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Last time

• Potential of charged conductor

• dipole in a magnetic field

• Millikan’s experiment - skipping for now
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• Van de Graaf generator

• Capacitors

• Potential difference and charged plates

• Capacitance

• Capacitance of a parallel plate capacitor

• Capacitance of a spherical and cylindrical capacitors



Van de Graaf generator

 25.8 Applications of Electrostatics 765

 After recording measurements on thousands of droplets, Millikan and his 
coworkers found that all droplets, to within about 1% precision, had a charge equal 
to some integer multiple of the elementary charge e :

 q 5 ne    n 5 0, 21, 22, 23, . . . 

where e 5 1.60 3 10219 C. Millikan’s experiment yields conclusive evidence that 
charge is quantized. For this work, he was awarded the Nobel Prize in Physics in 1923.

25.8 Applications of Electrostatics
The practical application of electrostatics is represented by such devices as light-
ning rods and electrostatic precipitators and by such processes as xerography and 
the painting of automobiles. Scientific devices based on the principles of electro-
statics include electrostatic generators, the field-ion microscope, and ion-drive 
rocket engines. Details of two devices are given below.

The Van de Graaff Generator
Experimental results show that when a charged conductor is placed in contact with 
the inside of a hollow conductor, all the charge on the charged conductor is trans-
ferred to the hollow conductor. In principle, the charge on the hollow conductor 
and its electric potential can be increased without limit by repetition of the process.
 In 1929, Robert J. Van de Graaff (1901–1967) used this principle to design and 
build an electrostatic generator, and a schematic representation of it is given in 
Figure 25.23. This type of generator was once used extensively in nuclear physics 
research. Charge is delivered continuously to a high-potential electrode by means 
of a moving belt of insulating material. The high-voltage electrode is a hollow metal 
dome mounted on an insulating column. The belt is charged at point ! by means of 
a corona discharge between comb-like metallic needles and a grounded grid. The 
needles are maintained at a positive electric potential of typically 104 V. The positive 
charge on the moving belt is transferred to the dome by a second comb of needles at 
point ". Because the electric field inside the dome is negligible, the positive charge 
on the belt is easily transferred to the conductor regardless of its potential. In prac-
tice, it is possible to increase the electric potential of the dome until electrical dis-
charge occurs through the air. Because the “breakdown” electric field in air is about 
3 3 106 V/m, a sphere 1.00 m in radius can be raised to a maximum potential of  
3 3 106 V. The potential can be increased further by increasing the dome’s radius 
and placing the entire system in a container filled with high-pressure gas.
 Van de Graaff generators can produce potential differences as large as 20 mil-
lion volts. Protons accelerated through such large potential differences receive 
enough energy to initiate nuclear reactions between themselves and various target 
nuclei. Smaller generators are often seen in science classrooms and museums. If a 
person insulated from the ground touches the sphere of a Van de Graaff genera-
tor, his or her body can be brought to a high electric potential. The person’s hair 
acquires a net positive charge, and each strand is repelled by all the others as in the 
opening photograph of Chapter 23.

The Electrostatic Precipitator
One important application of electrical discharge in gases is the electrostatic precipi-
tator. This device removes particulate matter from combustion gases, thereby reduc-
ing air pollution. Precipitators are especially useful in coal-burning power plants 
and industrial operations that generate large quantities of smoke. Current systems 
are able to eliminate more than 99% of the ash from smoke.
 Figure 25.24a (page 766) shows a schematic diagram of an electrostatic precipi-
tator. A high potential difference (typically 40 to 100 kV) is maintained between 
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Figure 25.23  Schematic dia-
gram of a Van de Graaff generator. 
Charge is transferred to the metal 
dome at the top by means of a 
moving belt. 
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Capacitance

capacitor

Any two isolated conductors separated by some distance that can
store different charges.

(When the capacitor is discharged this stored charge is 0.) 65725-2 CAPACITANCE
PART 3
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shape. No matter what their geometry, flat or not, we call these conductors
plates.

Figure 25-3a shows a less general but more conventional arrangement, called
a parallel-plate capacitor, consisting of two parallel conducting plates of area
A separated by a distance d. The symbol we use to represent a capacitor (!") is
based on the structure of a parallel-plate capacitor but is used for capacitors of all
geometries. We assume for the time being that no material medium (such as glass
or plastic) is present in the region between the plates. In Section 25-6, we shall
remove this restriction.

When a capacitor is charged, its plates have charges of equal magnitudes but
opposite signs: !q and "q. However, we refer to the charge of a capacitor as
being q, the absolute value of these charges on the plates. (Note that q is not the
net charge on the capacitor, which is zero.)

Because the plates are conductors, they are equipotential surfaces; all points on a
plate are at the same electric potential. Moreover, there is a potential difference be-
tween the two plates. For historical reasons, we represent the absolute value of this
potential difference with V rather than with the #V we used in previous notation.

The charge q and the potential difference V for a capacitor are proportional
to each other; that is,

q $ CV. (25-1)

The proportionality constant C is called the capacitance of the capacitor. Its
value depends only on the geometry of the plates and not on their charge or
potential difference. The capacitance is a measure of how much charge must be
put on the plates to produce a certain potential difference between them: The
greater the capacitance, the more charge is required.

The SI unit of capacitance that follows from Eq. 25-1 is the coulomb per volt.
This unit occurs so often that it is given a special name, the farad (F):

1 farad $ 1 F $ 1 coulomb per volt $ 1 C/V. (25-2)

As you will see, the farad is a very large unit. Submultiples of the farad, such as
the microfarad (1 mF $ 10"6 F) and the picofarad (1 pF $ 10"12 F), are more
convenient units in practice.

Charging a Capacitor
One way to charge a capacitor is to place it in an electric circuit with a battery.
An electric circuit is a path through which charge can flow. A battery is a device

Fig. 25-3 (a) A parallel-plate capacitor, made up of two plates of area A separated by
a distance d.The charges on the facing plate surfaces have the same magnitude q but
opposite signs. (b) As the field lines show, the electric field due to the charged plates is
uniform in the central region between the plates.The field is not uniform at the edges of
the plates, as indicated by the “fringing” of the field lines there.
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The capacitance of a capacitor relates the potential difference
across the capacitor to its stored charge.



Capacitors

Capacitors can be thought of as devices that store charge at some
particular potential difference.

They can also be thought of as storing energy in an electric field.



Capacitors

Usually capacitors are diagrammed and thought of as parallel
sheets of equal area, but paired, isolated conductors of any shape
can act as capacitors.

C H A P T E R
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C A P A C I TA N C E25
W H AT  I S  P H YS I C S ?25-1 One goal of physics is to provide the basic science for practical devices

designed by engineers. The focus of this chapter is on one extremely common 
example—the capacitor, a device in which electrical energy can be stored. For ex-
ample, the batteries in a camera store energy in the photoflash unit by charging a
capacitor. The batteries can supply energy at only a modest rate, too slowly for
the photoflash unit to emit a flash of light. However, once the capacitor is
charged, it can supply energy at a much greater rate when the photoflash unit is
triggered—enough energy to allow the unit to emit a burst of bright light.

The physics of capacitors can be generalized to other devices and to any situ-
ation involving electric fields. For example, Earth’s atmospheric electric field is
modeled by meteorologists as being produced by a huge spherical capacitor that
partially discharges via lightning. The charge that skis collect as they slide along
snow can be modeled as being stored in a capacitor that frequently discharges as
sparks (which can be seen by nighttime skiers on dry snow).

The first step in our discussion of capacitors is to determine how much
charge can be stored.This “how much” is called capacitance.

25-2 Capacitance
Figure 25-1 shows some of the many sizes and shapes of capacitors. Figure 25-2
shows the basic elements of any capacitor — two isolated conductors of any

Fig. 25-1 An assortment of capacitors.

Fig. 25-2 Two conductors, isolated
electrically from each other and from
their surroundings, form a capacitor.
When the capacitor is charged, the
charges on the conductors, or plates as
they are called, have the same magni-
tude q but opposite signs.
(Paul Silvermann/Fundamental
Photographs)

+q –q
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In fact, even isolated conductors on their own (not part of a pair)
can also be said to have a capacitance.



Capacitors

Capacitors for use in circuits can have a number of different
appearances, but often they have a cylindrical shape.

(This does not mean they are cylindrical capacitors! This usually
means they are rolled parallel plate capacitors.)



Capacitors

When a capacitor is charged is has a net charge +Q on one plate
and a net charge −Q on the other plate.

An electric field exists between the plates.

For the case of parallel sheet plates, the field is uniform, except at
the edges of the plates. 65725-2 CAPACITANCE
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geometries. We assume for the time being that no material medium (such as glass
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convenient units in practice.
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One way to charge a capacitor is to place it in an electric circuit with a battery.
An electric circuit is a path through which charge can flow. A battery is a device

Fig. 25-3 (a) A parallel-plate capacitor, made up of two plates of area A separated by
a distance d.The charges on the facing plate surfaces have the same magnitude q but
opposite signs. (b) As the field lines show, the electric field due to the charged plates is
uniform in the central region between the plates.The field is not uniform at the edges of
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Charge of a Capacitor

The net charge on a capacitor is zero: (+Q) + (−Q) = 0.

However, when we speak of the charge of a capacitor, Q, we
mean that the absolute value of the charge on either plate is Q.

The charge on this capacitor is q:

C H A P T E R
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designed by engineers. The focus of this chapter is on one extremely common 
example—the capacitor, a device in which electrical energy can be stored. For ex-
ample, the batteries in a camera store energy in the photoflash unit by charging a
capacitor. The batteries can supply energy at only a modest rate, too slowly for
the photoflash unit to emit a flash of light. However, once the capacitor is
charged, it can supply energy at a much greater rate when the photoflash unit is
triggered—enough energy to allow the unit to emit a burst of bright light.

The physics of capacitors can be generalized to other devices and to any situ-
ation involving electric fields. For example, Earth’s atmospheric electric field is
modeled by meteorologists as being produced by a huge spherical capacitor that
partially discharges via lightning. The charge that skis collect as they slide along
snow can be modeled as being stored in a capacitor that frequently discharges as
sparks (which can be seen by nighttime skiers on dry snow).

The first step in our discussion of capacitors is to determine how much
charge can be stored.This “how much” is called capacitance.

25-2 Capacitance
Figure 25-1 shows some of the many sizes and shapes of capacitors. Figure 25-2
shows the basic elements of any capacitor — two isolated conductors of any

Fig. 25-1 An assortment of capacitors.

Fig. 25-2 Two conductors, isolated
electrically from each other and from
their surroundings, form a capacitor.
When the capacitor is charged, the
charges on the conductors, or plates as
they are called, have the same magni-
tude q but opposite signs.
(Paul Silvermann/Fundamental
Photographs)
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Potential Difference

The potential difference between two points a and b is the
difference between the electric potential at a and the potential at
b.

∆V = Vb − Va

This can be positive or negative, but very, very often, people also
just are interested in the magnitude of it, so quote it as:

|∆V | = |Vb − Va|

Warning: In some books, V is also used to denote potential
difference, as well as electric potential.



Potential Difference across a pair of charged plates
If we have a pair of charged plates at a separation, d , there is a
uniform E-field between them: E = σ

ε0
.

∆V = −

∫d
0

E · ds = −E d

61723-8 APPLYI NG GAUSS’ LAW: PLANAR SYM M ETRY
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0. Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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The potential difference between the two plates, separation, d :

|∆V | = E d



Question

Consider three pairs of parallel plates with the same separation.
The electric field between the plates is uniform and perpendicular
to the plates.
(a) Rank the pairs according to the magnitude of the electric field
between the plates, greatest first.

64124-10 CALCU LATI NG TH E F I E LD FROM TH E POTE NTIAL
PART 3

24-10 Calculating the Field from the Potential
In Section 24-5, you saw how to find the potential at a point f if you know
the electric field along a path from a reference point to point f. In this section,
we propose to go the other way—that is, to find the electric field when we know
the potential. As Fig. 24-3 shows, solving this problem graphically is easy: If we
know the potential V at all points near an assembly of charges, we can draw in
a family of equipotential surfaces. The electric field lines, sketched perpendicular
to those surfaces, reveal the variation of .What we are seeking here is the math-
ematical equivalent of this graphical procedure.

Figure 24-14 shows cross sections of a family of closely spaced equipo-
tential surfaces, the potential difference between each pair of adjacent surfaces
being dV.As the figure suggests, the field at any point P is perpendicular to the
equipotential surface through P.

Suppose that a positive test charge q0 moves through a displacement 
from one equipotential surface to the adjacent surface. From Eq. 24-7, we see that
the work the electric field does on the test charge during the move is !q0 dV.
From Eq. 24-16 and Fig. 24-14, we see that the work done by the electric field may
also be written as the scalar product or q0E(cos u) ds. Equating these
two expressions for the work yields

!q0 dV " q0E(cos u) ds, (24-38)

or (24-39)

Since E cos u is the component of in the direction of Eq. 24-39 becomes

(24-40)

We have added a subscript to E and switched to the partial derivative symbols
to emphasize that Eq. 24-40 involves only the variation of V along a specified
axis (here called the s axis) and only the component of along that axis. In
words, Eq. 24-40 (which is essentially the reverse operation of Eq. 24-18)
states:

E
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d s:,E
:

E cos $ " !
dV
ds

.

(q0E
:

) ! d s:,

d s:

E
:

E
:

The component of in any direction is the negative of the rate at which the electric
potential changes with distance in that direction.

E
:

s
q0

P θ

Two
equipotential

surfaces

+
ds

E

Fig. 24-14 A test charge q0 moves a 
distance from one equipotential surface
to another. (The separation between the 
surfaces has been exaggerated for clarity.)
The displacement makes an angle u with
the direction of the electric field .E

:
ds:

ds:

If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and
z components of at any point are

(24-41)

Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40

becomes

(24-42)

where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.
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E
:

E
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;  Ey " !
#V
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;  Ez " !
#V
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.

E
:

CHECKPOINT 6

The figure shows three pairs of parallel
plates with the same separation, and the
electric potential of each plate. The elec-
tric field between the plates is uniform
and perpendicular to the plates. (a) Rank
the pairs according to the magnitude of
the electric field between the plates,
greatest first. (b) For which pair is the
electric field pointing rightward? (c) If an
electron is released midway between the
third pair of plates, does it remain there,
move rightward at constant speed, move
leftward at constant speed, accelerate
rightward, or accelerate leftward?

–50 V +150 V –20 V +200 V
(1) (2)

–200 V –400 V
(3)
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(A) 1, 2, 3

(B) (1 and 3), 2

(C) 2, (1 and 3)

(D) 3, 2, 1
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Fig. 24-14 A test charge q0 moves a 
distance from one equipotential surface
to another. (The separation between the 
surfaces has been exaggerated for clarity.)
The displacement makes an angle u with
the direction of the electric field .E
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If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and
z components of at any point are

(24-41)

Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40

becomes

(24-42)

where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.
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CHECKPOINT 6

The figure shows three pairs of parallel
plates with the same separation, and the
electric potential of each plate. The elec-
tric field between the plates is uniform
and perpendicular to the plates. (a) Rank
the pairs according to the magnitude of
the electric field between the plates,
greatest first. (b) For which pair is the
electric field pointing rightward? (c) If an
electron is released midway between the
third pair of plates, does it remain there,
move rightward at constant speed, move
leftward at constant speed, accelerate
rightward, or accelerate leftward?

–50 V +150 V –20 V +200 V
(1) (2)

–200 V –400 V
(3)
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Question

Consider three pairs of parallel plates with the same separation.
The electric field between the plates is uniform and perpendicular
to the plates.
(b) For which pair is the electric field pointing rightward?
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24-10 Calculating the Field from the Potential
In Section 24-5, you saw how to find the potential at a point f if you know
the electric field along a path from a reference point to point f. In this section,
we propose to go the other way—that is, to find the electric field when we know
the potential. As Fig. 24-3 shows, solving this problem graphically is easy: If we
know the potential V at all points near an assembly of charges, we can draw in
a family of equipotential surfaces. The electric field lines, sketched perpendicular
to those surfaces, reveal the variation of .What we are seeking here is the math-
ematical equivalent of this graphical procedure.

Figure 24-14 shows cross sections of a family of closely spaced equipo-
tential surfaces, the potential difference between each pair of adjacent surfaces
being dV.As the figure suggests, the field at any point P is perpendicular to the
equipotential surface through P.

Suppose that a positive test charge q0 moves through a displacement 
from one equipotential surface to the adjacent surface. From Eq. 24-7, we see that
the work the electric field does on the test charge during the move is !q0 dV.
From Eq. 24-16 and Fig. 24-14, we see that the work done by the electric field may
also be written as the scalar product or q0E(cos u) ds. Equating these
two expressions for the work yields

!q0 dV " q0E(cos u) ds, (24-38)

or (24-39)

Since E cos u is the component of in the direction of Eq. 24-39 becomes

(24-40)

We have added a subscript to E and switched to the partial derivative symbols
to emphasize that Eq. 24-40 involves only the variation of V along a specified
axis (here called the s axis) and only the component of along that axis. In
words, Eq. 24-40 (which is essentially the reverse operation of Eq. 24-18)
states:
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If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and
z components of at any point are

(24-41)

Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40
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where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.
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The figure shows three pairs of parallel
plates with the same separation, and the
electric potential of each plate. The elec-
tric field between the plates is uniform
and perpendicular to the plates. (a) Rank
the pairs according to the magnitude of
the electric field between the plates,
greatest first. (b) For which pair is the
electric field pointing rightward? (c) If an
electron is released midway between the
third pair of plates, does it remain there,
move rightward at constant speed, move
leftward at constant speed, accelerate
rightward, or accelerate leftward?

–50 V +150 V –20 V +200 V
(1) (2)

–200 V –400 V
(3)
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Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40
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where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.
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The figure shows three pairs of parallel
plates with the same separation, and the
electric potential of each plate. The elec-
tric field between the plates is uniform
and perpendicular to the plates. (a) Rank
the pairs according to the magnitude of
the electric field between the plates,
greatest first. (b) For which pair is the
electric field pointing rightward? (c) If an
electron is released midway between the
third pair of plates, does it remain there,
move rightward at constant speed, move
leftward at constant speed, accelerate
rightward, or accelerate leftward?
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Question

Consider three pairs of parallel plates with the same separation.
The electric field between the plates is uniform and perpendicular
to the plates.
(c) If an electron is released midway between the third pair of
plates, does it
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the electric field along a path from a reference point to point f. In this section,
we propose to go the other way—that is, to find the electric field when we know
the potential. As Fig. 24-3 shows, solving this problem graphically is easy: If we
know the potential V at all points near an assembly of charges, we can draw in
a family of equipotential surfaces. The electric field lines, sketched perpendicular
to those surfaces, reveal the variation of .What we are seeking here is the math-
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the work the electric field does on the test charge during the move is !q0 dV.
From Eq. 24-16 and Fig. 24-14, we see that the work done by the electric field may
also be written as the scalar product or q0E(cos u) ds. Equating these
two expressions for the work yields
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Since E cos u is the component of in the direction of Eq. 24-39 becomes
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We have added a subscript to E and switched to the partial derivative symbols
to emphasize that Eq. 24-40 involves only the variation of V along a specified
axis (here called the s axis) and only the component of along that axis. In
words, Eq. 24-40 (which is essentially the reverse operation of Eq. 24-18)
states:

E
:

Es " !
#V
#s

.

d s:,E
:

E cos $ " !
dV
ds

.

(q0E
:

) ! d s:,

d s:

E
:

E
:

The component of in any direction is the negative of the rate at which the electric
potential changes with distance in that direction.

E
:

s
q0

P θ

Two
equipotential

surfaces

+
ds

E

Fig. 24-14 A test charge q0 moves a 
distance from one equipotential surface
to another. (The separation between the 
surfaces has been exaggerated for clarity.)
The displacement makes an angle u with
the direction of the electric field .E

:
ds:

ds:

If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and
z components of at any point are

(24-41)

Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40

becomes

(24-42)

where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.
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CHECKPOINT 6

The figure shows three pairs of parallel
plates with the same separation, and the
electric potential of each plate. The elec-
tric field between the plates is uniform
and perpendicular to the plates. (a) Rank
the pairs according to the magnitude of
the electric field between the plates,
greatest first. (b) For which pair is the
electric field pointing rightward? (c) If an
electron is released midway between the
third pair of plates, does it remain there,
move rightward at constant speed, move
leftward at constant speed, accelerate
rightward, or accelerate leftward?

–50 V +150 V –20 V +200 V
(1) (2)

–200 V –400 V
(3)
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(A) remain there

(B) move at constant speed

(C) accelerate rightward, or

(D) accelerate leftward?
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The electric field between the plates is uniform and perpendicular
to the plates.
(c) If an electron is released midway between the third pair of
plates, does it

64124-10 CALCU LATI NG TH E F I E LD FROM TH E POTE NTIAL
PART 3

24-10 Calculating the Field from the Potential
In Section 24-5, you saw how to find the potential at a point f if you know
the electric field along a path from a reference point to point f. In this section,
we propose to go the other way—that is, to find the electric field when we know
the potential. As Fig. 24-3 shows, solving this problem graphically is easy: If we
know the potential V at all points near an assembly of charges, we can draw in
a family of equipotential surfaces. The electric field lines, sketched perpendicular
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being dV.As the figure suggests, the field at any point P is perpendicular to the
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Suppose that a positive test charge q0 moves through a displacement 
from one equipotential surface to the adjacent surface. From Eq. 24-7, we see that
the work the electric field does on the test charge during the move is !q0 dV.
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also be written as the scalar product or q0E(cos u) ds. Equating these
two expressions for the work yields
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or (24-39)
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We have added a subscript to E and switched to the partial derivative symbols
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If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and
z components of at any point are

(24-41)

Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40
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where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.
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The figure shows three pairs of parallel
plates with the same separation, and the
electric potential of each plate. The elec-
tric field between the plates is uniform
and perpendicular to the plates. (a) Rank
the pairs according to the magnitude of
the electric field between the plates,
greatest first. (b) For which pair is the
electric field pointing rightward? (c) If an
electron is released midway between the
third pair of plates, does it remain there,
move rightward at constant speed, move
leftward at constant speed, accelerate
rightward, or accelerate leftward?
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Capacitance

When a battery is connected to a pair of plates so that one plate is
connected to the positive terminal of the battery and the other is
connected to the negative terminal, the plates become charged.

778 Chapter 26 Capacitance and Dielectrics

 What determines how much charge is on the plates of a capacitor for a given volt-
age? Experiments show that the quantity of charge Q on a capacitor1 is linearly pro-
portional to the potential difference between the conductors; that is, Q ~ DV. The 
proportionality constant depends on the shape and separation of the conductors.2 
This relationship can be written as Q 5 C DV if we define capacitance as follows:

The capacitance C of a capacitor is defined as the ratio of the magnitude of 
the charge on either conductor to the magnitude of the potential difference 
between the conductors:

 C ;
Q

DV
 (26.1)

By definition capacitance is always a positive quantity. Furthermore, the charge Q and the 
potential difference DV are always expressed in Equation 26.1 as positive quantities.
 From Equation 26.1, we see that capacitance has SI units of coulombs per volt. 
Named in honor of Michael Faraday, the SI unit of capacitance is the farad (F):

 1 F 5 1 C/V  

The farad is a very large unit of capacitance. In practice, typical devices have capac-
itances ranging from microfarads (1026 F) to picofarads (10212 F). We shall use the 
symbol mF to represent microfarads. In practice, to avoid the use of Greek letters, 
physical capacitors are often labeled “mF” for microfarads and “mmF” for micromi-
crofarads or, equivalently, “pF” for picofarads.
 Let’s consider a capacitor formed from a pair of parallel plates as shown in Figure 
26.2. Each plate is connected to one terminal of a battery, which acts as a source of 
potential difference. If the capacitor is initially uncharged, the battery establishes 
an electric field in the connecting wires when the connections are made. Let’s focus 
on the plate connected to the negative terminal of the battery. The electric field in 
the wire applies a force on electrons in the wire immediately outside this plate; this 
force causes the electrons to move onto the plate. The movement continues until 
the plate, the wire, and the terminal are all at the same electric potential. Once this 
equilibrium situation is attained, a potential difference no longer exists between 
the terminal and the plate; as a result, no electric field is present in the wire and 

Definition of capacitance X

Pitfall Prevention 26.1
Capacitance Is a Capacity To 
understand capacitance, think of 
similar notions that use a similar 
word. The capacity of a milk carton 
is the volume of milk it can store. 
The heat capacity of an object is 
the amount of energy an object 
can store per unit of temperature 
difference. The capacitance of a 
capacitor is the amount of charge 
the capacitor can store per unit of 
potential difference.

Pitfall Prevention 26.2
Potential Difference Is DV, Not V  
We use the symbol DV for the 
potential difference across a cir-
cuit element or a device because 
this notation is consistent with our 
definition of potential difference 
and with the meaning of the delta 
sign. It is a common but confus-
ing practice to use the symbol V 
without the delta sign for both a 
potential and a potential differ-
ence! Keep that in mind if you 
consult other texts.

1Although the total charge on the capacitor is zero (because there is as much excess positive charge on one conduc-
tor as there is excess negative charge on the other), it is common practice to refer to the magnitude of the charge on 

either conductor as “the charge on the capacitor.” 
2The proportionality between Q and DV can be proven from Coulomb’s law or by experiment.

!Q

"Q

When the capacitor is charged, the 
conductors carry charges of equal 
magnitude and opposite sign.

Figure 26.1  A capacitor 
consists of two conductors. 

d

!Q
"Q

Area # A

" !

When the capacitor is connected 
to the terminals of a battery, 
electrons transfer between the 
plates and the wires so that the 
plates become charged.

Figure 26.2  A parallel-plate 
capacitor consists of two parallel 
conducting plates, each of area A, 
separated by a distance d. 

1Diagram from Serway & Jewett, 9th ed, page 778.



Capacitance

capacitance, C

The constant of proportionality relating the charge on the
capacitor to the potential difference across it:

Q = C |∆V | ; C =
Q

|∆V |

Capacitance is always positive by convention.

∆V is the potential difference between one plate of the capacitor
and the other (chosen positive).

Capacitance is measured in Farads. 1 F = 1 C/V.

C is a property of the geometry of the capacitor.



Capacitance

Q = C (∆V ) ⇒ C =
Q

∆V

C is a property of the geometry of the capacitor.

A particular capacitor will have a particular fixed value of C , just
like a given resistor will have a constant value of resistance R.

For a parallel plate capacitor:

C =
ε0A

d

where d is the separation distance of the plates and A is the area
of each plate



Capacitance Questions

Imagine a parallel plate capacitor.

Does the capacitance

(A) increase

(B) decrease

(C) remain the same

when the separation of the plates d is doubled?

1Halliday, Resnick, Walker, page 661.
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capacitor

(A) increase

(B) decrease

(C) remain the same

when the separation of the plates d is doubled?



Capacitance Questions

Imagine a parallel plate capacitor.

If the potential difference is fixed, eg. the capacitor plate are
charged by a constant 9 V battery, does the charge on the
capacitor

(A) increase

(B) decrease←
(C) remain the same

when the separation of the plates d is doubled?



Capacitance Questions

Imagine a parallel plate capacitor.

If the capacitor is charged to a charge Q then isolated (charge is
fixed), does the potential difference across the capacitor
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Capacitance Questions

Imagine a parallel plate capacitor.

If the capacitor is charged to a charge Q then isolated (charge is
fixed), does the potential difference across the capacitor

(A) increase←
(B) decrease

(C) remain the same

when the separation of the plates d is doubled?



Capacitance

Capacitors with different construction will have different values of
C .

For example,
for a cylinderical capacitor of length L, inner radius a and outer
radius b:

C = 2πε0
L

ln(b/a)

for a spherical capacitor of inner radius a and outer radius b:

C = 4πε0
ab

b − a

for an isolated charged sphere of radius R:

C = 4πε0R
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Capacitance

Capacitors with different construction will have different values of
C .

For example,
for a cylinderical capacitor of length L, inner radius a and outer
radius b:

C = 2πε0
L

ln(b/a)

for a spherical capacitor of inner radius a and outer radius b:

C = 4πε0
ab

b − a

for an isolated charged sphere of radius R:

C = 4πε0R



Summary

• capacitance

• parallel plate capacitors

• cylindrical and spherical capacitors

Homework
Serway & Jewett:

• Ch 26, onward from page 799. Problems: 1, 5, 7, 11, 50, 51


