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Last time

• Van de Graaff generator

• capacitors

• capacitance

• capacitors of different shapes



Warm Up Question

True or false: A component (fixed) capacitor has a capacitance,
even when storing no charge.

(A) true

(B) false
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Overview

• Parallel plate capacitors

• capacitors of different shapes

• Circuits and circuit diagrams

• Capacitors in series and parallel



Capacitance
Capacitors with different construction will have different values of
C .

For example,
for a parallel plate capacitor: C = ε0A

d .

for a cylinderical capacitor of length L, inner radius a and outer
radius b:

C = 2πε0
L

ln(b/a)

for a spherical capacitor of inner radius a and outer radius b:

C = 4πε0
ab

b − a

for an isolated charged sphere of radius R:

C = 4πε0R



Parallel Plate Capacitor
Back to the parallel plate capacitor:

C =
ε0A

d

Let’s justify why this expression should hold.

C =
Q

|∆V |

Assuming the field inside the capacitor is uniform throughout, it is
given by the expression for the field inside infinite planes of charge:

E =
σ

ε0

Replace Q = σA and using we have:

C =
σA

|∆V |
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Parallel Plate Capacitor

Also:

∆V = −

∫
E · ds = −Ed

so:

C =
Q

|∆V |
=
σA

Ed

Using our value for E :

C =
σA

(σ/ε0)d

Confirms that

C =
ε0A

d



Cylindrical Capacitor

For a cylinderical capacitor of length `, much greater than inner
radius a and outer radius b:

C = 2πε0
`

ln(b/a)
=

`

2ke ln(b/a)
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Example 26.1   The Cylindrical Capacitor

A solid cylindrical conductor of radius a and charge 
Q is coaxial with a cylindrical shell of negligible thick-
ness, radius b . a, and charge 2Q (Fig. 26.4a). Find the 
capacitance of this cylindrical capacitor if its length 
is ,.

Conceptualize  Recall that any pair of conductors 
qualifies as a capacitor, so the system described in this 
example therefore qualifies. Figure 26.4b helps visual-
ize the electric field between the conductors. We expect 
the capacitance to depend only on geometric factors, 
which, in this case, are a, b, and ,.

Categorize  Because of the cylindrical symmetry of the 
system, we can use results from previous studies of cylin-
drical systems to find the capacitance.

S O L U T I O N

Substituting this result into Equation 26.1, we find that the capacitance is

 C 5
Q

DV
5

Q
Qd/P0A

 

 C 5
P0A
d

 (26.3)

That is, the capacitance of a parallel-plate capacitor is proportional to the area of 
its plates and inversely proportional to the plate separation.
 Let’s consider how the geometry of these conductors influences the capacity of 
the pair of plates to store charge. As a capacitor is being charged by a battery, elec-
trons flow into the negative plate and out of the positive plate. If the capacitor 
plates are large, the accumulated charges are able to distribute themselves over a 
substantial area and the amount of charge that can be stored on a plate for a given 
potential difference increases as the plate area is increased. Therefore, it is reason-
able that the capacitance is proportional to the plate area A as in Equation 26.3.
 Now consider the region that separates the plates. Imagine moving the plates 
closer together. Consider the situation before any charges have had a chance to 
move in response to this change. Because no charges have moved, the electric field 
between the plates has the same value but extends over a shorter distance. There-
fore, the magnitude of the potential difference between the plates DV 5 Ed (Eq. 
25.6) is smaller. The difference between this new capacitor voltage and the terminal 
voltage of the battery appears as a potential difference across the wires connecting 
the battery to the capacitor, resulting in an electric field in the wires that drives 
more charge onto the plates and increases the potential difference between the 
plates. When the potential difference between the plates again matches that of the 
battery, the flow of charge stops. Therefore, moving the plates closer together causes 
the charge on the capacitor to increase. If d is increased, the charge decreases. As a 
result, the inverse relationship between C and d in Equation 26.3 is reasonable.

Q uick Quiz 26.2  Many computer keyboard buttons are constructed of capacitors 
as shown in Figure 26.3. When a key is pushed down, the soft insulator between 
the movable plate and the fixed plate is compressed. When the key is pressed, 
what happens to the capacitance? (a) It increases. (b) It decreases. (c) It changes 
in a way you cannot determine because the electric circuit connected to the key-
board button may cause a change in DV.

Capacitance of parallel plates X

Key
B

Movable plate

Insulator
Fixed plate

Figure 26.3  (Quick Quiz 26.2) 
One type of computer keyboard 
button.

b
a

!

Gaussian
surface

!Q

!Q

a
Q

Q

b

r

a b

Figure 26.4  (Example 26.1) (a) A cylindrical capacitor consists 
of a solid cylindrical conductor of radius a and length , sur-
rounded by a coaxial cylindrical shell of radius b. (b) End view. 
The electric field lines are radial. The dashed line represents the 
end of a cylindrical gaussian surface of radius r and length ,.



Cylindrical Capacitor
Idea: First find ∆V across the plates, assuming charge Q, then
evaluate Q/|∆V |.

Let λ = Q/` be the charge per unit length.

|∆V | = Va − Vb = −

∫a
b

E · ds

= −

∫a
b

(
2keλ

r

)
dr

= 2keλ ln

(
b

a

)
Capacitance,

C =
Q

∆V
=

Q

2keλ ln
(
b
a

)
C =

2πε0`

ln
(
b
a

)
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Spherical Capacitor
For a spherical capacitor of inner radius a and outer radius b:

C = 4πε0
ab

b − a
=

ab

ke (b − a)
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26.3 Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.
 In studying electric circuits, we use a simplified pictorial representation called a 
circuit diagram. Such a diagram uses circuit symbols to represent various circuit 
elements. The circuit symbols are connected by straight lines that represent the 
wires between the circuit elements. The circuit symbols for capacitors, batteries, 
and switches as well as the color codes used for them in this text are given in Fig-
ure 26.6. The symbol for the capacitor reflects the geometry of the most common 
model for a capacitor, a pair of parallel plates. The positive terminal of the battery 
is at the higher potential and is represented in the circuit symbol by the longer line.

Parallel Combination
Two capacitors connected as shown in Figure 26.7a are known as a parallel combi-
nation of capacitors. Figure 26.7b shows a circuit diagram for this combination of 
capacitors. The left plates of the capacitors are connected to the positive terminal of 
the battery by a conducting wire and are therefore both at the same electric potential 

Substitute the absolute value of DV into Equation 26.1: C 5
Q

DV
5

Q0 Vb 2 Va 0 5
ab

ke 1b 2 a 2  (26.6)

Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E

S
 is parallel to d sS along a radial line:

Vb 2 Va 5 2 3
b

a
 Er dr 5 2keQ 3

b

a
 
dr
r 2 5 keQ c1r d b

a

(1)   Vb 2 Va 5 keQ a1
b

2
1
ab 5 keQ 

a 2 b
ab

Write an expression for the potential difference between 
the two conductors from Equation 25.3:

Vb 2 Va 5 2 3
b

a
E
S

? d sS

Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:

C 5 lim
b S `

  ab
ke 1b 2 a 2 5

ab
ke 1b 2 5

a
ke

5 4pP0a

Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.

WHAT IF ?

Capacitor
symbol

Battery
symbol

symbol
Switch Open

Closed

!

"

Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.

 

▸ 26.2 c o n t i n u e d

Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).

a

b

!Q

"Q

Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.



Spherical Capacitor

|∆V | = Va − Vb = −

∫a
b

E · ds

= −

∫a
b

(
keQ

r2

)
dr

= keQ

(
1

a
−

1

b

)
= keQ

(
b − a

ab

)

Capacitance,

C =
Q

∆V

C =
ab

ke (b − a)



Spherical Capacitor

|∆V | = Va − Vb = −

∫a
b

E · ds

= −

∫a
b

(
keQ

r2

)
dr

= keQ

(
1

a
−

1

b

)
= keQ

(
b − a

ab

)

Capacitance,

C =
Q

∆V

C =
ab

ke (b − a)



Capacitance of Isolated Conductors

Isolated conductors on their own (not part of a pair) can also be
said to have a capacitance.

The “other plate” is taken to be infinitely far away.

The capacitance is found by dividing the charge on the conductor
by it’s electric potential, taking V (∞) = 0



Capacitance of and Isolated Spherical Conductor

For an isolated charged sphere of radius R:

C = 4πε0R =
R

ke

Two ways to argue this,

(1) set a = R and take b →∞ in C = ab
ke(b−a) , or

(2) recall that the potential of a sphere of charge Q is V = keQ
R



Circuits

Circuits consist of electrical components connected by wires.

Some types of components: batteries, resistors, capacitors,
lightbulbs, LEDs, diodes, inductors, transistors, chips, etc.

The wires in circuits can be thought of as channels for an electric
field that distributes charge to (or charge flow through) the
components.



Circuits

The different elements can be combined together in various ways
to make complete circuits: paths for charge to flow from one
terminal of a battery or power supply to the other.658 CHAPTE R 25 CAPACITANCE

HALLIDAY REVISED

that maintains a certain potential difference between its terminals (points at
which charge can enter or leave the battery) by means of internal electrochemi-
cal reactions in which electric forces can move internal charge.

In Fig. 25-4a, a battery B, a switch S, an uncharged capacitor C, and inter-
connecting wires form a circuit. The same circuit is shown in the schematic dia-
gram of Fig. 25-4b, in which the symbols for a battery, a switch, and a capacitor
represent those devices. The battery maintains potential difference V between its
terminals. The terminal of higher potential is labeled ! and is often called the
positive terminal; the terminal of lower potential is labeled " and is often called
the negative terminal.

The circuit shown in Figs. 25-4a and b is said to be incomplete because
switch S is open; that is, the switch does not electrically connect the wires 
attached to it. When the switch is closed, electrically connecting those wires, the
circuit is complete and charge can then flow through the switch and the wires.
As we discussed in Chapter 21, the charge that can flow through a conductor,
such as a wire, is that of electrons. When the circuit of Fig. 25-4 is completed,
electrons are driven through the wires by an electric field that the battery sets
up in the wires. The field drives electrons from capacitor plate h to the positive
terminal of the battery; thus, plate h, losing electrons, becomes positively
charged. The field drives just as many electrons from the negative terminal of
the battery to capacitor plate l; thus, plate l, gaining electrons, becomes nega-
tively charged just as much as plate h, losing electrons, becomes positively
charged.

Initially, when the plates are uncharged, the potential difference between
them is zero. As the plates become oppositely charged, that potential differ-
ence increases until it equals the potential difference V between the terminals
of the battery. Then plate h and the positive terminal of the battery are at the
same potential, and there is no longer an electric field in the wire between
them. Similarly, plate l and the negative terminal reach the same potential,
and there is then no electric field in the wire between them. Thus, with the
field zero, there is no further drive of electrons. The capacitor is then said to
be fully charged, with a potential difference V and charge q that are related
by Eq. 25-1.

In this book we assume that during the charging of a capacitor and after-
ward, charge cannot pass from one plate to the other across the gap separating
them. Also, we assume that a capacitor can retain (or store) charge indefinitely,
until it is put into a circuit where it can be discharged.

Fig. 25-4 (a) Battery B, switch S, and plates h and l of capacitor C, connected in a cir-
cuit. (b) A schematic diagram with the circuit elements represented by their symbols.

(a)

–+
B

S

h
l

C

CHECKPOINT 1

Does the capacitance C of a capacitor increase, decrease, or remain the same (a) when
the charge q on it is doubled and (b) when the potential difference V across it is
tripled?

l

V+
–

(b)

C

B

Terminal

S

h

Terminal

halliday_c25_656-681v2.qxd  23-11-2009  14:32  Page 658

This circuit is said to be incomplete while the switch is open.



Circuit component symbols

battery ∆V
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26.3 Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.
 In studying electric circuits, we use a simplified pictorial representation called a 
circuit diagram. Such a diagram uses circuit symbols to represent various circuit 
elements. The circuit symbols are connected by straight lines that represent the 
wires between the circuit elements. The circuit symbols for capacitors, batteries, 
and switches as well as the color codes used for them in this text are given in Fig-
ure 26.6. The symbol for the capacitor reflects the geometry of the most common 
model for a capacitor, a pair of parallel plates. The positive terminal of the battery 
is at the higher potential and is represented in the circuit symbol by the longer line.

Parallel Combination
Two capacitors connected as shown in Figure 26.7a are known as a parallel combi-
nation of capacitors. Figure 26.7b shows a circuit diagram for this combination of 
capacitors. The left plates of the capacitors are connected to the positive terminal of 
the battery by a conducting wire and are therefore both at the same electric potential 

Substitute the absolute value of DV into Equation 26.1: C 5
Q

DV
5

Q0 Vb 2 Va 0 5
ab

ke 1b 2 a 2  (26.6)

Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E

S
 is parallel to d sS along a radial line:

Vb 2 Va 5 2 3
b

a
 Er dr 5 2keQ 3

b

a
 
dr
r 2 5 keQ c1r d b

a

(1)   Vb 2 Va 5 keQ a1
b

2
1
ab 5 keQ 

a 2 b
ab

Write an expression for the potential difference between 
the two conductors from Equation 25.3:

Vb 2 Va 5 2 3
b

a
E
S

? d sS

Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:

C 5 lim
b S `

  ab
ke 1b 2 a 2 5

ab
ke 1b 2 5

a
ke

5 4pP0a

Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.

WHAT IF ?

Capacitor
symbol

Battery
symbol

symbol
Switch Open

Closed

!

"

Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.

 

▸ 26.2 c o n t i n u e d

Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).

a

b

!Q

"Q

Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.

capacitor C
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Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:
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Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.

WHAT IF ?
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Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.

 

▸ 26.2 c o n t i n u e d

Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).

a

b

!Q

"Q

Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.

switch S
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A spherical capacitor consists of 
an inner sphere of radius a sur-
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radially outward when the inner 
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resistor R
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 Today, thousands of superconductors are known, and as Table 27.3 illustrates, 
the critical temperatures of recently discovered superconductors are substantially 
higher than initially thought possible. Two kinds of superconductors are recog-
nized. The more recently identified ones are essentially ceramics with high criti-
cal temperatures, whereas superconducting materials such as those observed by 
Kamerlingh-Onnes are metals. If a room-temperature superconductor is ever iden-
tified, its effect on technology could be tremendous.
 The value of Tc is sensitive to chemical composition, pressure, and molecular 
structure. Copper, silver, and gold, which are excellent conductors, do not exhibit 
superconductivity.
 One truly remarkable feature of superconductors is that once a current is set up 
in them, it persists without any applied potential difference (because R 5 0). Steady cur-
rents have been observed to persist in superconducting loops for several years with 
no apparent decay!
 An important and useful application of superconductivity is in the development 
of superconducting magnets, in which the magnitudes of the magnetic field are 
approximately ten times greater than those produced by the best normal elec-
tromagnets. Such superconducting magnets are being considered as a means of 
storing energy. Superconducting magnets are currently used in medical magnetic 
resonance imaging, or MRI, units, which produce high-quality images of internal 
organs without the need for excessive exposure of patients to x-rays or other harm-
ful radiation.

27.6 Electrical Power
In typical electric circuits, energy TET is transferred by electrical transmission from 
a source such as a battery to some device such as a lightbulb or a radio receiver. 
Let’s determine an expression that will allow us to calculate the rate of this energy 
transfer. First, consider the simple circuit in Figure 27.11, where energy is delivered 
to a resistor. (Resistors are designated by the circuit symbol .) Because the 
connecting wires also have resistance, some energy is delivered to the wires and 
some to the resistor. Unless noted otherwise, we shall assume the resistance of the 
wires is small compared with the resistance of the circuit element so that the energy 
delivered to the wires is negligible.
 Imagine following a positive quantity of charge Q moving clockwise around the 
circuit in Figure 27.11 from point a through the battery and resistor back to point a. 
We identify the entire circuit as our system. As the charge moves from a to b through 
the battery, the electric potential energy of the system increases by an amount Q DV 

Table 27.3 Critical Temperatures 
for Various Superconductors
Material Tc  (K)

HgBa2Ca2Cu3O8 134
Tl—Ba—Ca—Cu—O 125
Bi—Sr—Ca—Cu—O 105
YBa2Cu3O7 92
Nb3Ge 23.2
Nb3Sn 18.05
Nb 9.46
Pb 7.18
Hg 4.15
Sn 3.72
Al 1.19
Zn 0.88

A small permanent magnet levi-
tated above a disk of the super-
conductor YBa2Cu3O7, which is in 
liquid nitrogen at 77 K.

Co
ur

te
sy

 o
f I

BM
 R

es
ea

rc
h 

La
bo

ra
to

ry

!

b

a

c

d

R

I

V
"

#

The direction of the 
effective flow of positive 
charge is clockwise.

Figure 27.11 A circuit consist-
ing of a resistor of resistance R 
and a battery having a potential 
difference DV across its terminals.
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32.5 Oscillations in an LC Circuit
When a capacitor is connected to an inductor as illustrated in Figure 32.10, the 
combination is an LC circuit. If the capacitor is initially charged and the switch is 
then closed, both the current in the circuit and the charge on the capacitor oscil-
late between maximum positive and negative values. If the resistance of the cir-
cuit is zero, no energy is transformed to internal energy. In the following analysis, 
the resistance in the circuit is neglected. We also assume an idealized situation in 
which energy is not radiated away from the circuit. This radiation mechanism is 
discussed in Chapter 34.
 Assume the capacitor has an initial charge Q max (the maximum charge) and 
the switch is open for t , 0 and then closed at t 5 0. Let’s investigate what happens 
from an energy viewpoint.
 When the capacitor is fully charged, the energy U in the circuit is stored in 
the capacitor’s electric field and is equal to Q 2

max/2C (Eq. 26.11). At this time, the 
current in the circuit is zero; therefore, no energy is stored in the inductor. After 
the switch is closed, the rate at which charges leave or enter the capacitor plates 
(which is also the rate at which the charge on the capacitor changes) is equal to 
the current in the circuit. After the switch is closed and the capacitor begins to 
discharge, the energy stored in its electric field decreases. The capacitor’s dis-
charge represents a current in the circuit, and some energy is now stored in the 
magnetic field of the inductor. Therefore, energy is transferred from the electric 
field of the capacitor to the magnetic field of the inductor. When the capacitor 
is fully discharged, it stores no energy. At this time, the current reaches its maxi-
mum value and all the energy in the circuit is stored in the inductor. The cur-
rent continues in the same direction, decreasing in magnitude, with the capacitor 
eventually becoming fully charged again but with the polarity of its plates now 
opposite the initial polarity. This process is followed by another discharge until 
the circuit returns to its original state of maximum charge Q max and the plate 
polarity shown in Figure 32.10. The energy continues to oscillate between induc-
tor and capacitor.
 The oscillations of the LC circuit are an electromagnetic analog to the mechani-
cal oscillations of the particle in simple harmonic motion studied in Chapter 15. 
Much of what was discussed there is applicable to LC oscillations. For example, we 
investigated the effect of driving a mechanical oscillator with an external force, 

S

LC
Q max

!

"

Figure 32.10  A simple LC cir-
cuit. The capacitor has an initial 
charge Q max, and the switch is 
open for t , 0 and then closed at 
t 5 0.

Find the mutual inductance, noting that the magnetic 
flux FBH through the handle’s coil caused by the mag-
netic field of the base coil is BA:

M 5
NHFBH

i
5

NH BA
i

5 m0 
NBNH

,
 A

Use Equation 30.17 to express the magnetic field in the 
interior of the base solenoid:

B 5 m0 
NB

,
 i

Wireless charging is used in a number of other “cordless” devices. One significant example is the inductive charging 
used by some manufacturers of electric cars that avoids direct metal-to-metal contact between the car and the charg-
ing apparatus.

Conceptualize  Be sure you can identify the two coils in the situation and understand that a changing current in one 
coil induces a current in the second coil.

Categorize  We will determine the result using concepts discussed in this section, so we categorize this example as a 
substitution problem.

S O L U T I O N
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26.3 Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.
 In studying electric circuits, we use a simplified pictorial representation called a 
circuit diagram. Such a diagram uses circuit symbols to represent various circuit 
elements. The circuit symbols are connected by straight lines that represent the 
wires between the circuit elements. The circuit symbols for capacitors, batteries, 
and switches as well as the color codes used for them in this text are given in Fig-
ure 26.6. The symbol for the capacitor reflects the geometry of the most common 
model for a capacitor, a pair of parallel plates. The positive terminal of the battery 
is at the higher potential and is represented in the circuit symbol by the longer line.

Parallel Combination
Two capacitors connected as shown in Figure 26.7a are known as a parallel combi-
nation of capacitors. Figure 26.7b shows a circuit diagram for this combination of 
capacitors. The left plates of the capacitors are connected to the positive terminal of 
the battery by a conducting wire and are therefore both at the same electric potential 

Substitute the absolute value of DV into Equation 26.1: C 5
Q

DV
5

Q0 Vb 2 Va 0 5
ab

ke 1b 2 a 2  (26.6)

Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E

S
 is parallel to d sS along a radial line:

Vb 2 Va 5 2 3
b

a
 Er dr 5 2keQ 3

b

a
 
dr
r 2 5 keQ c1r d b

a

(1)   Vb 2 Va 5 keQ a1
b

2
1
ab 5 keQ 

a 2 b
ab

Write an expression for the potential difference between 
the two conductors from Equation 25.3:

Vb 2 Va 5 2 3
b

a
E
S

? d sS

Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:

C 5 lim
b S `

  ab
ke 1b 2 a 2 5

ab
ke 1b 2 5

a
ke

5 4pP0a

Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.

WHAT IF ?

Capacitor
symbol

Battery
symbol

symbol
Switch Open

Closed

!

"

Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.
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Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).

a

b

!Q

"Q

Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.

Batteries cause a potential difference between two parts of the
circuit.

This can drive a charge flow. (Current is the rate of flow of
charge.)



Series and Parallel

Series
When components are
connected one after the other
along a single path, they are
connected in series.

V

R1

R2

Parallel
When components are
connected side-by-side on
different paths, they are
connected in parallel.

R1 R2

V



Capacitors in Parallel

Capacitors in parallel all have the same potential difference
across them.

Three capacitors in parallel:
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.

Ceq ! !
n

j!1
 Cj

Ceq !
q
V

 ! C1 " C2 " C3,

Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.

V 
+q3 

V – 
+ 

Terminal 

C3 

B 

(a)

–q

+q
V

+
–

(b)

Ceq

B

Terminal 

–q3 

+q2 

–q2 C2 

V 
+q1 

–q1 C1 

V 

Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.

Ceq ! !
n

j!1
 Cj

Ceq !
q
V

 ! C1 " C2 " C3,

Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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We could replace all three capacitors in the circuit with one
equivalent capacitance. The current and potential difference in the
rest of the circuit is unchanged by this.

What would be the capacitance of this equivalent capacitor?



Capacitors in Parallel

Capacitors in parallel all have the same potential difference
across them.

Three capacitors in parallel:
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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q
V

 ! C1 " C2 " C3,

Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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Equivalent circuit:
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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We could replace all three capacitors in the circuit with one
equivalent capacitance. The current and potential difference in the
rest of the circuit is unchanged by this.

What would be the capacitance of this equivalent capacitor?



Capacitors in Parallel

Capacitors in parallel all have the same potential difference
across them.

∆V1 = ∆V2 = ∆V3 = ∆V

The total charge on the three capacitors is the sum of the charge
on each.

qnet = q1 + q2 + q3

where q1 = C1∆V .

Capacitance is C = q/(∆V ):

Ceq =
qnet
∆V



Capacitors in Parallel

Equivalent capacitance:

Ceq =
qnet
∆V

=
q1
∆V

+
q2
∆V

+
q3
∆V

= C1 + C2 + C3

So in general, for any number n of capacitors in parallel, the
effective capacitance of them all together is:

Ceq = C1 + C2 + ... + Cn =

n∑
i=1

Ci



Capacitors in Parallel

Equivalent capacitance:

Ceq =
qnet
∆V

=
q1
∆V

+
q2
∆V

+
q3
∆V

= C1 + C2 + C3

So in general, for any number n of capacitors in parallel, the
effective capacitance of them all together is:

Ceq = C1 + C2 + ... + Cn =

n∑
i=1

Ci



Capacitors in Series

Capacitors in series all store the same charge.

Three capacitors in series:
664 CHAPTE R 25 CAPACITANCE
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9a.

To derive an expression for Ceq in Fig. 25-9b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.

1
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V
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?

V 
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Series capacitors and
their equivalent have
the same q (“seri-q”).
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9a.

To derive an expression for Ceq in Fig. 25-9b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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V
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,
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"
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1
C3

#.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?

V 

(b) 

Ceq 

V 
+ 
– 

(a) 
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+q 
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V1 
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B 

Terminal 

Terminal 

–q 

+q 

–q 

–q 

+q 

–q 

+q 

Series capacitors and
their equivalent have
the same q (“seri-q”).
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Summary

• parallel plate capacitors

• capacitors of different shapes

• circuits, circuit diagrams

• capacitors in parallel

Homework
Serway & Jewett:

• PREVIOUS: Ch 26, onward from page 799. Problems: 1, 5, 7,
11, 51

• NEW: Ch 26. Problems: 13


