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Last time

• relation between E-field and potential

• potential from many charges

• potential around continuous charge distributions



Warm Up Questions

What is an alternative unit for the electric field?

(A) Vm

(B) V/m

(C) V/m2



Warm Up Questions

What is an alternative unit for the electric field?

(A) Vm

(B) V/m←
(C) V/m2



Overview

• Potential of charged conductor

• torque on a dipole in an E-field

• potential energy of a dipole in an E-field

• Millikan’s experiment



Conductor in an Electric field
The E-field inside an isolated conductor at equilibrium is zero.

eg. an isolated conductor with excess charge:

1Figure from Openstax College Physics.

E = 0



Potential due to an Isolated Charged Conductor
What is the potential at the point R?
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perpendicular to the displacement d sS; therefore, E
S

? d sS 5 0. Using this result and 
Equation 25.3, we conclude that the potential difference between ! and " is nec-
essarily zero:

 V" 2 V! 5 2 3
"

!

E
S

? d sS 5 0 

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

the surface of any charged conductor in electrostatic equilibrium is an equi-
potential surface: every point on the surface of a charged conductor in equi-
librium is at the same electric potential. Furthermore, because the electric 
field is zero inside the conductor, the electric potential is constant everywhere 
inside the conductor and equal to its value at the surface. 

Because of the constant value of the potential, no work is required to move a charge 
from the interior of a charged conductor to its surface.
 Consider a solid metal conducting sphere of radius R and total positive charge Q 
as shown in Figure 25.18a. As determined in part (A) of Example 24.3, the electric 
field outside the sphere is keQ /r 2 and points radially outward. Because the field 
outside a spherically symmetric charge distribution is identical to that of a point 
charge, we expect the potential to also be that of a point charge, keQ /r. At the 
surface of the conducting sphere in Figure 25.18a, the potential must be keQ /R. 
Because the entire sphere must be at the same potential, the potential at any point 
within the sphere must also be keQ /R. Figure 25.18b is a plot of the electric poten-
tial as a function of r, and Figure 25.18c shows how the electric field varies with r.
 When a net charge is placed on a spherical conductor, the surface charge density 
is uniform as indicated in Figure 25.18a. If the conductor is nonspherical as in Fig-
ure 25.17, however, the surface charge density is high where the radius of curvature 
is small (as noted in Section 24.4) and low where the radius of curvature is large. 
Because the electric field immediately outside the conductor is proportional to the 
surface charge density, the electric field is large near convex points having small radii 
of curvature and reaches very high values at sharp points. In Example 25.8, the rela-
tionship between electric field and radius of curvature is explored mathematically.
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Figure 25.18  (a) The excess 
charge on a conducting sphere of 
radius R is uniformly distributed 
on its surface. (b) Electric potential 
versus distance r from the center 
of the charged conducting sphere. 
(c) Electric field magnitude versus 
distance r from the center of the 
charged conducting sphere.

Example 25.8   Two Connected Charged Spheres

Two spherical conductors of radii r1 and r2 are separated by a distance much 
greater than the radius of either sphere. The spheres are connected by a con-
ducting wire as shown in Figure 25.19. The charges on the spheres in equilib-
rium are q1 and q2, respectively, and they are uniformly charged. Find the ratio 
of the magnitudes of the electric fields at the surfaces of the spheres.

Conceptualize  Imagine the spheres are much farther apart than shown in Fig-
ure 25.19. Because they are so far apart, the field of one does not affect the 
charge distribution on the other. The conducting wire between them ensures 
that both spheres have the same electric potential.

Categorize  Because the spheres are so far apart, we model the charge dis-
tribution on them as spherically symmetric, and we can model the field and 
potential outside the spheres to be that due to point charges.

S O L U T I O N

r1

q1

r2
q2

Figure 25.19  (Example 25.8) Two 
charged spherical conductors connected 
by a conducting wire. The spheres are at 
the same electric potential V.

Analyze  Set the electric potentials at the surfaces of the 
spheres equal to each other:

V 5 ke 
q1

r1
5 ke 

q2

r2

1Figure from Serway & Jewett, 9th ed.



Potential due to an Isolated Charged Conductor

All excess charge flows to the outside, in the interior, the electric
field is zero.
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Fig. 24-18 (a) A plot of V(r) both
inside and outside a charged spheri-
cal shell of radius 1.0 m. (b) A plot of
E(r) for the same shell.Fig. 24-19 A large spark

jumps to a car’s body and then
exits by moving across the
insulating left front tire (note
the flash there), leaving the per-
son inside unharmed. (Courtesy
Westinghouse Electric
Corporation)

Figure 24-18a is a plot of potential against radial distance r from the center
for an isolated spherical conducting shell of 1.0 m radius, having a charge of
1.0 mC. For points outside the shell, we can calculate V(r) from Eq. 24-26 because
the charge q behaves for such external points as if it were concentrated at the
center of the shell. That equation holds right up to the surface of the shell. Now
let us push a small test charge through the shell—assuming a small hole exists—
to its center. No extra work is needed to do this because no net electric force acts
on the test charge once it is inside the shell. Thus, the potential at all points inside
the shell has the same value as that on the surface, as Fig. 24-18a shows.

Figure 24-18b shows the variation of electric field with radial distance for the
same shell. Note that E ! 0 everywhere inside the shell.The curves of Fig. 24-18b
can be derived from the curve of Fig. 24-18a by differentiating with respect to r,
using Eq. 24-40 (recall that the derivative of any constant is zero). The curve of
Fig. 24-18a can be derived from the curves of Fig. 24-18b by integrating with
respect to r, using Eq. 24-19.

Fig. 24-20 An uncharged conduc-
tor is suspended in an external elec-
tric field.The free electrons in the
conductor distribute themselves on
the surface as shown, so as to reduce
the net electric field inside the con-
ductor to zero and make the net field
at the surface perpendicular to the
surface.
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Spark Discharge from a Charged Conductor
On nonspherical conductors, a surface charge does not distribute itself uniformly
over the surface of the conductor.At sharp points or sharp edges, the surface charge
density—and thus the external electric field, which is proportional to it—may reach
very high values.The air around such sharp points or edges may become ionized, pro-
ducing the corona discharge that golfers and mountaineers see on the tips of bushes,
golf clubs, and rock hammers when thunderstorms threaten. Such corona discharges,
like hair that stands on end, are often the precursors of lightning strikes. In such cir-
cumstances, it is wise to enclose yourself in a cavity inside a conducting shell, where
the electric field is guaranteed to be zero. A car (unless it is a convertible or made
with a plastic body) is almost ideal (Fig.24-19).

Isolated Conductor in an External Electric Field
If an isolated conductor is placed in an external electric field, as in Fig. 24-20, all
points of the conductor still come to a single potential regardless of whether the
conductor has an excess charge. The free conduction electrons distribute them-
selves on the surface in such a way that the electric field they produce at interior
points cancels the external electric field that would otherwise be there.
Furthermore, the electron distribution causes the net electric field at all points on
the surface to be perpendicular to the surface. If the conductor in Fig. 24-20 could
be somehow removed, leaving the surface charges frozen in place, the internal
and external electric field would remain absolutely unchanged.
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Figure 24-18a is a plot of potential against radial distance r from the center
for an isolated spherical conducting shell of 1.0 m radius, having a charge of
1.0 mC. For points outside the shell, we can calculate V(r) from Eq. 24-26 because
the charge q behaves for such external points as if it were concentrated at the
center of the shell. That equation holds right up to the surface of the shell. Now
let us push a small test charge through the shell—assuming a small hole exists—
to its center. No extra work is needed to do this because no net electric force acts
on the test charge once it is inside the shell. Thus, the potential at all points inside
the shell has the same value as that on the surface, as Fig. 24-18a shows.

Figure 24-18b shows the variation of electric field with radial distance for the
same shell. Note that E ! 0 everywhere inside the shell.The curves of Fig. 24-18b
can be derived from the curve of Fig. 24-18a by differentiating with respect to r,
using Eq. 24-40 (recall that the derivative of any constant is zero). The curve of
Fig. 24-18a can be derived from the curves of Fig. 24-18b by integrating with
respect to r, using Eq. 24-19.

Fig. 24-20 An uncharged conduc-
tor is suspended in an external elec-
tric field.The free electrons in the
conductor distribute themselves on
the surface as shown, so as to reduce
the net electric field inside the con-
ductor to zero and make the net field
at the surface perpendicular to the
surface.
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Spark Discharge from a Charged Conductor
On nonspherical conductors, a surface charge does not distribute itself uniformly
over the surface of the conductor.At sharp points or sharp edges, the surface charge
density—and thus the external electric field, which is proportional to it—may reach
very high values.The air around such sharp points or edges may become ionized, pro-
ducing the corona discharge that golfers and mountaineers see on the tips of bushes,
golf clubs, and rock hammers when thunderstorms threaten. Such corona discharges,
like hair that stands on end, are often the precursors of lightning strikes. In such cir-
cumstances, it is wise to enclose yourself in a cavity inside a conducting shell, where
the electric field is guaranteed to be zero. A car (unless it is a convertible or made
with a plastic body) is almost ideal (Fig.24-19).

Isolated Conductor in an External Electric Field
If an isolated conductor is placed in an external electric field, as in Fig. 24-20, all
points of the conductor still come to a single potential regardless of whether the
conductor has an excess charge. The free conduction electrons distribute them-
selves on the surface in such a way that the electric field they produce at interior
points cancels the external electric field that would otherwise be there.
Furthermore, the electron distribution causes the net electric field at all points on
the surface to be perpendicular to the surface. If the conductor in Fig. 24-20 could
be somehow removed, leaving the surface charges frozen in place, the internal
and external electric field would remain absolutely unchanged.
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Since ∆V = −
∫

E · ds the potential inside the conductor is
constant.

1Figure from Halliday, Resnick, Walker, 9th ed.



Charge distribution on a conductor
The electric potential is constant everywhere on a conductor
(including the surface!), but the charge distribution may vary.

 25.6 Electric Potential Due to a Charged Conductor 761

25.6 Electric Potential Due to a Charged Conductor
In Section 24.4, we found that when a solid conductor in equilibrium carries a net 
charge, the charge resides on the conductor’s outer surface. Furthermore, the elec-
tric field just outside the conductor is perpendicular to the surface and the field 
inside is zero.
 We now generate another property of a charged conductor, related to electric 
potential. Consider two points ! and " on the surface of a charged conductor as 
shown in Figure 25.17. Along a surface path connecting these points, E

S
 is always 

What if you were asked to find the electric 
field at point P ? Would that be a simple calculation?

Answer  Calculating the electric field by means of Equa-
tion 23.11 would be a little messy. There is no symmetry 
to appeal to, and the integration over the line of charge 
would represent a vector addition of electric fields at point 
P. Using Equation 25.18, you could find Ey by replacing a 
with y in Equation 25.25 and performing the differentia-
tion with respect to y. Because the charged rod in Figure 

WHAT IF ? 25.16 lies entirely to the right of x 5 0, the electric field at 
point P would have an x component to the left if the rod is 
charged positively. You cannot use Equation 25.18 to find 
the x component of the field, however, because the poten-
tial due to the rod was evaluated at a specific value of  
x (x 5 0) rather than a general value of x. You would have 
to find the potential as a function of both x and y to be 
able to find the x and y components of the electric field 
using Equation 25.18.

Evaluate the result between the limits: V 5 ke 
Q
,

 3ln 1, 1 "a 2 1 ,2 2 2 ln a 4 5 ke 
Q
,

  ln a, 1 "a 2 1 ,2

a b  (25.25)

Noting that ke and l 5 Q /, are constants and can be 
removed from the integral, evaluate the integral with 
the help of Appendix B:

V 5 ke l 3
,

0
  

dx"a 2 1 x 2
5 ke 

Q
,

  ln 1x 1 "a 2 1 x 2 2 ` ,
0

Find the total potential at P by integrating this expres-
sion over the limits x 5 0 to x 5 ,:

V 5 3
,

0
 ke 

l dx"a 2 1 x 2

Find the potential at P due to one segment of the rod  
at an arbitrary position x :

dV 5 ke 
dq
r

5 ke 
l dx"a 2 1 x 2

Pitfall Prevention 25.6
Potential May Not Be Zero  
The electric potential inside the 
conductor is not necessarily zero 
in Figure 25.17, even though the 
electric field is zero. Equation 
25.15 shows that a zero value of 
the field results in no change in 
the potential from one point 
to another inside the conduc-
tor. Therefore, the potential 
everywhere inside the conductor, 
including the surface, has the 
same value, which may or may not 
be zero, depending on where the 
zero of potential is defined.

Notice from the spacing of the 
positive signs that the surface 
charge density is nonuniform.
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Figure 25.17  An arbitrarily shaped conductor carrying a 
positive charge. When the conductor is in electrostatic equi-
librium, all the charge resides at the surface, E

S
5 0 inside 

the conductor, and the direction of E
S

 immediately outside 
the conductor is perpendicular to the surface. The electric 
potential is constant inside the conductor and is equal to the 
potential at the surface. 

Finalize  If , ,, a, the potential at P should approach that of a point charge because the rod is very short compared 
to the distance from the rod to P.  By using a series expansion for the natural logarithm from Appendix B.5, it is easy 
to show that Equation 25.25 becomes V = keQ /a.

 

▸ 25.7 c o n t i n u e d



Charge distribution on a conductor

An illustrative example (25.8), electric field around conductor.
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perpendicular to the displacement d sS; therefore, E
S

? d sS 5 0. Using this result and 
Equation 25.3, we conclude that the potential difference between ! and " is nec-
essarily zero:

 V" 2 V! 5 2 3
"

!

E
S

? d sS 5 0 

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

the surface of any charged conductor in electrostatic equilibrium is an equi-
potential surface: every point on the surface of a charged conductor in equi-
librium is at the same electric potential. Furthermore, because the electric 
field is zero inside the conductor, the electric potential is constant everywhere 
inside the conductor and equal to its value at the surface. 

Because of the constant value of the potential, no work is required to move a charge 
from the interior of a charged conductor to its surface.
 Consider a solid metal conducting sphere of radius R and total positive charge Q 
as shown in Figure 25.18a. As determined in part (A) of Example 24.3, the electric 
field outside the sphere is keQ /r 2 and points radially outward. Because the field 
outside a spherically symmetric charge distribution is identical to that of a point 
charge, we expect the potential to also be that of a point charge, keQ /r. At the 
surface of the conducting sphere in Figure 25.18a, the potential must be keQ /R. 
Because the entire sphere must be at the same potential, the potential at any point 
within the sphere must also be keQ /R. Figure 25.18b is a plot of the electric poten-
tial as a function of r, and Figure 25.18c shows how the electric field varies with r.
 When a net charge is placed on a spherical conductor, the surface charge density 
is uniform as indicated in Figure 25.18a. If the conductor is nonspherical as in Fig-
ure 25.17, however, the surface charge density is high where the radius of curvature 
is small (as noted in Section 24.4) and low where the radius of curvature is large. 
Because the electric field immediately outside the conductor is proportional to the 
surface charge density, the electric field is large near convex points having small radii 
of curvature and reaches very high values at sharp points. In Example 25.8, the rela-
tionship between electric field and radius of curvature is explored mathematically.
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Figure 25.18  (a) The excess 
charge on a conducting sphere of 
radius R is uniformly distributed 
on its surface. (b) Electric potential 
versus distance r from the center 
of the charged conducting sphere. 
(c) Electric field magnitude versus 
distance r from the center of the 
charged conducting sphere.

Example 25.8   Two Connected Charged Spheres

Two spherical conductors of radii r1 and r2 are separated by a distance much 
greater than the radius of either sphere. The spheres are connected by a con-
ducting wire as shown in Figure 25.19. The charges on the spheres in equilib-
rium are q1 and q2, respectively, and they are uniformly charged. Find the ratio 
of the magnitudes of the electric fields at the surfaces of the spheres.

Conceptualize  Imagine the spheres are much farther apart than shown in Fig-
ure 25.19. Because they are so far apart, the field of one does not affect the 
charge distribution on the other. The conducting wire between them ensures 
that both spheres have the same electric potential.

Categorize  Because the spheres are so far apart, we model the charge dis-
tribution on them as spherically symmetric, and we can model the field and 
potential outside the spheres to be that due to point charges.

S O L U T I O N

r1

q1

r2
q2

Figure 25.19  (Example 25.8) Two 
charged spherical conductors connected 
by a conducting wire. The spheres are at 
the same electric potential V.

Analyze  Set the electric potentials at the surfaces of the 
spheres equal to each other:

V 5 ke 
q1

r1
5 ke 

q2

r2

At all points on the object V is
constant.

V1 = V2

keq1
r1

=
keq2
r2

q1
q2

=
r1
r2

Since r1 > r2, q1 > q2 .

⇒ sharper curvature of surface,
higher charge density



Question: Charge Density

762 Chapter 25 Electric Potential

perpendicular to the displacement d sS; therefore, E
S

? d sS 5 0. Using this result and 
Equation 25.3, we conclude that the potential difference between ! and " is nec-
essarily zero:

 V" 2 V! 5 2 3
"

!

E
S

? d sS 5 0 

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

the surface of any charged conductor in electrostatic equilibrium is an equi-
potential surface: every point on the surface of a charged conductor in equi-
librium is at the same electric potential. Furthermore, because the electric 
field is zero inside the conductor, the electric potential is constant everywhere 
inside the conductor and equal to its value at the surface. 

Because of the constant value of the potential, no work is required to move a charge 
from the interior of a charged conductor to its surface.
 Consider a solid metal conducting sphere of radius R and total positive charge Q 
as shown in Figure 25.18a. As determined in part (A) of Example 24.3, the electric 
field outside the sphere is keQ /r 2 and points radially outward. Because the field 
outside a spherically symmetric charge distribution is identical to that of a point 
charge, we expect the potential to also be that of a point charge, keQ /r. At the 
surface of the conducting sphere in Figure 25.18a, the potential must be keQ /R. 
Because the entire sphere must be at the same potential, the potential at any point 
within the sphere must also be keQ /R. Figure 25.18b is a plot of the electric poten-
tial as a function of r, and Figure 25.18c shows how the electric field varies with r.
 When a net charge is placed on a spherical conductor, the surface charge density 
is uniform as indicated in Figure 25.18a. If the conductor is nonspherical as in Fig-
ure 25.17, however, the surface charge density is high where the radius of curvature 
is small (as noted in Section 24.4) and low where the radius of curvature is large. 
Because the electric field immediately outside the conductor is proportional to the 
surface charge density, the electric field is large near convex points having small radii 
of curvature and reaches very high values at sharp points. In Example 25.8, the rela-
tionship between electric field and radius of curvature is explored mathematically.
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Figure 25.18  (a) The excess 
charge on a conducting sphere of 
radius R is uniformly distributed 
on its surface. (b) Electric potential 
versus distance r from the center 
of the charged conducting sphere. 
(c) Electric field magnitude versus 
distance r from the center of the 
charged conducting sphere.

Example 25.8   Two Connected Charged Spheres

Two spherical conductors of radii r1 and r2 are separated by a distance much 
greater than the radius of either sphere. The spheres are connected by a con-
ducting wire as shown in Figure 25.19. The charges on the spheres in equilib-
rium are q1 and q2, respectively, and they are uniformly charged. Find the ratio 
of the magnitudes of the electric fields at the surfaces of the spheres.

Conceptualize  Imagine the spheres are much farther apart than shown in Fig-
ure 25.19. Because they are so far apart, the field of one does not affect the 
charge distribution on the other. The conducting wire between them ensures 
that both spheres have the same electric potential.

Categorize  Because the spheres are so far apart, we model the charge dis-
tribution on them as spherically symmetric, and we can model the field and 
potential outside the spheres to be that due to point charges.

S O L U T I O N

r1

q1

r2
q2

Figure 25.19  (Example 25.8) Two 
charged spherical conductors connected 
by a conducting wire. The spheres are at 
the same electric potential V.

Analyze  Set the electric potentials at the surfaces of the 
spheres equal to each other:

V 5 ke 
q1

r1
5 ke 

q2

r2

V1 = V2

keq1
r1

=
keq2
r2

q1
q2

=
r1
r2

What is the ratio of the surface
charge densities σ1/σ2 on the
spheres?

(A)
r1
r2

(B)
r21
r22

(C)
r2
r1

(D)
r32
r31



Question: Charge Density
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perpendicular to the displacement d sS; therefore, E
S

? d sS 5 0. Using this result and 
Equation 25.3, we conclude that the potential difference between ! and " is nec-
essarily zero:

 V" 2 V! 5 2 3
"

!

E
S

? d sS 5 0 

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

the surface of any charged conductor in electrostatic equilibrium is an equi-
potential surface: every point on the surface of a charged conductor in equi-
librium is at the same electric potential. Furthermore, because the electric 
field is zero inside the conductor, the electric potential is constant everywhere 
inside the conductor and equal to its value at the surface. 

Because of the constant value of the potential, no work is required to move a charge 
from the interior of a charged conductor to its surface.
 Consider a solid metal conducting sphere of radius R and total positive charge Q 
as shown in Figure 25.18a. As determined in part (A) of Example 24.3, the electric 
field outside the sphere is keQ /r 2 and points radially outward. Because the field 
outside a spherically symmetric charge distribution is identical to that of a point 
charge, we expect the potential to also be that of a point charge, keQ /r. At the 
surface of the conducting sphere in Figure 25.18a, the potential must be keQ /R. 
Because the entire sphere must be at the same potential, the potential at any point 
within the sphere must also be keQ /R. Figure 25.18b is a plot of the electric poten-
tial as a function of r, and Figure 25.18c shows how the electric field varies with r.
 When a net charge is placed on a spherical conductor, the surface charge density 
is uniform as indicated in Figure 25.18a. If the conductor is nonspherical as in Fig-
ure 25.17, however, the surface charge density is high where the radius of curvature 
is small (as noted in Section 24.4) and low where the radius of curvature is large. 
Because the electric field immediately outside the conductor is proportional to the 
surface charge density, the electric field is large near convex points having small radii 
of curvature and reaches very high values at sharp points. In Example 25.8, the rela-
tionship between electric field and radius of curvature is explored mathematically.
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Figure 25.18  (a) The excess 
charge on a conducting sphere of 
radius R is uniformly distributed 
on its surface. (b) Electric potential 
versus distance r from the center 
of the charged conducting sphere. 
(c) Electric field magnitude versus 
distance r from the center of the 
charged conducting sphere.

Example 25.8   Two Connected Charged Spheres

Two spherical conductors of radii r1 and r2 are separated by a distance much 
greater than the radius of either sphere. The spheres are connected by a con-
ducting wire as shown in Figure 25.19. The charges on the spheres in equilib-
rium are q1 and q2, respectively, and they are uniformly charged. Find the ratio 
of the magnitudes of the electric fields at the surfaces of the spheres.

Conceptualize  Imagine the spheres are much farther apart than shown in Fig-
ure 25.19. Because they are so far apart, the field of one does not affect the 
charge distribution on the other. The conducting wire between them ensures 
that both spheres have the same electric potential.

Categorize  Because the spheres are so far apart, we model the charge dis-
tribution on them as spherically symmetric, and we can model the field and 
potential outside the spheres to be that due to point charges.

S O L U T I O N

r1

q1

r2
q2

Figure 25.19  (Example 25.8) Two 
charged spherical conductors connected 
by a conducting wire. The spheres are at 
the same electric potential V.

Analyze  Set the electric potentials at the surfaces of the 
spheres equal to each other:

V 5 ke 
q1

r1
5 ke 

q2

r2

V1 = V2

keq1
r1

=
keq2
r2

q1
q2

=
r1
r2

What is the ratio of the surface
charge densities σ1/σ2 on the
spheres?

(A)
r1
r2

(B)
r21
r22

(C)
r2
r1
←

(D)
r32
r31



Charge distribution on a conductor

An illustrative example (25.8), electric field around conductor.
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perpendicular to the displacement d sS; therefore, E
S

? d sS 5 0. Using this result and 
Equation 25.3, we conclude that the potential difference between ! and " is nec-
essarily zero:

 V" 2 V! 5 2 3
"

!

E
S

? d sS 5 0 

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

the surface of any charged conductor in electrostatic equilibrium is an equi-
potential surface: every point on the surface of a charged conductor in equi-
librium is at the same electric potential. Furthermore, because the electric 
field is zero inside the conductor, the electric potential is constant everywhere 
inside the conductor and equal to its value at the surface. 

Because of the constant value of the potential, no work is required to move a charge 
from the interior of a charged conductor to its surface.
 Consider a solid metal conducting sphere of radius R and total positive charge Q 
as shown in Figure 25.18a. As determined in part (A) of Example 24.3, the electric 
field outside the sphere is keQ /r 2 and points radially outward. Because the field 
outside a spherically symmetric charge distribution is identical to that of a point 
charge, we expect the potential to also be that of a point charge, keQ /r. At the 
surface of the conducting sphere in Figure 25.18a, the potential must be keQ /R. 
Because the entire sphere must be at the same potential, the potential at any point 
within the sphere must also be keQ /R. Figure 25.18b is a plot of the electric poten-
tial as a function of r, and Figure 25.18c shows how the electric field varies with r.
 When a net charge is placed on a spherical conductor, the surface charge density 
is uniform as indicated in Figure 25.18a. If the conductor is nonspherical as in Fig-
ure 25.17, however, the surface charge density is high where the radius of curvature 
is small (as noted in Section 24.4) and low where the radius of curvature is large. 
Because the electric field immediately outside the conductor is proportional to the 
surface charge density, the electric field is large near convex points having small radii 
of curvature and reaches very high values at sharp points. In Example 25.8, the rela-
tionship between electric field and radius of curvature is explored mathematically.

b

c

a R

V

keQ
R

keQ
r

r

E
keQ
r 2

r
R

!

!

!

! !

! !

!

Figure 25.18  (a) The excess 
charge on a conducting sphere of 
radius R is uniformly distributed 
on its surface. (b) Electric potential 
versus distance r from the center 
of the charged conducting sphere. 
(c) Electric field magnitude versus 
distance r from the center of the 
charged conducting sphere.

Example 25.8   Two Connected Charged Spheres

Two spherical conductors of radii r1 and r2 are separated by a distance much 
greater than the radius of either sphere. The spheres are connected by a con-
ducting wire as shown in Figure 25.19. The charges on the spheres in equilib-
rium are q1 and q2, respectively, and they are uniformly charged. Find the ratio 
of the magnitudes of the electric fields at the surfaces of the spheres.

Conceptualize  Imagine the spheres are much farther apart than shown in Fig-
ure 25.19. Because they are so far apart, the field of one does not affect the 
charge distribution on the other. The conducting wire between them ensures 
that both spheres have the same electric potential.

Categorize  Because the spheres are so far apart, we model the charge dis-
tribution on them as spherically symmetric, and we can model the field and 
potential outside the spheres to be that due to point charges.

S O L U T I O N

r1

q1

r2
q2

Figure 25.19  (Example 25.8) Two 
charged spherical conductors connected 
by a conducting wire. The spheres are at 
the same electric potential V.

Analyze  Set the electric potentials at the surfaces of the 
spheres equal to each other:

V 5 ke 
q1

r1
5 ke 

q2

r2

At all points on the object V is
constant.

V1 = V2

E1r1 = E2r2

E1

E2
=

r2
r1

Since r2 < r1, E1 < E2 .

⇒ sharper curvature of surface,
stronger electric field



Corona Discharge

A corona discharge occurs when a conductor at a very high
potential ionizes a fluid (eg. air) that surrounds it.

The fields that form around sharp edges of the conductor are high
enough to form small plasma regions, but not full electric
breakdown.

• responsible for significant power losses in high voltage lines

• useful for
• pool sanitation
• ozone manufacture
• ionizers
• air purifiers
• nitrogen lasers (TEA lasers)



Corona Discharge

A corona discharge occurs when a conductor at a very high
potential ionizes a fluid (eg. air) that surrounds it.

The fields that form around sharp edges of the conductor are high
enough to form small plasma regions, but not full electric
breakdown.

• responsible for significant power losses in high voltage lines

• useful for
• pool sanitation
• ozone manufacture
• ionizers
• air purifiers
• nitrogen lasers (TEA lasers)



Coronal Discharge

1Photo “Wartenburg Pinwheel” by Giles Read. 30–50kV



Corona Discharge

Fork in a microwave.

(Microwave ovens generate electric fields.)

https://www.youtube.com/watch?v=b1MFWbX3Bfc

https://www.youtube.com/watch?v=b1MFWbX3Bfc


Potential Energy: Electric Dipole in an E-Field

Remember:

electric dipole

A pair of charges of equal magnitude q but opposite sign,
separated by a distance, d .

A water molecule is an example
594 CHAPTE R 22 E LECTR IC F I E LDS

22-9 A Dipole in an Electric Field
We have defined the electric dipole moment of an electric dipole to be a vector that
points from the negative to the positive end of the dipole.As you will see, the behavior
of a dipole in a uniform external electric field can be described completely in terms
of the two vectors and ,with no need of any details about the dipole’s structure.

A molecule of water (H2O) is an electric dipole; Fig. 22-18 shows why. There
the black dots represent the oxygen nucleus (having eight protons) and the two
hydrogen nuclei (having one proton each). The colored enclosed areas represent
the regions in which electrons can be located around the nuclei.

In a water molecule, the two hydrogen atoms and the oxygen atom do not
lie on a straight line but form an angle of about 105°, as shown in Fig. 22-18. As
a result, the molecule has a definite “oxygen side” and “hydrogen side.”
Moreover, the 10 electrons of the molecule tend to remain closer to the oxygen
nucleus than to the hydrogen nuclei. This makes the oxygen side of the molecule
slightly more negative than the hydrogen side and creates an electric dipole
moment that points along the symmetry axis of the molecule as shown.
If the water molecule is placed in an external electric field, it behaves as would be
expected of the more abstract electric dipole of Fig. 22-8.

To examine this behavior, we now consider such an abstract dipole in a uniform
external electric field , as shown in Fig. 22-19a.We assume that the dipole is a rigid
structure that consists of two centers of opposite charge, each of magnitude q, sepa-
rated by a distance d.The dipole moment makes an angle u with field .

Electrostatic forces act on the charged ends of the dipole. Because the
electric field is uniform, those forces act in opposite directions (as shown in
Fig. 22-19a) and with the same magnitude F ! qE. Thus, because the field is
uniform, the net force on the dipole from the field is zero and the center of mass
of the dipole does not move. However, the forces on the charged ends do produce
a net torque t: on the dipole about its center of mass. The center of mass lies on
the line connecting the charged ends, at some distance x from one end and thus
a distance d " x from the other end. From Eq. 10-39 (t ! rF sin f), we can write
the magnitude of the net torque t: as

t ! Fx sin u # F(d " x) sin u ! Fd sin u. (22-32)

We can also write the magnitude of t: in terms of the magnitudes of the elec-
tric field E and the dipole moment p ! qd. To do so, we substitute qE for F and
p/q for d in Eq. 22-32, finding that the magnitude of t: is

t ! pE sin u. (22-33)

We can generalize this equation to vector form as

(torque on a dipole). (22-34)

Vectors p: and are shown in Fig. 22-19b. The torque acting on a dipole tends to
rotate p: (hence the dipole) into the direction of field , thereby reducing u. In
Fig. 22-19, such rotation is clockwise. As we discussed in Chapter 10, we can rep-
resent a torque that gives rise to a clockwise rotation by including a minus sign
with the magnitude of the torque.With that notation, the torque of Fig. 22-19 is

t ! "pE sin u. (22-35)

Potential Energy of an Electric Dipole
Potential energy can be associated with the orientation of an electric dipole in an
electric field. The dipole has its least potential energy when it is in its equilibrium
orientation, which is when its moment p: is lined up with the field (thenE
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Fig. 22-18 A molecule of H2O, showing
the three nuclei (represented by dots) and
the regions in which the electrons can be lo-
cated.The electric dipole moment p: points
from the (negative) oxygen side to the (pos-
itive) hydrogen side of the molecule.
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Fig. 22-19 (a) An electric dipole in a
uniform external electric field E

:
.Two cen-

ters of equal but opposite charge are sepa-
rated by distance d. The line between them
represents their rigid connection. (b) Field
E
:

causes a torque t: on the dipole.The di-
rection of t: is into the page, as represented
by the symbol !.

The dipole is being 
torqued into alignment.
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Electric Dipole in an Electric Field (26.6)

Because the net charge of a dipole is zero, the net force is zero
also. But there is a torque!
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the black dots represent the oxygen nucleus (having eight protons) and the two
hydrogen nuclei (having one proton each). The colored enclosed areas represent
the regions in which electrons can be located around the nuclei.
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Moreover, the 10 electrons of the molecule tend to remain closer to the oxygen
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slightly more negative than the hydrogen side and creates an electric dipole
moment that points along the symmetry axis of the molecule as shown.
If the water molecule is placed in an external electric field, it behaves as would be
expected of the more abstract electric dipole of Fig. 22-8.

To examine this behavior, we now consider such an abstract dipole in a uniform
external electric field , as shown in Fig. 22-19a.We assume that the dipole is a rigid
structure that consists of two centers of opposite charge, each of magnitude q, sepa-
rated by a distance d.The dipole moment makes an angle u with field .

Electrostatic forces act on the charged ends of the dipole. Because the
electric field is uniform, those forces act in opposite directions (as shown in
Fig. 22-19a) and with the same magnitude F ! qE. Thus, because the field is
uniform, the net force on the dipole from the field is zero and the center of mass
of the dipole does not move. However, the forces on the charged ends do produce
a net torque t: on the dipole about its center of mass. The center of mass lies on
the line connecting the charged ends, at some distance x from one end and thus
a distance d " x from the other end. From Eq. 10-39 (t ! rF sin f), we can write
the magnitude of the net torque t: as

t ! Fx sin u # F(d " x) sin u ! Fd sin u. (22-32)

We can also write the magnitude of t: in terms of the magnitudes of the elec-
tric field E and the dipole moment p ! qd. To do so, we substitute qE for F and
p/q for d in Eq. 22-32, finding that the magnitude of t: is

t ! pE sin u. (22-33)

We can generalize this equation to vector form as

(torque on a dipole). (22-34)

Vectors p: and are shown in Fig. 22-19b. The torque acting on a dipole tends to
rotate p: (hence the dipole) into the direction of field , thereby reducing u. In
Fig. 22-19, such rotation is clockwise. As we discussed in Chapter 10, we can rep-
resent a torque that gives rise to a clockwise rotation by including a minus sign
with the magnitude of the torque.With that notation, the torque of Fig. 22-19 is

t ! "pE sin u. (22-35)
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θ is the angle between the p and E

τ = r × F

= 2(d/2)(qE ) sin θ [clockwise]

and p = qd

τ = pE sin θ [clockwise]

In general,

τ = p× E



Electric Dipole in an Electric Field (26.6)

Because the net charge of a dipole is zero, the net force is zero
also. But there is a torque!

594 CHAPTE R 22 E LECTR IC F I E LDS

22-9 A Dipole in an Electric Field
We have defined the electric dipole moment of an electric dipole to be a vector that
points from the negative to the positive end of the dipole.As you will see, the behavior
of a dipole in a uniform external electric field can be described completely in terms
of the two vectors and ,with no need of any details about the dipole’s structure.

A molecule of water (H2O) is an electric dipole; Fig. 22-18 shows why. There
the black dots represent the oxygen nucleus (having eight protons) and the two
hydrogen nuclei (having one proton each). The colored enclosed areas represent
the regions in which electrons can be located around the nuclei.

In a water molecule, the two hydrogen atoms and the oxygen atom do not
lie on a straight line but form an angle of about 105°, as shown in Fig. 22-18. As
a result, the molecule has a definite “oxygen side” and “hydrogen side.”
Moreover, the 10 electrons of the molecule tend to remain closer to the oxygen
nucleus than to the hydrogen nuclei. This makes the oxygen side of the molecule
slightly more negative than the hydrogen side and creates an electric dipole
moment that points along the symmetry axis of the molecule as shown.
If the water molecule is placed in an external electric field, it behaves as would be
expected of the more abstract electric dipole of Fig. 22-8.

To examine this behavior, we now consider such an abstract dipole in a uniform
external electric field , as shown in Fig. 22-19a.We assume that the dipole is a rigid
structure that consists of two centers of opposite charge, each of magnitude q, sepa-
rated by a distance d.The dipole moment makes an angle u with field .

Electrostatic forces act on the charged ends of the dipole. Because the
electric field is uniform, those forces act in opposite directions (as shown in
Fig. 22-19a) and with the same magnitude F ! qE. Thus, because the field is
uniform, the net force on the dipole from the field is zero and the center of mass
of the dipole does not move. However, the forces on the charged ends do produce
a net torque t: on the dipole about its center of mass. The center of mass lies on
the line connecting the charged ends, at some distance x from one end and thus
a distance d " x from the other end. From Eq. 10-39 (t ! rF sin f), we can write
the magnitude of the net torque t: as

t ! Fx sin u # F(d " x) sin u ! Fd sin u. (22-32)

We can also write the magnitude of t: in terms of the magnitudes of the elec-
tric field E and the dipole moment p ! qd. To do so, we substitute qE for F and
p/q for d in Eq. 22-32, finding that the magnitude of t: is

t ! pE sin u. (22-33)

We can generalize this equation to vector form as

(torque on a dipole). (22-34)

Vectors p: and are shown in Fig. 22-19b. The torque acting on a dipole tends to
rotate p: (hence the dipole) into the direction of field , thereby reducing u. In
Fig. 22-19, such rotation is clockwise. As we discussed in Chapter 10, we can rep-
resent a torque that gives rise to a clockwise rotation by including a minus sign
with the magnitude of the torque.With that notation, the torque of Fig. 22-19 is

t ! "pE sin u. (22-35)
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θ is the angle between the p and E

τ = r × F

= 2(d/2)(qE ) sin θ [clockwise]

and p = qd

τ = pE sin θ [clockwise]

In general,

τ = p× E



Electric Dipole in an Electric Field (26.6)
We can also find an expression for the potential energy of a dipole
in an E-field. Define U = 0 when θ = π

2 (the dipole is ⊥ to the
field lines). For a conservative force:

∆U = −Wint

U(θ) −���
��:0

U(π/2) = −

∫θ
π/2

τττ · dθθθ ′

U(θ) = −

∫θ
π/2

−τdθ ′

where the minus sign inside the integral is due to τττ being
clockwise, while θ increases counter clockwise.

U = pE [− cos θ]θπ/2
= −pE cos θ

U = −p · E

can be positive or negative.



Question: Electric Dipole in an Electric Field
The figure shows four orientations of an electric dipole in an
external electric field. Rank the orientations according to the
magnitude of the torque on the dipole, greatest first.

59522-9 A DI POLE I N AN E LECTR IC F I E LD
PART 3

). It has greater potential energy in all other orientations. Thus
the dipole is like a pendulum, which has its least gravitational potential energy in
its equilibrium orientation—at its lowest point. To rotate the dipole or the
pendulum to any other orientation requires work by some external agent.

In any situation involving potential energy, we are free to define the zero-
potential-energy configuration in a perfectly arbitrary way because only differ-
ences in potential energy have physical meaning. It turns out that the expres-
sion for the potential energy of an electric dipole in an external electric field is
simplest if we choose the potential energy to be zero when the angle u in Fig.
22-19 is 90°. We then can find the potential energy U of the dipole at any other
value of u with Eq. 8-1 (!U " #W) by calculating the work W done by the field
on the dipole when the dipole is rotated to that value of u from 90°.With the aid
of Eq. 10-53 (W " !t du) and Eq. 22-35, we find that the potential energy U at
any angle u is

(22-36)

Evaluating the integral leads to

U " #pE cos u. (22-37)

We can generalize this equation to vector form as

(potential energy of a dipole). (22-38)

Equations 22-37 and 22-38 show us that the potential energy of the dipole is least
( ) when ( and are in the same direction); the potential energy is
greatest ( ) when 180° ( and are in opposite directions).

When a dipole rotates from an initial orientation ui to another orientation uf,
the work W done on the dipole by the electric field is

W " #!U " #(Uf # Ui), (22-39)

where Uf and Ui are calculated with Eq. 22-38. If the change in orientation is
caused by an applied torque (commonly said to be due to an external agent), then
the work Wa done on the dipole by the applied torque is the negative of the work
done on the dipole by the field; that is,

Wa " #W " (Uf # Ui). (22-40)

Microwave Cooking
Food can be warmed and cooked in a microwave oven if the food contains water
because water molecules are electric dipoles. When you turn on the oven, the mi-
crowave source sets up a rapidly oscillating electric field within the oven and
thus also within the food. From Eq. 22-34, we see that any electric field pro-
duces a torque on an electric dipole moment to align with . Because the
oven’s oscillates, the water molecules continuously flip-flop in a frustrated at-
tempt to align with .

Energy is transferred from the electric field to the thermal energy of the water
(and thus of the food) where three water molecules happened to have bonded to-
gether to form a group. The flip-flop breaks some of the bonds. When the mole-
cules reform the bonds, energy is transferred to the random motion of the group
and then to the surrounding molecules. Soon, the thermal energy of the water is
enough to cook the food. Sometimes the heating is surprising. If you heat a jelly
donut, for example, the jelly (which holds a lot of water) heats far more than the
donut material (which holds much less water). Although the exterior of the donut
may not be hot, biting into the jelly can burn you. If water molecules were not
electric dipoles, we would not have microwave ovens.
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The figure shows four orientations of an
electric dipole in an external electric
field. Rank the orientations according
to (a) the magnitude of the torque on
the dipole and (b) the potential energy
of the dipole, greatest first.
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(A) 1, 2, 3, 4

(B) (1 and 3), (2 and 4)

(C) (2 and 4), (1 and 3)

(D) all the same
1Page 595, Halliday, Resnick, Walker.
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its equilibrium orientation—at its lowest point. To rotate the dipole or the
pendulum to any other orientation requires work by some external agent.

In any situation involving potential energy, we are free to define the zero-
potential-energy configuration in a perfectly arbitrary way because only differ-
ences in potential energy have physical meaning. It turns out that the expres-
sion for the potential energy of an electric dipole in an external electric field is
simplest if we choose the potential energy to be zero when the angle u in Fig.
22-19 is 90°. We then can find the potential energy U of the dipole at any other
value of u with Eq. 8-1 (!U " #W) by calculating the work W done by the field
on the dipole when the dipole is rotated to that value of u from 90°.With the aid
of Eq. 10-53 (W " !t du) and Eq. 22-35, we find that the potential energy U at
any angle u is

(22-36)

Evaluating the integral leads to

U " #pE cos u. (22-37)

We can generalize this equation to vector form as

(potential energy of a dipole). (22-38)

Equations 22-37 and 22-38 show us that the potential energy of the dipole is least
( ) when ( and are in the same direction); the potential energy is
greatest ( ) when 180° ( and are in opposite directions).

When a dipole rotates from an initial orientation ui to another orientation uf,
the work W done on the dipole by the electric field is

W " #!U " #(Uf # Ui), (22-39)

where Uf and Ui are calculated with Eq. 22-38. If the change in orientation is
caused by an applied torque (commonly said to be due to an external agent), then
the work Wa done on the dipole by the applied torque is the negative of the work
done on the dipole by the field; that is,

Wa " #W " (Uf # Ui). (22-40)

Microwave Cooking
Food can be warmed and cooked in a microwave oven if the food contains water
because water molecules are electric dipoles. When you turn on the oven, the mi-
crowave source sets up a rapidly oscillating electric field within the oven and
thus also within the food. From Eq. 22-34, we see that any electric field pro-
duces a torque on an electric dipole moment to align with . Because the
oven’s oscillates, the water molecules continuously flip-flop in a frustrated at-
tempt to align with .

Energy is transferred from the electric field to the thermal energy of the water
(and thus of the food) where three water molecules happened to have bonded to-
gether to form a group. The flip-flop breaks some of the bonds. When the mole-
cules reform the bonds, energy is transferred to the random motion of the group
and then to the surrounding molecules. Soon, the thermal energy of the water is
enough to cook the food. Sometimes the heating is surprising. If you heat a jelly
donut, for example, the jelly (which holds a lot of water) heats far more than the
donut material (which holds much less water). Although the exterior of the donut
may not be hot, biting into the jelly can burn you. If water molecules were not
electric dipoles, we would not have microwave ovens.
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(A) 1, 2, 3, 4

(B) (1 and 3), (2 and 4)

(C) (2 and 4), (1 and 3)

(D) all the same←
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Question: Electric Dipole in an Electric Field
The figure shows four orientations of an electric dipole in an
external electric field. Rank the orientations according to the
potential energy of the dipole, greatest first.
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). It has greater potential energy in all other orientations. Thus
the dipole is like a pendulum, which has its least gravitational potential energy in
its equilibrium orientation—at its lowest point. To rotate the dipole or the
pendulum to any other orientation requires work by some external agent.

In any situation involving potential energy, we are free to define the zero-
potential-energy configuration in a perfectly arbitrary way because only differ-
ences in potential energy have physical meaning. It turns out that the expres-
sion for the potential energy of an electric dipole in an external electric field is
simplest if we choose the potential energy to be zero when the angle u in Fig.
22-19 is 90°. We then can find the potential energy U of the dipole at any other
value of u with Eq. 8-1 (!U " #W) by calculating the work W done by the field
on the dipole when the dipole is rotated to that value of u from 90°.With the aid
of Eq. 10-53 (W " !t du) and Eq. 22-35, we find that the potential energy U at
any angle u is

(22-36)

Evaluating the integral leads to

U " #pE cos u. (22-37)

We can generalize this equation to vector form as

(potential energy of a dipole). (22-38)

Equations 22-37 and 22-38 show us that the potential energy of the dipole is least
( ) when ( and are in the same direction); the potential energy is
greatest ( ) when 180° ( and are in opposite directions).

When a dipole rotates from an initial orientation ui to another orientation uf,
the work W done on the dipole by the electric field is

W " #!U " #(Uf # Ui), (22-39)

where Uf and Ui are calculated with Eq. 22-38. If the change in orientation is
caused by an applied torque (commonly said to be due to an external agent), then
the work Wa done on the dipole by the applied torque is the negative of the work
done on the dipole by the field; that is,

Wa " #W " (Uf # Ui). (22-40)

Microwave Cooking
Food can be warmed and cooked in a microwave oven if the food contains water
because water molecules are electric dipoles. When you turn on the oven, the mi-
crowave source sets up a rapidly oscillating electric field within the oven and
thus also within the food. From Eq. 22-34, we see that any electric field pro-
duces a torque on an electric dipole moment to align with . Because the
oven’s oscillates, the water molecules continuously flip-flop in a frustrated at-
tempt to align with .

Energy is transferred from the electric field to the thermal energy of the water
(and thus of the food) where three water molecules happened to have bonded to-
gether to form a group. The flip-flop breaks some of the bonds. When the mole-
cules reform the bonds, energy is transferred to the random motion of the group
and then to the surrounding molecules. Soon, the thermal energy of the water is
enough to cook the food. Sometimes the heating is surprising. If you heat a jelly
donut, for example, the jelly (which holds a lot of water) heats far more than the
donut material (which holds much less water). Although the exterior of the donut
may not be hot, biting into the jelly can burn you. If water molecules were not
electric dipoles, we would not have microwave ovens.
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to (a) the magnitude of the torque on
the dipole and (b) the potential energy
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its equilibrium orientation—at its lowest point. To rotate the dipole or the
pendulum to any other orientation requires work by some external agent.
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sion for the potential energy of an electric dipole in an external electric field is
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22-19 is 90°. We then can find the potential energy U of the dipole at any other
value of u with Eq. 8-1 (!U " #W) by calculating the work W done by the field
on the dipole when the dipole is rotated to that value of u from 90°.With the aid
of Eq. 10-53 (W " !t du) and Eq. 22-35, we find that the potential energy U at
any angle u is
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Evaluating the integral leads to
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Equations 22-37 and 22-38 show us that the potential energy of the dipole is least
( ) when ( and are in the same direction); the potential energy is
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the work W done on the dipole by the electric field is

W " #!U " #(Uf # Ui), (22-39)

where Uf and Ui are calculated with Eq. 22-38. If the change in orientation is
caused by an applied torque (commonly said to be due to an external agent), then
the work Wa done on the dipole by the applied torque is the negative of the work
done on the dipole by the field; that is,

Wa " #W " (Uf # Ui). (22-40)

Microwave Cooking
Food can be warmed and cooked in a microwave oven if the food contains water
because water molecules are electric dipoles. When you turn on the oven, the mi-
crowave source sets up a rapidly oscillating electric field within the oven and
thus also within the food. From Eq. 22-34, we see that any electric field pro-
duces a torque on an electric dipole moment to align with . Because the
oven’s oscillates, the water molecules continuously flip-flop in a frustrated at-
tempt to align with .

Energy is transferred from the electric field to the thermal energy of the water
(and thus of the food) where three water molecules happened to have bonded to-
gether to form a group. The flip-flop breaks some of the bonds. When the mole-
cules reform the bonds, energy is transferred to the random motion of the group
and then to the surrounding molecules. Soon, the thermal energy of the water is
enough to cook the food. Sometimes the heating is surprising. If you heat a jelly
donut, for example, the jelly (which holds a lot of water) heats far more than the
donut material (which holds much less water). Although the exterior of the donut
may not be hot, biting into the jelly can burn you. If water molecules were not
electric dipoles, we would not have microwave ovens.
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Microwave Ovens

An application of the fact that a dipole experiences a torque in an
electric field is microwave cooking.

Microwave ovens produce electric fields that change direction
rapidly.

Since water molecules are dipoles, they begin to rotate to align
with the field, back and forth.

This motion becomes thermal energy in the food.



Van de Graaf generator

 25.8 Applications of Electrostatics 765

 After recording measurements on thousands of droplets, Millikan and his 
coworkers found that all droplets, to within about 1% precision, had a charge equal 
to some integer multiple of the elementary charge e :

 q 5 ne    n 5 0, 21, 22, 23, . . . 

where e 5 1.60 3 10219 C. Millikan’s experiment yields conclusive evidence that 
charge is quantized. For this work, he was awarded the Nobel Prize in Physics in 1923.

25.8 Applications of Electrostatics
The practical application of electrostatics is represented by such devices as light-
ning rods and electrostatic precipitators and by such processes as xerography and 
the painting of automobiles. Scientific devices based on the principles of electro-
statics include electrostatic generators, the field-ion microscope, and ion-drive 
rocket engines. Details of two devices are given below.

The Van de Graaff Generator
Experimental results show that when a charged conductor is placed in contact with 
the inside of a hollow conductor, all the charge on the charged conductor is trans-
ferred to the hollow conductor. In principle, the charge on the hollow conductor 
and its electric potential can be increased without limit by repetition of the process.
 In 1929, Robert J. Van de Graaff (1901–1967) used this principle to design and 
build an electrostatic generator, and a schematic representation of it is given in 
Figure 25.23. This type of generator was once used extensively in nuclear physics 
research. Charge is delivered continuously to a high-potential electrode by means 
of a moving belt of insulating material. The high-voltage electrode is a hollow metal 
dome mounted on an insulating column. The belt is charged at point ! by means of 
a corona discharge between comb-like metallic needles and a grounded grid. The 
needles are maintained at a positive electric potential of typically 104 V. The positive 
charge on the moving belt is transferred to the dome by a second comb of needles at 
point ". Because the electric field inside the dome is negligible, the positive charge 
on the belt is easily transferred to the conductor regardless of its potential. In prac-
tice, it is possible to increase the electric potential of the dome until electrical dis-
charge occurs through the air. Because the “breakdown” electric field in air is about 
3 3 106 V/m, a sphere 1.00 m in radius can be raised to a maximum potential of  
3 3 106 V. The potential can be increased further by increasing the dome’s radius 
and placing the entire system in a container filled with high-pressure gas.
 Van de Graaff generators can produce potential differences as large as 20 mil-
lion volts. Protons accelerated through such large potential differences receive 
enough energy to initiate nuclear reactions between themselves and various target 
nuclei. Smaller generators are often seen in science classrooms and museums. If a 
person insulated from the ground touches the sphere of a Van de Graaff genera-
tor, his or her body can be brought to a high electric potential. The person’s hair 
acquires a net positive charge, and each strand is repelled by all the others as in the 
opening photograph of Chapter 23.

The Electrostatic Precipitator
One important application of electrical discharge in gases is the electrostatic precipi-
tator. This device removes particulate matter from combustion gases, thereby reduc-
ing air pollution. Precipitators are especially useful in coal-burning power plants 
and industrial operations that generate large quantities of smoke. Current systems 
are able to eliminate more than 99% of the ash from smoke.
 Figure 25.24a (page 766) shows a schematic diagram of an electrostatic precipi-
tator. A high potential difference (typically 40 to 100 kV) is maintained between 
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Figure 25.23  Schematic dia-
gram of a Van de Graaff generator. 
Charge is transferred to the metal 
dome at the top by means of a 
moving belt. 
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Milikan’s Oil Drop Experiment

The value of e, the basic unit of charge was found in this
experiment.

From 1908–1913 Robert Millikan worked with Harvey Fletcher on
the experiment.

At the time the idea of both atoms and subatomic particles was
only just gaining acceptance.



Milikan’s Oil Drop Experiment

Some history:

• early 1800s – John Dalton realized chemical reactions could
be explained if there were element-particles

• 1827 – Robert Brown noticed that pollen particles vibrated
randomly when viewed with a microscope

• early 1870s – Ludwig Boltzmann explained thermodynamic
behavior in terms of statistics of particles

• 1897 – JJ Thompson discovered the electron in “cathode
rays”; noticed it had a charge and very small mass

• 1905 – Albert Einstein explained Brown’s “Brownian motion”
in terms of atoms

• 1909 – Ernest Rutherford’s experiment done by Hans Geiger
and Ernest Marsden discovered the nucleus
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discharge is overwhelmed by ultraviolet radiation from the Sun. Newly developed 
dual- spectrum devices combine a narrow-band ultraviolet camera with a visible-
light camera to show a daylight view of the corona discharge in the actual location 
on the transmission tower or cable. The ultraviolet part of the camera is designed 
to operate in a wavelength range in which radiation from the Sun is very weak.

25.7 The Millikan Oil-Drop Experiment
Robert Millikan performed a brilliant set of experiments from 1909 to 1913 in 
which he measured e, the magnitude of the elementary charge on an electron, and 
demonstrated the quantized nature of this charge. His apparatus, diagrammed in 
Figure 25.21, contains two parallel metallic plates. Oil droplets from an atomizer 
are allowed to pass through a small hole in the upper plate. Millikan used x-rays 
to ionize the air in the chamber so that freed electrons would adhere to the oil 
drops, giving them a negative charge. A horizontally directed light beam is used to 
illuminate the oil droplets, which are viewed through a telescope whose long axis is 
perpendicular to the light beam. When viewed in this manner, the droplets appear 
as shining stars against a dark background and the rate at which individual drops 
fall can be determined.
 Let’s assume a single drop having a mass m and carrying a charge q is being 
viewed and its charge is negative. If no electric field is present between the plates, 
the two forces acting on the charge are the gravitational force mgS acting down-
ward3 and a viscous drag force F

S
D  acting upward as indicated in Figure 25.22a. The 

drag force is proportional to the drop’s speed as discussed in Section 6.4. When the 
drop reaches its terminal speed vT the two forces balance each other (mg 5 FD).
 Now suppose a battery connected to the plates sets up an electric field between 
the plates such that the upper plate is at the higher electric potential. In this case, a 
third force q E

S
 acts on the charged drop. The particle in a field model applies twice 

to the particle: it is in a gravitational field and an electric field. Because q is negative 
and E

S
 is directed downward, this electric force is directed upward as shown in Fig-

ure 25.22b. If this upward force is strong enough, the drop moves upward and the 
drag force F

S
rD  acts downward. When the upward electric force q E

S
 balances the sum 

of the gravitational force and the downward drag force F
S
rD , the drop reaches a new 

terminal speed v9T in the upward direction.
 With the field turned on, a drop moves slowly upward, typically at rates of hun-
dredths of a centimeter per second. The rate of fall in the absence of a field is 
comparable. Hence, one can follow a single droplet for hours, alternately rising and 
falling, by simply turning the electric field on and off.
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Figure 25.21 Schematic draw-
ing of the Millikan oil-drop 
apparatus.

3There is also a buoyant force on the oil drop due to the surrounding air. This force can be incorporated as a correc-
tion in the gravitational force mgS on the drop, so we will not consider it in our analysis.
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Figure 25.22  The forces acting 
on a negatively charged oil drop-
let in the Millikan experiment.



Question
In an experiment, a potential difference (voltage) of ∆V = 10V is
supplied to a pair of conducting plates separated by a distance
d = 20 cm. What is the electric field strength between the plates?
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The electrostatic force acting on a charged particle located in an external electric
field has the direction of if the charge q of the particle is positive and has the
opposite direction if q is negative.
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CHECKPOINT 3

(a) In the figure, what is the direction of
the electrostatic force on the electron
due to the external electric field shown?
(b) In which direction will the electron
accelerate if it is moving parallel to the y
axis before it encounters the external
field? (c) If, instead, the electron is ini-
tially moving rightward, will its speed
increase, decrease, or remain constant?

x
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E

Fig. 22-14 The Millikan oil-drop appa-
ratus for measuring the elementary charge
e.When a charged oil drop drifted into
chamber C through the hole in plate P1, its
motion could be controlled by closing and
opening switch S and thereby setting up or
eliminating an electric field in chamber C.
The microscope was used to view the drop,
to permit timing of its motion.

Fig. 22-15 Ink-jet printer. Drops shot
from generator G receive a charge in
charging unit C.An input signal from a
computer controls the charge and thus the
effect of field on where the drop lands on
the paper.

E
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22-8 A Point Charge in an Electric Field
In the preceding four sections we worked at the first of our two tasks: given a
charge distribution, to find the electric field it produces in the surrounding space.
Here we begin the second task: to determine what happens to a charged particle
when it is in an electric field set up by other stationary or slowly moving charges.

What happens is that an electrostatic force acts on the particle, as given by

(22-28)

in which q is the charge of the particle (including its sign) and is the electric
field that other charges have produced at the location of the particle. (The field is
not the field set up by the particle itself; to distinguish the two fields, the field
acting on the particle in Eq. 22-28 is often called the external field. A charged
particle or object is not affected by its own electric field.) Equation 22-28 tells us
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! qE
:
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Measuring the Elementary Charge
Equation 22-28 played a role in the measurement of the elementary charge e by
American physicist Robert A. Millikan in 1910–1913. Figure 22-14 is a represen-
tation of his apparatus. When tiny oil drops are sprayed into chamber A, some of
them become charged, either positively or negatively, in the process. Consider a
drop that drifts downward through the small hole in plate P1 and into chamber C.
Let us assume that this drop has a negative charge q.

If switch S in Fig. 22-14 is open as shown, battery B has no electrical effect on
chamber C. If the switch is closed (the connection between chamber C and the
positive terminal of the battery is then complete), the battery causes an excess
positive charge on conducting plate P1 and an excess negative charge on conduct-
ing plate P2. The charged plates set up a downward-directed electric field in
chamber C. According to Eq. 22-28, this field exerts an electrostatic force on any
charged drop that happens to be in the chamber and affects its motion. In partic-
ular, our negatively charged drop will tend to drift upward.

By timing the motion of oil drops with the switch opened and with it closed
and thus determining the effect of the charge q, Millikan discovered that the
values of q were always given by

q ! ne, for n ! 0, "1, "2, "3, . . . , (22-29)

in which e turned out to be the fundamental constant we call the elementary
charge, 1.60 # 10$19 C. Millikan’s experiment is convincing proof that charge is
quantized, and he earned the 1923 Nobel Prize in physics in part for this work.
Modern measurements of the elementary charge rely on a variety of interlocking
experiments, all more precise than the pioneering experiment of Millikan.

Ink-Jet Printing
The need for high-quality, high-speed printing has caused a search for an
alternative to impact printing, such as occurs in a standard typewriter. Building
up letters by squirting tiny drops of ink at the paper is one such alternative.

Figure 22-15 shows a negatively charged drop moving between two conduct-
ing deflecting plates, between which a uniform, downward-directed electric field

has been set up. The drop is deflected upward according to Eq. 22-28 and thenE
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(A) 2 N/C

(B) 50 N/C

(C) 200 N/C

(D) cannot be determined
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22-8 A Point Charge in an Electric Field
In the preceding four sections we worked at the first of our two tasks: given a
charge distribution, to find the electric field it produces in the surrounding space.
Here we begin the second task: to determine what happens to a charged particle
when it is in an electric field set up by other stationary or slowly moving charges.

What happens is that an electrostatic force acts on the particle, as given by

(22-28)

in which q is the charge of the particle (including its sign) and is the electric
field that other charges have produced at the location of the particle. (The field is
not the field set up by the particle itself; to distinguish the two fields, the field
acting on the particle in Eq. 22-28 is often called the external field. A charged
particle or object is not affected by its own electric field.) Equation 22-28 tells us
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Measuring the Elementary Charge
Equation 22-28 played a role in the measurement of the elementary charge e by
American physicist Robert A. Millikan in 1910–1913. Figure 22-14 is a represen-
tation of his apparatus. When tiny oil drops are sprayed into chamber A, some of
them become charged, either positively or negatively, in the process. Consider a
drop that drifts downward through the small hole in plate P1 and into chamber C.
Let us assume that this drop has a negative charge q.

If switch S in Fig. 22-14 is open as shown, battery B has no electrical effect on
chamber C. If the switch is closed (the connection between chamber C and the
positive terminal of the battery is then complete), the battery causes an excess
positive charge on conducting plate P1 and an excess negative charge on conduct-
ing plate P2. The charged plates set up a downward-directed electric field in
chamber C. According to Eq. 22-28, this field exerts an electrostatic force on any
charged drop that happens to be in the chamber and affects its motion. In partic-
ular, our negatively charged drop will tend to drift upward.

By timing the motion of oil drops with the switch opened and with it closed
and thus determining the effect of the charge q, Millikan discovered that the
values of q were always given by

q ! ne, for n ! 0, "1, "2, "3, . . . , (22-29)

in which e turned out to be the fundamental constant we call the elementary
charge, 1.60 # 10$19 C. Millikan’s experiment is convincing proof that charge is
quantized, and he earned the 1923 Nobel Prize in physics in part for this work.
Modern measurements of the elementary charge rely on a variety of interlocking
experiments, all more precise than the pioneering experiment of Millikan.

Ink-Jet Printing
The need for high-quality, high-speed printing has caused a search for an
alternative to impact printing, such as occurs in a standard typewriter. Building
up letters by squirting tiny drops of ink at the paper is one such alternative.

Figure 22-15 shows a negatively charged drop moving between two conduct-
ing deflecting plates, between which a uniform, downward-directed electric field
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discharge is overwhelmed by ultraviolet radiation from the Sun. Newly developed 
dual- spectrum devices combine a narrow-band ultraviolet camera with a visible-
light camera to show a daylight view of the corona discharge in the actual location 
on the transmission tower or cable. The ultraviolet part of the camera is designed 
to operate in a wavelength range in which radiation from the Sun is very weak.

25.7 The Millikan Oil-Drop Experiment
Robert Millikan performed a brilliant set of experiments from 1909 to 1913 in 
which he measured e, the magnitude of the elementary charge on an electron, and 
demonstrated the quantized nature of this charge. His apparatus, diagrammed in 
Figure 25.21, contains two parallel metallic plates. Oil droplets from an atomizer 
are allowed to pass through a small hole in the upper plate. Millikan used x-rays 
to ionize the air in the chamber so that freed electrons would adhere to the oil 
drops, giving them a negative charge. A horizontally directed light beam is used to 
illuminate the oil droplets, which are viewed through a telescope whose long axis is 
perpendicular to the light beam. When viewed in this manner, the droplets appear 
as shining stars against a dark background and the rate at which individual drops 
fall can be determined.
 Let’s assume a single drop having a mass m and carrying a charge q is being 
viewed and its charge is negative. If no electric field is present between the plates, 
the two forces acting on the charge are the gravitational force mgS acting down-
ward3 and a viscous drag force F

S
D  acting upward as indicated in Figure 25.22a. The 

drag force is proportional to the drop’s speed as discussed in Section 6.4. When the 
drop reaches its terminal speed vT the two forces balance each other (mg 5 FD).
 Now suppose a battery connected to the plates sets up an electric field between 
the plates such that the upper plate is at the higher electric potential. In this case, a 
third force q E

S
 acts on the charged drop. The particle in a field model applies twice 

to the particle: it is in a gravitational field and an electric field. Because q is negative 
and E

S
 is directed downward, this electric force is directed upward as shown in Fig-

ure 25.22b. If this upward force is strong enough, the drop moves upward and the 
drag force F

S
rD  acts downward. When the upward electric force q E

S
 balances the sum 

of the gravitational force and the downward drag force F
S
rD , the drop reaches a new 

terminal speed v9T in the upward direction.
 With the field turned on, a drop moves slowly upward, typically at rates of hun-
dredths of a centimeter per second. The rate of fall in the absence of a field is 
comparable. Hence, one can follow a single droplet for hours, alternately rising and 
falling, by simply turning the electric field on and off.
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Figure 25.21 Schematic draw-
ing of the Millikan oil-drop 
apparatus.

3There is also a buoyant force on the oil drop due to the surrounding air. This force can be incorporated as a correc-
tion in the gravitational force mgS on the drop, so we will not consider it in our analysis.
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on a negatively charged oil drop-
let in the Millikan experiment.
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discharge is overwhelmed by ultraviolet radiation from the Sun. Newly developed 
dual- spectrum devices combine a narrow-band ultraviolet camera with a visible-
light camera to show a daylight view of the corona discharge in the actual location 
on the transmission tower or cable. The ultraviolet part of the camera is designed 
to operate in a wavelength range in which radiation from the Sun is very weak.

25.7 The Millikan Oil-Drop Experiment
Robert Millikan performed a brilliant set of experiments from 1909 to 1913 in 
which he measured e, the magnitude of the elementary charge on an electron, and 
demonstrated the quantized nature of this charge. His apparatus, diagrammed in 
Figure 25.21, contains two parallel metallic plates. Oil droplets from an atomizer 
are allowed to pass through a small hole in the upper plate. Millikan used x-rays 
to ionize the air in the chamber so that freed electrons would adhere to the oil 
drops, giving them a negative charge. A horizontally directed light beam is used to 
illuminate the oil droplets, which are viewed through a telescope whose long axis is 
perpendicular to the light beam. When viewed in this manner, the droplets appear 
as shining stars against a dark background and the rate at which individual drops 
fall can be determined.
 Let’s assume a single drop having a mass m and carrying a charge q is being 
viewed and its charge is negative. If no electric field is present between the plates, 
the two forces acting on the charge are the gravitational force mgS acting down-
ward3 and a viscous drag force F

S
D  acting upward as indicated in Figure 25.22a. The 

drag force is proportional to the drop’s speed as discussed in Section 6.4. When the 
drop reaches its terminal speed vT the two forces balance each other (mg 5 FD).
 Now suppose a battery connected to the plates sets up an electric field between 
the plates such that the upper plate is at the higher electric potential. In this case, a 
third force q E

S
 acts on the charged drop. The particle in a field model applies twice 

to the particle: it is in a gravitational field and an electric field. Because q is negative 
and E

S
 is directed downward, this electric force is directed upward as shown in Fig-

ure 25.22b. If this upward force is strong enough, the drop moves upward and the 
drag force F

S
rD  acts downward. When the upward electric force q E

S
 balances the sum 

of the gravitational force and the downward drag force F
S
rD , the drop reaches a new 

terminal speed v9T in the upward direction.
 With the field turned on, a drop moves slowly upward, typically at rates of hun-
dredths of a centimeter per second. The rate of fall in the absence of a field is 
comparable. Hence, one can follow a single droplet for hours, alternately rising and 
falling, by simply turning the electric field on and off.
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ing of the Millikan oil-drop 
apparatus.

3There is also a buoyant force on the oil drop due to the surrounding air. This force can be incorporated as a correc-
tion in the gravitational force mgS on the drop, so we will not consider it in our analysis.
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Figure 25.22  The forces acting 
on a negatively charged oil drop-
let in the Millikan experiment.

FD ∝ vT , w is weight of droplet

qE = w + w
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Milikan’s Oil Drop Experiment

Conclusion: all drops had a charge that was some number of
multiples of e.

q = ne ; n ∈ Z

Accepted value:

e = 1.602176565(35)× 10−19C

Millikan’s value:

e = 1.5924(17)× 10−19C

A bit low...



Milikan’s Oil Drop Experiment

Richard Feynman:

Millikan measured the charge on an electron by an experiment with
falling oil drops, and got an answer which we now know not to be
quite right. It’s a little bit off because he had the incorrect value
for the viscosity of air. It’s interesting to look at the history of
measurements of the charge of an electron, after Millikan. If you
plot them as a function of time, you find that one is a little bit
bigger than Millikan’s, and the next one’s a little bit bigger than
that, and the next one’s a little bit bigger than that, until finally
they settle down to a number which is higher.

Why didn’t they discover the new number was higher right away?
... When they got a number that was too high above Millikan’s,
they thought something must be wrong—and they would look for
and find a reason why something might be wrong. When they got
a number close to Millikan’s value they didn’t look so hard.



Summary

• conductor in an electric field

• dipole in an electric field

• Millikan’s experiment

Homework
• Study for test tomorrow.

Serway & Jewett:

• Ch 25, Problems: 49, 51


