Electricity and Magnetism Understanding Electric Potential Potential around charge distributions

Lana Sheridan
De Anza College
Jan 24, 2018

Last time

- electric potential energy and force
- electric potential definition
- electric potential of point charge

Warm Up Question

Recalling that $W=\int \mathbf{F} \cdot \mathrm{ds}$, which is a formula for the change in the potential energy of a charge q moved through an electric field E?
(A) $\Delta U=-\int \mathbf{E} \cdot \mathrm{d} \mathbf{s}$
(B) $\Delta U=q_{0} \int E \cdot d s$
(C) $\Delta U=-q_{0} \int \mathbf{E} \cdot \mathrm{ds}$

Warm Up Question

Recalling that $W=\int \mathbf{F} \cdot \mathrm{ds}$, which is a formula for the change in the potential energy of a charge q moved through an electric field E?
(A) $\Delta U \equiv \int E \cdot d s$
(B) $\Delta U \equiv q_{0} f E \cdot d s$
(C) $\Delta U=-q_{0} \int \mathbf{E} \cdot \mathrm{ds} \leftarrow$

Overview

- electric field and potential
- equipotentials
- potential from many charges or charge distributions
- Electric potential difference of charged plates (?)

Work and Potential

Recall, since the electrostatic force is a conservative force:

$$
W_{E}=-\Delta U_{E}
$$

where W_{E} is the work done by the internal electrostatic force.
So, we can relate this work to potential difference:

$$
W_{E}=-q \Delta V
$$

If a charge moves along an equipotential surface, $\Delta V=0$ so $W_{E}=0$.

Work and Potential

For conservative forces:

$$
-\Delta U=W_{\mathrm{int}}=\int \mathbf{F} \cdot \mathrm{d} \mathbf{s}
$$

Considering the potential energy of the electrostatic force:

$$
\begin{aligned}
\Delta U_{E} & =-\int \mathbf{F} \cdot \mathrm{d} \mathbf{s} \\
q_{0} \Delta V & =-\int q_{0} \mathbf{E} \cdot \mathrm{ds}
\end{aligned}
$$

giving:

$$
\Delta V=-\int \mathbf{E} \cdot \mathrm{ds}
$$

(This is the integral form.)

Work and Potential

$$
\Delta V=-\int \mathbf{E} \cdot \mathrm{ds}
$$

The change in potential energy can also be deduced from the field:

$$
\Delta U=-q \int E \cdot d s
$$

This is also the work done by an external applied force moving a charge along a path \mathbf{s} :

$$
W_{\mathrm{app}}=-q \int \mathbf{E} \cdot \mathrm{ds}
$$

Relation between Electric Potential and Electric

 FieldRemember \mathbf{F} is related to \mathbf{E} :

$$
\begin{aligned}
\mathbf{F} & =q_{0} \mathbf{E} \\
\frac{\mathbf{F}}{q_{0}} & =\mathbf{E} \\
\frac{1}{q_{0}}(-\nabla U) & =\mathbf{E}
\end{aligned}
$$

So,

$$
E=-\nabla V
$$

Meaning of "Electrostatics"

For the first part of this course we are considering electrostatic situations.

In words, electrostatic means that all charges are either

- stationary or
- part of a current that is not changing with time, and that all the electromagnetic fields can be treated as constant.

Meaning of "Electrostatics"

For the first part of this course we are considering electrostatic situations.

In words, electrostatic means that all charges are either

- stationary or
- part of a current that is not changing with time, and that all the electromagnetic fields can be treated as constant.

Formally, it means we can express the electric field as:

$$
\mathbf{E}=-\nabla V
$$

Or "the electric field has no rotation".
(Later we will see that this is not always the case.)

Relation to Vector Fields

Earlier we represented the electrostatic force as a vector field:

However, by dividing out the test charge value q_{0} we get the electric field. (Just re-scaling the vectors.)

Relation to Vector Fields

Now suppose this vector field is E, the electrostatic E-field:

$$
\mathbf{E}=-\nabla V
$$

Now the red lines represent lines of equal electric potential. V is also a scalar potential.

Equipotential Surfaces

The fields from charges extend out in 3 dimensions.
We can find 2-dimensional surfaces of constant electric potential.
These surfaces are called equipotentials.

Sketching them sheds light on the potential energy a test charge would have at certain points: in particular, it is takes a particular constant value for any point on a surface.

Equipotential Surfaces: Examples

${ }^{1}$ Figure from Halliday, Resnick, Walker.

Equipotential Surfaces: Examples

Equipotential Surfaces: Examples

Equipotential Surfaces: Examples

Equipotential surfaces are always perpendicular to field lines.
If a charge is moved along an equipotential surface the work done by the force of the electrostatic field is zero.

Equipotentials

No work is done by the electrostatic force moving a charge along an equipotential.

The same work is done moving a charge from one equipotential to another, regardless of the path you move it along!

Example: Uniform E-field

$$
\Delta V_{i \rightarrow f}=-\int_{i}^{f} \mathbf{E} \cdot \mathrm{~d} \mathbf{s}=-E d \quad \text { (indep. of path) }
$$

The electric field points from higher potential to lower potential.

The field is perpendicular to this ic path, so there is no change in the potential.

${ }^{1}$ Halliday, Resnick, Walker, page 634.

Question

The figure shows a family of parallel equipotential surfaces (in cross section) and five paths along which we shall move an electron from one surface to another.

Electron has a negative charge!

1-(a) What is the direction of the electric field associated with the surfaces?
(A) rightwards
(B) leftwards
(C) upwards
(D) downwards
${ }^{1}$ Halliday, Resnick, Walker, page 633.

Question

The figure shows a family of parallel equipotential surfaces (in cross section) and five paths along which we shall move an electron from one surface to another.

Electron has a negative charge!

1-(a) What is the direction of the electric field associated with the surfaces?
(A) rightwards
(B) leftwards
(C) upwards
(D) downwards
${ }^{1}$ Halliday, Resnick, Walker, page 633.

Question

The figure shows a family of parallel equipotential surfaces (in cross section) and five paths along which we shall move an electron from one surface to another.

Electron has a negative charge!

2-(c) Rank the paths according to the work we do, greatest first.
(A) $1,2,3,4,5$
(B) $2,4,3,5,1$
(C) $4,(1,2$, and 5$), 3$
(D) 3, (1, 2, and 5), 4
${ }^{1}$ Halliday, Resnick, Walker, page 633.

Question

The figure shows a family of parallel equipotential surfaces (in cross section) and five paths along which we shall move an electron from one surface to another.

Electron has a negative charge!

2-(c) Rank the paths according to the work we do, greatest first.
(A) $1,2,3,4,5$
(B) $2,4,3,5,1$
(C) $4,(1,2$, and 5), 3
(D) $3,(1,2$, and 5), $4 \leftarrow$
${ }^{1}$ Halliday, Resnick, Walker, page 633.

Question

The figure shows a family of parallel equipotential surfaces (in cross section) and five paths along which we shall move an electron from one surface to another.

Electron has a negative charge!

$$
W_{\mathrm{app}}=q \Delta V
$$

2-(c) Rank the paths according to the work we do, greatest first.
(A) $1,2,3,4,5$
(B) $2,4,3,5,1$
(C) $4,(1,2$, and 5), 3
(D) $3,(1,2$, and 5), $4 \leftarrow$
${ }^{1}$ Halliday, Resnick, Walker, page 633.

Potential from many charges

The electric potential from many point charges could be found by adding up the potential due to each separately:

$$
V_{\text {net }}=V_{1}+V_{2}+\ldots+V_{n}
$$

This is

$$
V_{\mathrm{net}}=\sum_{i} V_{i}
$$

Notice that this is a scalar equation, not a vector equation.

Question

The figure shows three arrangements of two protons. Rank the arrangements according to the net electric potential produced at point P by the protons, greatest first.

(A) a, b, c
(B) c, b, a
(C) b, (a and c)
(D) all the same
${ }^{1}$ Halliday, Resnick, Walker, page 636.

Question

The figure shows three arrangements of two protons. Rank the arrangements according to the net electric potential produced at point P by the protons, greatest first.

(A) a, b, c
(B) c, b, a
(C) b, (a and c)
(D) all the same \leftarrow

[^0]
More Practice with Electric Potential, Ex 25.4

What is the electric potential, V, along an axis through the middle of a dipole at point P ?

${ }^{1}$ Figure from Serway \& Jewett, 9th ed.

More Practice with Electric Potential, Ex 25.4

What is the electric potential, V, along an axis through the middle of a dipole at point P ?

$$
\begin{aligned}
V & =V_{1}+V_{2} \\
& =\frac{k_{e} q}{\sqrt{a^{2}+y^{2}}}-\frac{k_{e} q}{\sqrt{a^{2}+y^{2}}} \\
& =0
\end{aligned}
$$

${ }^{1}$ Figure from Serway \& Jewett, 9th ed.

More Practice with Electric Potential

Equipotentials:

${ }^{1}$ Figure from Halliday, Resnick, Walker, 9th ed.

More Practice with Electric Potential, Ex 25.4

What is the electric potential, V, along the axis of the dipole at point R ?

More Practice with Electric Potential, Ex 25.4

What is the electric potential, V, along the axis of the dipole at point R ?

$$
V=V_{1}+V_{2}
$$

$$
=\frac{k_{e} q}{(x+a)}-\frac{k_{e} q}{(x-a)}
$$

$$
=-\frac{2 k_{e} q a}{x^{2}-a^{2}}
$$

More Practice with Electric Potential, Ex 25.4

Far away along the x axis, what is the electric potential, V, and the electric field?

More Practice with Electric Potential, Ex 25.4

Far away along the x axis, what is the electric potential, V, and the electric field?

$$
\begin{aligned}
V= & -\frac{2 k_{e} q a}{x^{2}-a^{2}} \\
\text { for } \quad & x \gg a \\
\approx & -\frac{2 k_{e} q a}{x^{2}}
\end{aligned}
$$

More Practice with Electric Potential, Ex 25.4

Far away along the x axis, what is the electric potential, V, and the electric field?

$$
\begin{aligned}
\mathbf{E} & =-\nabla V \\
& =-\frac{\partial}{\partial x} V \mathbf{i} \\
& =-\frac{4 k_{e} q a}{x^{3}} \mathbf{i} \quad(x \gg a)
\end{aligned}
$$

Potential from a charge distribution example: Uniformly charged ring

Potential at point P ? (Ring's total charge $=Q$.)

Potential from a charge distribution example: Uniformly charged ring

Potential at point P ? (Ring's total charge $=Q$.)
Unlike the E-field case, we do not have to worry about direction (vectors). Very simple integral!

$$
V=\int \frac{k_{e} \mathrm{dq}}{r}=\frac{k_{e}}{r} \int \mathrm{dq}=\frac{k_{e} Q}{\sqrt{x^{2}+a^{2}}}
$$

Potential from a charge distribution example: Uniformly charged ring

Knowing potential at point P, find \mathbf{E} ?

Potential from a charge distribution example: Uniformly charged ring

Knowing potential at point P, find \mathbf{E} ?

$$
\begin{aligned}
\mathbf{E} & =-\nabla V \\
& =-\frac{\partial}{\partial x} \frac{k_{e} Q}{\sqrt{x^{2}+a^{2}}} \mathbf{i} \\
& =\frac{k_{e} Q x}{\left(x^{2}+a^{2}\right)^{3 / 2}} \mathbf{i}
\end{aligned}
$$

Potential from a charge distribution example: Uniformly charged ring

Knowing potential at point P, find \mathbf{E} ? (Maybe easier this way!!)

$$
\begin{aligned}
\mathbf{E} & =-\nabla V \\
& =-\frac{\partial}{\partial x} \frac{k_{e} Q}{\sqrt{x^{2}+a^{2}}} \mathbf{i} \\
& =\frac{k_{e} Q x}{\left(x^{2}+a^{2}\right)^{3 / 2}} \mathbf{i}
\end{aligned}
$$

Potential Difference across a pair of charged plates

We know that the field between two charged plates is uniform.
$E=\frac{\sigma}{\epsilon_{0}}$.

$$
\Delta V=-\int_{0}^{d} \mathbf{E} \cdot \mathrm{~d} \mathbf{s}=-E d
$$

Potential Difference across a pair of charged plates

The potential difference between the two plates, separation, d :

$$
|\Delta V|=E d
$$

Summary

- electric field and potential
- equipotentials
- potential from many charges or charge distributions
- Electric potential difference of charged plates (?)

First Test this Friday, Jan 26, covering Ch 23-25.

Homework

- Study for test.

Serway \& Jewett:

- Ch 25, Problems: 36, 37, 41, 43, 45, 63, 65, 67

[^0]: ${ }^{1}$ Halliday, Resnick, Walker, page 636.

