the x component of the electric field is negative. Notice 
that we have a 1/r 3 falloff of the electric field with distance far from the dipole, similar to the behavior of the electric 
field on the y axis in Example 23.6.

 Suppose you want to find the electric field at a point P on the y axis. In part (A), the electric potential was 
found to be zero for all values of y. Is the electric field zero at all points on the y axis?

Answer  No. That there is no change in the potential along the y axis tells us only that the y component of the electric 
field is zero. Look back at Figure 23.13 in Example 23.6. We showed there that the electric field of a dipole on the y 
axis has only an x component. We could not find the x component in the current example because we do not have an 
expression for the potential near the y axis as a function of x.

WHAT IF ?

V = V1 + V2

=
keq√
a2 + y2

−
keq√
a2 + y2

= 0

1Figure from Serway & Jewett, 9th ed.



More Practice with Electric Potential, Ex 25.4
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of a dipole at point P?
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particles rather than a continuous distribution of charge. The electric potential can be evaluated by summing the 
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S O L U T I O N
aa

q

R

P

x

x

y

!q
" !

y

Figure 25.13  (Example 25.4) 
An electric dipole located on the 
x axis.

Analyze  Use Equation 25.12 to find the electric potential 
at P due to the two charges:

VP 5 ke a
i

 
qi

ri
5 ke a q"a 2 1 y 2

1
2q"a 2 1 y 2

b 5 0

(B)  Calculate the electric potential at point R on the positive x axis.
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(C)  Calculate V and Ex at a point on the x axis far from the dipole.
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tive charge than to the positive charge. For the same reason, the x component of the electric field is negative. Notice 
that we have a 1/r 3 falloff of the electric field with distance far from the dipole, similar to the behavior of the electric 
field on the y axis in Example 23.6.

 Suppose you want to find the electric field at a point P on the y axis. In part (A), the electric potential was 
found to be zero for all values of y. Is the electric field zero at all points on the y axis?

Answer  No. That there is no change in the potential along the y axis tells us only that the y component of the electric 
field is zero. Look back at Figure 23.13 in Example 23.6. We showed there that the electric field of a dipole on the y 
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More Practice with Electric Potential

Equipotentials:
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What is the electric potential, V , along the axis of the dipole at
point R?
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Example 25.4   The Electric Potential Due to a Dipole

An electric dipole consists of two charges of equal magnitude and opposite sign 
separated by a distance 2a as shown in Figure 25.13. The dipole is along the x axis 
and is centered at the origin.

(A)  Calculate the electric potential at point P on the y axis.

Conceptualize  Compare this situation to that in part (B) of Example 23.6. It is the 
same situation, but here we are seeking the electric potential rather than the electric 
field.

Categorize  We categorize the problem as one in which we have a small number of 
particles rather than a continuous distribution of charge. The electric potential can be evaluated by summing the 
potentials due to the individual charges.

S O L U T I O N
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y

Figure 25.13  (Example 25.4) 
An electric dipole located on the 
x axis.

Analyze  Use Equation 25.12 to find the electric potential 
at P due to the two charges:

VP 5 ke a
i

 
qi

ri
5 ke a q"a 2 1 y 2

1
2q"a 2 1 y 2

b 5 0

(B)  Calculate the electric potential at point R on the positive x axis.

S O L U T I O N

Use Equation 25.12 to find the electric potential at R due 
to the two charges:

VR 5 ke a
i

 
qi

ri
5 ke a 2q

x 2 a
1

q
x 1 a

b 5 2
2keqa

x 2 2 a 2

(C)  Calculate V and Ex at a point on the x axis far from the dipole.

S O L U T I O N

Use Equation 25.16 and this result to calculate the x 
component of the electric field at a point on the x axis 
far from the dipole:

Ex 5 2
dV
dx

5 2
d
dx

a2 2keqa

x 2 b
5 2ke qa 

d
dx

a 1
x 2b 5 2

4ke qa

x 3  1x .. a 2
For point R far from the dipole such that x .. a, neglect 
a2 in the denominator of the answer to part (B) and 
write V in this limit:

VR 5 lim
x ..a

 a2 2keqa

x 2 2 a 2b < 2
2keqa

x 2  1x .. a 2

Finalize  The potentials in parts (B) and (C) are negative because points on the positive x axis are closer to the nega-
tive charge than to the positive charge. For the same reason, the x component of the electric field is negative. Notice 
that we have a 1/r 3 falloff of the electric field with distance far from the dipole, similar to the behavior of the electric 
field on the y axis in Example 23.6.

 Suppose you want to find the electric field at a point P on the y axis. In part (A), the electric potential was 
found to be zero for all values of y. Is the electric field zero at all points on the y axis?

Answer  No. That there is no change in the potential along the y axis tells us only that the y component of the electric 
field is zero. Look back at Figure 23.13 in Example 23.6. We showed there that the electric field of a dipole on the y 
axis has only an x component. We could not find the x component in the current example because we do not have an 
expression for the potential near the y axis as a function of x.

WHAT IF ?
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Finalize  The potentials in parts (B) and (C) are negative because points on the positive x axis are closer to the nega-
tive charge than to the positive charge. For the same reason, the x component of the electric field is negative. Notice 
that we have a 1/r 3 falloff of the electric field with distance far from the dipole, similar to the behavior of the electric 
field on the y axis in Example 23.6.
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V = V1 + V2

=
keq

(x + a)
−

keq

(x − a)

= −
2keqa

x2 − a2
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the electric field?
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For point R far from the dipole such that x .. a, neglect 
a2 in the denominator of the answer to part (B) and 
write V in this limit:
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Finalize  The potentials in parts (B) and (C) are negative because points on the positive x axis are closer to the nega-
tive charge than to the positive charge. For the same reason, the x component of the electric field is negative. Notice 
that we have a 1/r 3 falloff of the electric field with distance far from the dipole, similar to the behavior of the electric 
field on the y axis in Example 23.6.

 Suppose you want to find the electric field at a point P on the y axis. In part (A), the electric potential was 
found to be zero for all values of y. Is the electric field zero at all points on the y axis?

Answer  No. That there is no change in the potential along the y axis tells us only that the y component of the electric 
field is zero. Look back at Figure 23.13 in Example 23.6. We showed there that the electric field of a dipole on the y 
axis has only an x component. We could not find the x component in the current example because we do not have an 
expression for the potential near the y axis as a function of x.

WHAT IF ?
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(B)  Calculate the electric potential at point R on the positive x axis.
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to the two charges:
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(C)  Calculate V and Ex at a point on the x axis far from the dipole.
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Use Equation 25.16 and this result to calculate the x 
component of the electric field at a point on the x axis 
far from the dipole:
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d
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d
dx

a 1
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For point R far from the dipole such that x .. a, neglect 
a2 in the denominator of the answer to part (B) and 
write V in this limit:

VR 5 lim
x ..a

 a2 2keqa

x 2 2 a 2b < 2
2keqa

x 2  1x .. a 2

Finalize  The potentials in parts (B) and (C) are negative because points on the positive x axis are closer to the nega-
tive charge than to the positive charge. For the same reason, the x component of the electric field is negative. Notice 
that we have a 1/r 3 falloff of the electric field with distance far from the dipole, similar to the behavior of the electric 
field on the y axis in Example 23.6.

 Suppose you want to find the electric field at a point P on the y axis. In part (A), the electric potential was 
found to be zero for all values of y. Is the electric field zero at all points on the y axis?

Answer  No. That there is no change in the potential along the y axis tells us only that the y component of the electric 
field is zero. Look back at Figure 23.13 in Example 23.6. We showed there that the electric field of a dipole on the y 
axis has only an x component. We could not find the x component in the current example because we do not have an 
expression for the potential near the y axis as a function of x.

WHAT IF ?

V = −
2keqa

x2 − a2

for x � a

≈ −
2keqa

x2
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x axis.

Analyze  Use Equation 25.12 to find the electric potential 
at P due to the two charges:
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(B)  Calculate the electric potential at point R on the positive x axis.
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Use Equation 25.12 to find the electric potential at R due 
to the two charges:
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(C)  Calculate V and Ex at a point on the x axis far from the dipole.

S O L U T I O N

Use Equation 25.16 and this result to calculate the x 
component of the electric field at a point on the x axis 
far from the dipole:

Ex 5 2
dV
dx

5 2
d
dx

a2 2keqa

x 2 b
5 2ke qa 

d
dx

a 1
x 2b 5 2

4ke qa

x 3  1x .. a 2
For point R far from the dipole such that x .. a, neglect 
a2 in the denominator of the answer to part (B) and 
write V in this limit:

VR 5 lim
x ..a

 a2 2keqa

x 2 2 a 2b < 2
2keqa

x 2  1x .. a 2

Finalize  The potentials in parts (B) and (C) are negative because points on the positive x axis are closer to the nega-
tive charge than to the positive charge. For the same reason, the x component of the electric field is negative. Notice 
that we have a 1/r 3 falloff of the electric field with distance far from the dipole, similar to the behavior of the electric 
field on the y axis in Example 23.6.

 Suppose you want to find the electric field at a point P on the y axis. In part (A), the electric potential was 
found to be zero for all values of y. Is the electric field zero at all points on the y axis?

Answer  No. That there is no change in the potential along the y axis tells us only that the y component of the electric 
field is zero. Look back at Figure 23.13 in Example 23.6. We showed there that the electric field of a dipole on the y 
axis has only an x component. We could not find the x component in the current example because we do not have an 
expression for the potential near the y axis as a function of x.

WHAT IF ?

E = −∇V

= −
∂

∂x
V i

= −
4keqa

x3
i (x � a)
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Example 25.5   Electric Potential Due to a Uniformly Charged Ring

(A)  Find an expression for the electric potential at a point P located on the per-
pendicular central axis of a uniformly charged ring of radius a and total charge Q.

Conceptualize  Study Figure 25.14, in which the ring is oriented so that its plane 
is perpendicular to the x axis and its center is at the origin. Notice that the 
symmetry of the situation means that all the charges on the ring are the same 
distance from point P. Compare this example to Example 23.8. Notice that no 
vector considerations are necessary here because electric potential is a scalar.

Categorize  Because the ring consists of a continuous distribution of charge 
rather than a set of discrete charges, we must use the integration technique rep-
resented by Equation 25.20 in this example.

Analyze  We take point P to be at a distance x from the center of the ring as 
shown in Figure 25.14.

S O L U T I O N
a2!x2

dq

a

P
xx

Figure 25.14  (Example 25.5) A uni-
formly charged ring of radius a lies in 
a plane perpendicular to the x axis. 
All elements dq of the ring are the 
same distance from a point P lying  
on the x axis.

Noting that a and x do not vary for an integration over 
the ring, bring "a 2 1 x 2 in front of the integral sign 
and integrate over the ring:

V 5
ke"a 2 1 x 2

 3 dq 5
keQ"a 2 1 x 2

 (25.21)

Use Equation 25.20 to express V in terms of the 
geometry:

V 5 ke 3 
dq
r

5 ke 3 
dq"a 2 1 x 2

(B)  Find an expression for the magnitude of the electric field at point P.

S O L U T I O N

From symmetry, notice that along the x axis E
S

 can have 
only an x component. Therefore, apply Equation 25.16 to 
Equation 25.21:

Ex 5 2
dV
dx

5 2k eQ 
d
dx

 1a 2 1 x 2 221/2

5 2keQ 121
2 2 1a 2 1 x 2 223/2 12x 2

Ex 5 
k e x1a 2 1 x 2 23/2 Q  (25.22)

Finalize  The only variable in the expressions for V and Ex is x. That is not surprising because our calculation is valid 
only for points along the x axis, where y and z are both zero. This result for the electric field agrees with that obtained 
by direct integration (see Example 23.8). For practice, use the result of part (B) in Equation 25.3 to verify that the 
potential is given by the expression in part (A).

Example 25.6   Electric Potential Due to a Uniformly Charged Disk

A uniformly charged disk has radius R and surface charge density s.

(A)  Find the electric potential at a point P along the perpendicular central axis of the disk.

Conceptualize  If we consider the disk to be a set of concentric rings, we can use our result from Example 25.5—
which gives the potential due to a ring of radius a—and sum the contributions of all rings making up the disk. Figure 

S O L U T I O N

continued

Potential at point P? (Ring’s total charge = Q.)

Unlike the E-field case, we do not have to worry about direction
(vectors). Very simple integral!

V =

∫
ke dq

r
=

ke
r

∫
dq =

keQ√
x2 + a2
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geometry:

V 5 ke 3 
dq
r

5 ke 3 
dq"a 2 1 x 2

(B)  Find an expression for the magnitude of the electric field at point P.

S O L U T I O N

From symmetry, notice that along the x axis E
S

 can have 
only an x component. Therefore, apply Equation 25.16 to 
Equation 25.21:

Ex 5 2
dV
dx

5 2k eQ 
d
dx

 1a 2 1 x 2 221/2

5 2keQ 121
2 2 1a 2 1 x 2 223/2 12x 2

Ex 5 
k e x1a 2 1 x 2 23/2 Q  (25.22)

Finalize  The only variable in the expressions for V and Ex is x. That is not surprising because our calculation is valid 
only for points along the x axis, where y and z are both zero. This result for the electric field agrees with that obtained 
by direct integration (see Example 23.8). For practice, use the result of part (B) in Equation 25.3 to verify that the 
potential is given by the expression in part (A).

Example 25.6   Electric Potential Due to a Uniformly Charged Disk

A uniformly charged disk has radius R and surface charge density s.

(A)  Find the electric potential at a point P along the perpendicular central axis of the disk.

Conceptualize  If we consider the disk to be a set of concentric rings, we can use our result from Example 25.5—
which gives the potential due to a ring of radius a—and sum the contributions of all rings making up the disk. Figure 

S O L U T I O N

continued

Potential at point P? (Ring’s total charge = Q.)

Unlike the E-field case, we do not have to worry about direction
(vectors). Very simple integral!

V =

∫
ke dq

r
=

ke
r

∫
dq =

keQ√
x2 + a2
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Example 25.5   Electric Potential Due to a Uniformly Charged Ring

(A)  Find an expression for the electric potential at a point P located on the per-
pendicular central axis of a uniformly charged ring of radius a and total charge Q.

Conceptualize  Study Figure 25.14, in which the ring is oriented so that its plane 
is perpendicular to the x axis and its center is at the origin. Notice that the 
symmetry of the situation means that all the charges on the ring are the same 
distance from point P. Compare this example to Example 23.8. Notice that no 
vector considerations are necessary here because electric potential is a scalar.

Categorize  Because the ring consists of a continuous distribution of charge 
rather than a set of discrete charges, we must use the integration technique rep-
resented by Equation 25.20 in this example.

Analyze  We take point P to be at a distance x from the center of the ring as 
shown in Figure 25.14.

S O L U T I O N
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dq

a

P
xx

Figure 25.14  (Example 25.5) A uni-
formly charged ring of radius a lies in 
a plane perpendicular to the x axis. 
All elements dq of the ring are the 
same distance from a point P lying  
on the x axis.

Noting that a and x do not vary for an integration over 
the ring, bring "a 2 1 x 2 in front of the integral sign 
and integrate over the ring:

V 5
ke"a 2 1 x 2

 3 dq 5
keQ"a 2 1 x 2

 (25.21)

Use Equation 25.20 to express V in terms of the 
geometry:

V 5 ke 3 
dq
r

5 ke 3 
dq"a 2 1 x 2

(B)  Find an expression for the magnitude of the electric field at point P.
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From symmetry, notice that along the x axis E
S

 can have 
only an x component. Therefore, apply Equation 25.16 to 
Equation 25.21:

Ex 5 2
dV
dx
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dx

 1a 2 1 x 2 221/2
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2 2 1a 2 1 x 2 223/2 12x 2

Ex 5 
k e x1a 2 1 x 2 23/2 Q  (25.22)

Finalize  The only variable in the expressions for V and Ex is x. That is not surprising because our calculation is valid 
only for points along the x axis, where y and z are both zero. This result for the electric field agrees with that obtained 
by direct integration (see Example 23.8). For practice, use the result of part (B) in Equation 25.3 to verify that the 
potential is given by the expression in part (A).

Example 25.6   Electric Potential Due to a Uniformly Charged Disk

A uniformly charged disk has radius R and surface charge density s.

(A)  Find the electric potential at a point P along the perpendicular central axis of the disk.

Conceptualize  If we consider the disk to be a set of concentric rings, we can use our result from Example 25.5—
which gives the potential due to a ring of radius a—and sum the contributions of all rings making up the disk. Figure 

S O L U T I O N

continued

Knowing potential at point P, find E?

E = −∇V

= −
∂

∂x

keQ√
x2 + a2

i

=
keQ x

(x2 + a2)3/2
i
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Example 25.5   Electric Potential Due to a Uniformly Charged Ring

(A)  Find an expression for the electric potential at a point P located on the per-
pendicular central axis of a uniformly charged ring of radius a and total charge Q.

Conceptualize  Study Figure 25.14, in which the ring is oriented so that its plane 
is perpendicular to the x axis and its center is at the origin. Notice that the 
symmetry of the situation means that all the charges on the ring are the same 
distance from point P. Compare this example to Example 23.8. Notice that no 
vector considerations are necessary here because electric potential is a scalar.

Categorize  Because the ring consists of a continuous distribution of charge 
rather than a set of discrete charges, we must use the integration technique rep-
resented by Equation 25.20 in this example.

Analyze  We take point P to be at a distance x from the center of the ring as 
shown in Figure 25.14.
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Figure 25.14  (Example 25.5) A uni-
formly charged ring of radius a lies in 
a plane perpendicular to the x axis. 
All elements dq of the ring are the 
same distance from a point P lying  
on the x axis.

Noting that a and x do not vary for an integration over 
the ring, bring "a 2 1 x 2 in front of the integral sign 
and integrate over the ring:

V 5
ke"a 2 1 x 2

 3 dq 5
keQ"a 2 1 x 2

 (25.21)

Use Equation 25.20 to express V in terms of the 
geometry:

V 5 ke 3 
dq
r

5 ke 3 
dq"a 2 1 x 2

(B)  Find an expression for the magnitude of the electric field at point P.
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From symmetry, notice that along the x axis E
S

 can have 
only an x component. Therefore, apply Equation 25.16 to 
Equation 25.21:
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dx
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 1a 2 1 x 2 221/2
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Finalize  The only variable in the expressions for V and Ex is x. That is not surprising because our calculation is valid 
only for points along the x axis, where y and z are both zero. This result for the electric field agrees with that obtained 
by direct integration (see Example 23.8). For practice, use the result of part (B) in Equation 25.3 to verify that the 
potential is given by the expression in part (A).

Example 25.6   Electric Potential Due to a Uniformly Charged Disk

A uniformly charged disk has radius R and surface charge density s.

(A)  Find the electric potential at a point P along the perpendicular central axis of the disk.

Conceptualize  If we consider the disk to be a set of concentric rings, we can use our result from Example 25.5—
which gives the potential due to a ring of radius a—and sum the contributions of all rings making up the disk. Figure 
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Example 25.5   Electric Potential Due to a Uniformly Charged Ring

(A)  Find an expression for the electric potential at a point P located on the per-
pendicular central axis of a uniformly charged ring of radius a and total charge Q.

Conceptualize  Study Figure 25.14, in which the ring is oriented so that its plane 
is perpendicular to the x axis and its center is at the origin. Notice that the 
symmetry of the situation means that all the charges on the ring are the same 
distance from point P. Compare this example to Example 23.8. Notice that no 
vector considerations are necessary here because electric potential is a scalar.

Categorize  Because the ring consists of a continuous distribution of charge 
rather than a set of discrete charges, we must use the integration technique rep-
resented by Equation 25.20 in this example.

Analyze  We take point P to be at a distance x from the center of the ring as 
shown in Figure 25.14.

S O L U T I O N
a2!x2

dq

a

P
xx

Figure 25.14  (Example 25.5) A uni-
formly charged ring of radius a lies in 
a plane perpendicular to the x axis. 
All elements dq of the ring are the 
same distance from a point P lying  
on the x axis.

Noting that a and x do not vary for an integration over 
the ring, bring "a 2 1 x 2 in front of the integral sign 
and integrate over the ring:

V 5
ke"a 2 1 x 2

 3 dq 5
keQ"a 2 1 x 2

 (25.21)

Use Equation 25.20 to express V in terms of the 
geometry:

V 5 ke 3 
dq
r

5 ke 3 
dq"a 2 1 x 2

(B)  Find an expression for the magnitude of the electric field at point P.

S O L U T I O N

From symmetry, notice that along the x axis E
S

 can have 
only an x component. Therefore, apply Equation 25.16 to 
Equation 25.21:

Ex 5 2
dV
dx

5 2k eQ 
d
dx

 1a 2 1 x 2 221/2

5 2keQ 121
2 2 1a 2 1 x 2 223/2 12x 2

Ex 5 
k e x1a 2 1 x 2 23/2 Q  (25.22)

Finalize  The only variable in the expressions for V and Ex is x. That is not surprising because our calculation is valid 
only for points along the x axis, where y and z are both zero. This result for the electric field agrees with that obtained 
by direct integration (see Example 23.8). For practice, use the result of part (B) in Equation 25.3 to verify that the 
potential is given by the expression in part (A).

Example 25.6   Electric Potential Due to a Uniformly Charged Disk

A uniformly charged disk has radius R and surface charge density s.

(A)  Find the electric potential at a point P along the perpendicular central axis of the disk.

Conceptualize  If we consider the disk to be a set of concentric rings, we can use our result from Example 25.5—
which gives the potential due to a ring of radius a—and sum the contributions of all rings making up the disk. Figure 

S O L U T I O N

continued

Knowing potential at point P, find E? (Maybe easier this way!!)

E = −∇V

= −
∂

∂x

keQ√
x2 + a2

i

=
keQ x

(x2 + a2)3/2
i



Potential Difference across a pair of charged plates
We know that the field between two charged plates is uniform.
E = σ

ε0
.

∆V = −

∫d
0

E · ds = −E d632 CHAPTE R 24 E LECTR IC POTE NTIAL

on a charged particle as the particle moves from one end to the other of paths
I and II is zero because each of these paths begins and ends on the same
equipotential surface and thus there is no net change in potential. The work
done as the charged particle moves from one end to the other of paths III and
IV is not zero but has the same value for both these paths because the initial
and final potentials are identical for the two paths; that is, paths III and IV
connect the same pair of equipotential surfaces.

From symmetry, the equipotential surfaces produced by a point charge or
a spherically symmetrical charge distribution are a family of concentric
spheres. For a uniform electric field, the surfaces are a family of planes per-
pendicular to the field lines. In fact, equipotential surfaces are always perpen-
dicular to electric field lines and thus to , which is always tangent to these
lines. If were not perpendicular to an equipotential surface, it would have a
component lying along that surface. This component would then do work on a
charged particle as it moved along the surface. However, by Eq. 24-7 work
cannot be done if the surface is truly an equipotential surface; the only possi-
ble conclusion is that must be everywhere perpendicular to the surface.
Figure 24-3 shows electric field lines and cross sections of the equipotential
surfaces for a uniform electric field and for the field associated with a point
charge and with an electric dipole.
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Equipotential surface 
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(c)

(a) 

+ 

+

Fig. 24-3 Electric field lines (purple) and cross sections of equipotential surfaces (gold)
for (a) a uniform electric field, (b) the field due to a point charge, and (c) the field due to
an electric dipole.
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on a charged particle as the particle moves from one end to the other of paths
I and II is zero because each of these paths begins and ends on the same
equipotential surface and thus there is no net change in potential. The work
done as the charged particle moves from one end to the other of paths III and
IV is not zero but has the same value for both these paths because the initial
and final potentials are identical for the two paths; that is, paths III and IV
connect the same pair of equipotential surfaces.

From symmetry, the equipotential surfaces produced by a point charge or
a spherically symmetrical charge distribution are a family of concentric
spheres. For a uniform electric field, the surfaces are a family of planes per-
pendicular to the field lines. In fact, equipotential surfaces are always perpen-
dicular to electric field lines and thus to , which is always tangent to these
lines. If were not perpendicular to an equipotential surface, it would have a
component lying along that surface. This component would then do work on a
charged particle as it moved along the surface. However, by Eq. 24-7 work
cannot be done if the surface is truly an equipotential surface; the only possi-
ble conclusion is that must be everywhere perpendicular to the surface.
Figure 24-3 shows electric field lines and cross sections of the equipotential
surfaces for a uniform electric field and for the field associated with a point
charge and with an electric dipole.
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Fig. 24-3 Electric field lines (purple) and cross sections of equipotential surfaces (gold)
for (a) a uniform electric field, (b) the field due to a point charge, and (c) the field due to
an electric dipole.
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The potential difference between the two plates, separation, d :

|∆V | = E d



Summary

• electric field and potential

• equipotentials

• potential from many charges or charge distributions

• Electric potential difference of charged plates (?)

First Test this Friday, Jan 26, covering Ch 23-25.

Homework
• Study for test.

Serway & Jewett:

• Ch 25, Problems: 36, 37, 41, 43, 45, 63, 65, 67


