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Last time

• cylindrical and spherical capacitors

• Parallel plate capacitors

• Circuits and circuit diagrams

• Capacitors in parallel



Overview

• capacitors in series

• practice with capacitors in circuits

• energy stored in a capacitor

• dielectrics

• molecular view of dielectrics



Capacitors in Series

Capacitors in series all store the same charge.

Three capacitors in series:
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9a.

To derive an expression for Ceq in Fig. 25-9b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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Series capacitors and
their equivalent have
the same q (“seri-q”).
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Equivalent circuit:

664 CHAPTE R 25 CAPACITANCE

HALLIDAY REVISED

produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9a.

To derive an expression for Ceq in Fig. 25-9b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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Series capacitors and
their equivalent have
the same q (“seri-q”).
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Capacitors in Series

Again, we could replace all three capacitors in the circuit with one
equivalent capacitance and we can find the capacitance of this
equivalent capacitor.

The sum of the potential differences across capacitors in series
is V , the battery’s supplied potential difference.

∆V = ∆V1 + ∆V2 + ∆V3

where ∆V1 = q/C1, etc.
Then,

Ceq =
q

∆V



Capacitors in Series

Equivalent capacitance:
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Capacitors in Series

In general, for any number n of capacitors in series, we can always
relate the effective capacitance of them all together to the
individual capacitances by:
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The equivalent capacitance of capacitors in series is always less
than the smallest capacitance in the series.



Practice

A 5.0µF capacitor is connected in parallel with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 15 µF

A 5.0µF capacitor is connected in series with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 3.3 µF



Practice

A 5.0µF capacitor is connected in parallel with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 15 µF

A 5.0µF capacitor is connected in series with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 3.3 µF



Practice

A 5.0µF capacitor is connected in parallel with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 15 µF

A 5.0µF capacitor is connected in series with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 3.3 µF



Practice

A 5.0µF capacitor is connected in parallel with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 15 µF

A 5.0µF capacitor is connected in series with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 3.3 µF



More Practice

What is the equivalent capacitance of this arrangement?

Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10a and b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i )

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.

66525-4 CAPACITORS I N PARALLE L AN D I N S E R I E S
PART 3
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Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10a are in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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More Practice
When solving this type of problem, take an iterative approach.

Identify sets of capacitors that are in parallel, then series, then
parallel, etc. and at each step replace with the equivalent
capacitance:

 26.3 Combinations of Capacitors 785

Substituting this result into Equation 26.9, we have

 
Q

C eq
5

Q 1

C 1
1

Q 2

C 2
 

Canceling the charges because they are all the same gives

 
1

C eq
5

1
C1

1
1

C 2
 1series combination 2  

When this analysis is applied to three or more capacitors connected in series, the 
relationship for the equivalent capacitance is

 
1

C eq
5

1
C 1

1
1

C 2
1

1
C3

1 c  1series combination 2  (26.10)

This expression shows that (1) the inverse of the equivalent capacitance is the alge-
braic sum of the inverses of the individual capacitances and (2) the equivalent 
capacitance of a series combination is always less than any individual capacitance 
in the combination.

Q uick Quiz 26.3  Two capacitors are identical. They can be connected in series or 
in parallel. If you want the smallest equivalent capacitance for the combination, 
how should you connect them? (a) in series (b) in parallel (c) either way because 
both combinations have the same capacitance

�W  Equivalent capacitance for 
capacitors in series

Example 26.3   Equivalent Capacitance

Find the equivalent capacitance between a and b for the 
combination of capacitors shown in Figure 26.9a. All 
capacitances are in microfarads.

Conceptualize  Study Figure 26.9a carefully and make 
sure you understand how the capacitors are connected. 
Verify that there are only series and parallel connec-
tions between capacitors.

Categorize  Figure 26.9a shows that the circuit contains 
both series and parallel connections, so we use the 
rules for series and parallel combinations discussed in 
this section.

Analyze  Using Equations 26.8 and 26.10, we reduce the combination step by step as indicated in the figure. As you 
follow along below, notice that in each step we replace the combination of two capacitors in the circuit diagram with a 
single capacitor having the equivalent capacitance.

S O L U T I O N
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Figure 26.9  (Example 26.3) To find the equivalent capacitance 
of the capacitors in (a), we reduce the various combinations in 
steps as indicated in (b), (c), and (d), using the series and parallel 
rules described in the text. All capacitances are in microfarads.

The 1.0-mF and 3.0-mF capacitors (upper red-brown 
circle in Fig. 26.9a) are in parallel. Find the equivalent 
capacitance from Equation 26.8:

Ceq 5 C1 1 C 2 5 4.0 mF

The 2.0-mF and 6.0-mF capacitors (lower red-brown 
circle in Fig. 26.9a) are also in parallel:

Ceq 5 C1 1 C 2 5 8.0 mF 

The circuit now looks like Figure 26.9b. The two 4.0-mF 
capacitors (upper green circle in Fig. 26.9b) are in series. 
Find the equivalent capacitance from Equation 26.10:
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1
1

C 2
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5

1
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 C eq 5 2.0 mF

continued



More Practice

When solving this type of problem, take an iterative approach.

Identify sets of capacitors that are in parallel, then series, then
parallel, etc. and at each step replace with the equivalent
capacitance:

 26.3 Combinations of Capacitors 785

Substituting this result into Equation 26.9, we have
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Q 1

C 1
1

Q 2

C 2
 

Canceling the charges because they are all the same gives
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When this analysis is applied to three or more capacitors connected in series, the 
relationship for the equivalent capacitance is
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This expression shows that (1) the inverse of the equivalent capacitance is the alge-
braic sum of the inverses of the individual capacitances and (2) the equivalent 
capacitance of a series combination is always less than any individual capacitance 
in the combination.

Q uick Quiz 26.3  Two capacitors are identical. They can be connected in series or 
in parallel. If you want the smallest equivalent capacitance for the combination, 
how should you connect them? (a) in series (b) in parallel (c) either way because 
both combinations have the same capacitance

�W  Equivalent capacitance for 
capacitors in series

Example 26.3   Equivalent Capacitance

Find the equivalent capacitance between a and b for the 
combination of capacitors shown in Figure 26.9a. All 
capacitances are in microfarads.

Conceptualize  Study Figure 26.9a carefully and make 
sure you understand how the capacitors are connected. 
Verify that there are only series and parallel connec-
tions between capacitors.

Categorize  Figure 26.9a shows that the circuit contains 
both series and parallel connections, so we use the 
rules for series and parallel combinations discussed in 
this section.

Analyze  Using Equations 26.8 and 26.10, we reduce the combination step by step as indicated in the figure. As you 
follow along below, notice that in each step we replace the combination of two capacitors in the circuit diagram with a 
single capacitor having the equivalent capacitance.
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Figure 26.9  (Example 26.3) To find the equivalent capacitance 
of the capacitors in (a), we reduce the various combinations in 
steps as indicated in (b), (c), and (d), using the series and parallel 
rules described in the text. All capacitances are in microfarads.

The 1.0-mF and 3.0-mF capacitors (upper red-brown 
circle in Fig. 26.9a) are in parallel. Find the equivalent 
capacitance from Equation 26.8:

Ceq 5 C1 1 C 2 5 4.0 mF

The 2.0-mF and 6.0-mF capacitors (lower red-brown 
circle in Fig. 26.9a) are also in parallel:

Ceq 5 C1 1 C 2 5 8.0 mF 

The circuit now looks like Figure 26.9b. The two 4.0-mF 
capacitors (upper green circle in Fig. 26.9b) are in series. 
Find the equivalent capacitance from Equation 26.10:
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continued



More Practice

What is the equivalent capacitance of this arrangement:

Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10a and b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i )

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.

66525-4 CAPACITORS I N PARALLE L AN D I N S E R I E S
PART 3

HALLIDAY REVISED

Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10a are in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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Ceq = 3.57µF.



More Practice

What is the equivalent capacitance of this arrangement:

Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10a and b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i )

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.
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Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10a are in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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Energy Stored in a Capacitor
A charged capacitor has an electric field between the plates. This
field can be thought of as storing potential energy.

As you might expect, the energy stored is equal to the work done
charging the capacitor. (Energy Conservation!)

But how much work is done? Wapp = q∆V , yet the potential
difference across the plates changes as more charge is placed on
the capacitor plates.

 26.4 Energy Stored in a Charged Capacitor 787

flow between the wires and the capacitor. As that occurs, there is a transformation 
of energy within the system. Before the switch is closed, energy is stored as chemi-
cal potential energy in the battery. This energy is transformed during the chemical 
reaction that occurs within the battery when it is operating in an electric circuit. 
When the switch is closed, some of the chemical potential energy in the battery is 
transformed to electric potential energy associated with the separation of positive 
and negative charges on the plates.
 To calculate the energy stored in the capacitor, we shall assume a charging pro-
cess that is different from the actual process described in Section 26.1 but that gives 
the same final result. This assumption is justified because the energy in the final 
configuration does not depend on the actual charge-transfer process.3 Imagine the 
plates are disconnected from the battery and you transfer the charge mechanically 
through the space between the plates as follows. You grab a small amount of posi-
tive charge on one plate and apply a force that causes this positive charge to move 
over to the other plate. Therefore, you do work on the charge as it is transferred 
from one plate to the other. At first, no work is required to transfer a small amount 
of charge dq from one plate to the other,4 but once this charge has been trans-
ferred, a small potential difference exists between the plates. Therefore, work must 
be done to move additional charge through this potential difference. As more and 
more charge is transferred from one plate to the other, the potential difference 
increases in proportion and more work is required. The overall process is described 
by the nonisolated system model for energy. Equation 8.2 reduces to W 5 DUE ; the 
work done on the system by the external agent appears as an increase in electric 
potential energy in the system.
 Suppose q is the charge on the capacitor at some instant during the charging pro-
cess. At the same instant, the potential difference across the capacitor is DV 5 q/C. 
This relationship is graphed in Figure 26.11. From Section 25.1, we know that the 
work necessary to transfer an increment of charge dq from the plate carrying charge 
2q to the plate carrying charge q (which is at the higher electric potential) is

 dW 5 DV dq 5
q
C

 dq  

The work required to transfer the charge dq is the area of the tan rectangle in Fig-
ure 26.11. Because 1 V 5 1 J/C, the unit for the area is the joule. The total work 
required to charge the capacitor from q 5 0 to some final charge q 5 Q  is

 W 5  3
Q

0
 
q
C

 dq 5
1
C

 3
Q

0
q dq 5

Q 2

2C
 

The work done in charging the capacitor appears as electric potential energy UE 
stored in the capacitor. Using Equation 26.1, we can express the potential energy 
stored in a charged capacitor as

 UE 5
Q 2

2C
5 1

2Q DV 5 1
2C 1DV 22  (26.11)

Because the curve in Figure 26.11 is a straight line, the total area under the curve is 
that of a triangle of base Q and height DV.
 Equation 26.11 applies to any capacitor, regardless of its geometry. For a given 
capacitance, the stored energy increases as the charge and the potential difference 
increase. In practice, there is a limit to the maximum energy (or charge) that can 
be stored because, at a sufficiently large value of DV, discharge ultimately occurs 

�W  Energy stored in a charged 
capacitor

3This discussion is similar to that of state variables in thermodynamics. The change in a state variable such as tem-
perature is independent of the path followed between the initial and final states. The potential energy of a capacitor 
(or any system) is also a state variable, so its change does not depend on the process followed to charge the capacitor.
4We shall use lowercase q for the time-varying charge on the capacitor while it is charging to distinguish it from 
uppercase Q , which is the total charge on the capacitor after it is completely charged.

V

dq

q
Q

!

The work required to move charge 
dq through the potential 
difference !V across the capacitor 
plates is given approximately by 
the area of the shaded rectangle.

Figure 26.11  A plot of potential 
difference versus charge for a 
capacitor is a straight line having 
slope 1/C.
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cal potential energy in the battery. This energy is transformed during the chemical 
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Energy Stored in a Capacitor

How much work is done? dWapp = (∆V ) dq

 26.4 Energy Stored in a Charged Capacitor 787

flow between the wires and the capacitor. As that occurs, there is a transformation 
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cal potential energy in the battery. This energy is transformed during the chemical 
reaction that occurs within the battery when it is operating in an electric circuit. 
When the switch is closed, some of the chemical potential energy in the battery is 
transformed to electric potential energy associated with the separation of positive 
and negative charges on the plates.
 To calculate the energy stored in the capacitor, we shall assume a charging pro-
cess that is different from the actual process described in Section 26.1 but that gives 
the same final result. This assumption is justified because the energy in the final 
configuration does not depend on the actual charge-transfer process.3 Imagine the 
plates are disconnected from the battery and you transfer the charge mechanically 
through the space between the plates as follows. You grab a small amount of posi-
tive charge on one plate and apply a force that causes this positive charge to move 
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from one plate to the other. At first, no work is required to transfer a small amount 
of charge dq from one plate to the other,4 but once this charge has been trans-
ferred, a small potential difference exists between the plates. Therefore, work must 
be done to move additional charge through this potential difference. As more and 
more charge is transferred from one plate to the other, the potential difference 
increases in proportion and more work is required. The overall process is described 
by the nonisolated system model for energy. Equation 8.2 reduces to W 5 DUE ; the 
work done on the system by the external agent appears as an increase in electric 
potential energy in the system.
 Suppose q is the charge on the capacitor at some instant during the charging pro-
cess. At the same instant, the potential difference across the capacitor is DV 5 q/C. 
This relationship is graphed in Figure 26.11. From Section 25.1, we know that the 
work necessary to transfer an increment of charge dq from the plate carrying charge 
2q to the plate carrying charge q (which is at the higher electric potential) is
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The work required to transfer the charge dq is the area of the tan rectangle in Fig-
ure 26.11. Because 1 V 5 1 J/C, the unit for the area is the joule. The total work 
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The work done in charging the capacitor appears as electric potential energy UE 
stored in the capacitor. Using Equation 26.1, we can express the potential energy 
stored in a charged capacitor as
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Because the curve in Figure 26.11 is a straight line, the total area under the curve is 
that of a triangle of base Q and height DV.
 Equation 26.11 applies to any capacitor, regardless of its geometry. For a given 
capacitance, the stored energy increases as the charge and the potential difference 
increase. In practice, there is a limit to the maximum energy (or charge) that can 
be stored because, at a sufficiently large value of DV, discharge ultimately occurs 

�W  Energy stored in a charged 
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3This discussion is similar to that of state variables in thermodynamics. The change in a state variable such as tem-
perature is independent of the path followed between the initial and final states. The potential energy of a capacitor 
(or any system) is also a state variable, so its change does not depend on the process followed to charge the capacitor.
4We shall use lowercase q for the time-varying charge on the capacitor while it is charging to distinguish it from 
uppercase Q , which is the total charge on the capacitor after it is completely charged.
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→ Need to integrate!



Energy Stored in a Capacitor

∆V =
q

C

For a fixed capacitor (plates are not changing configuration or
shape), C is a constant.

UE = Wapp =

∫Q
0

q

C
dq

=
1

2

Q2

C

The energy stored in a capacitor with charge Q and capacitance C :

U =
1

2

(
Q2

C

)



Energy Stored in a Capacitor

The energy stored in a capacitor with charge Q and capacitance C :

U =
1

2

(
Q2

C

)

Since Q = C (∆V ) we can also write this as:

U =
1

2
C (∆V )2

And:

U =
1

2
Q ∆V



Stored Energy Example

Suppose a capacitor with a capacitance 12 pF is connected to a
9.0 V battery.

What is the energy stored in the capacitor’s electric field once the
capacitor is fully charged?

UE = 4.9× 10−10 J
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Energy Density

It is sometimes useful to be able to compare the energy stored in
different charged capacitors by their stored energy per unit volume.

We can link energy density to electric field strength.

This will make concrete the assertion that energy is stored in the
field.

For a parallel plate capacitor, energy density u is:

uE =
UE

Ad

(Ad is the volume between the capacitor plates.)
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Energy Density and Electric Field

uE =
UE

Ad

=
C (∆V )2

2Ad

Replace C = ε0A
d :

uE =
ε0A

d

∆V 2

2Ad

=
ε0

2

(
∆V

d

)2

Lastly, remember ∆V = Ed in a parallel plate capacitor, so:

uE =
1

2
ε0E

2
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Energy Density and Electric Field

Energy density in a capacitor:

uE =
1

2
ε0E

2

The derivation of this expression assumed a parallel plate
capacitor. However, it is true more generally. (General proof
requires vector calculus.)

It is also true for varying electric fields, in which case the energy
density varies.

Energy density of an electric field ∝ E 2



Dielectrics

dielectric

an insulating material that can affects the strength of an electric
field passing through it

Different materials have different dielectric constants, κ.

κ tells us how the capacitance of a capacitor changes if the
material between the plates is changed.

For air κ ≈ 1. (It is 1 for a perfect vacuum.)

κ is never less than 1. It can be very large > 100.
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Dielectrics and Capacitance

dielectric

an insulating material that can affects the strength of an electric
field passing through it

The effect of sandwiching a dielectric in a capacitor is to change
the capacitance:

C → κC

κ is the dielectric constant.



Dielectric in a Capacitor

Capacitance C
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increase the capacitance of a capacitor, and some materials, such as strontium ti-
tanate, can increase the capacitance by more than two orders of magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form C ! "0!, (25-26)

in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C ! k"0! ! kCair, (25-27)
where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.

E !
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$"0
.

E !
1

4%$"0
 

q
r 2 .

Fig. 25-13 (a) If the potential difference
between the plates of a capacitor is main-
tained, as by battery B, the effect of a dielec-
tric is to increase the charge on the plates.
(b) If the charge on the capacitor plates is
maintained, as in this case, the effect of a 
dielectric is to reduce the potential differ-
ence between the plates.The scale shown is
that of a potentiometer, a device used to 
measure potential difference (here, between
the plates).A capacitor cannot discharge
through a potentiometer.
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As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form C ! "0!, (25-26)
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ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:
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Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes
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Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.
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Adding a dielectric increases the capacitance.



Effect of a Dielectric

The most straightforward way of tracking quantities that will
change when a dielectric is added is by replacing ε0 in all
equations with ε using this relation:

ε = κε0

(Or just think of the effect of the dielectric being ε0 → κε0.)

The electrical permittivity increases.



Dielectrics and Electric Field

Why do dielectrics effect the strength of the electric field?

Dielectrics become polarized by the presence of an electric field.

There are two types of dielectrics, the process is a little different in
each:

• polar dielectrics

• nonpolar dielectrics



Dielectrics and Electric Field

Why do dielectrics effect the strength of the electric field?

Dielectrics become polarized by the presence of an electric field.

There are two types of dielectrics, the process is a little different in
each:

• polar dielectrics

• nonpolar dielectrics



Polar Dielectrics

The external electric field partially aligns the molecules of the
dielectric with the field.
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25-7 Dielectrics: An Atomic View
What happens, in atomic and molecular terms, when we put a dielectric in an
electric field? There are two possibilities, depending on the type of molecule:

1. Polar dielectrics. The molecules of some dielectrics, like water, have permanent
electric dipole moments. In such materials (called polar dielectrics), the electric
dipoles tend to line up with an external electric field as in Fig. 25-14. Because the
molecules are continuously jostling each other as a result of their random thermal
motion, this alignment is not complete, but it becomes more complete as the mag-
nitude of the applied field is increased (or as the temperature, and thus the
jostling, are decreased).The alignment of the electric dipoles produces an electric
field that is directed opposite the applied field and is smaller in magnitude.

Sample Problem

Because the battery has been disconnected, the charge on
the capacitor cannot change when the dielectric is inserted.
However, the potential does change.

Calculations: Thus, we must now use Eq. 25-21 to write the
final potential energy Uf , but now that the slab is within the
capacitor, the capacitance is kC.We then have

(Answer)
When the slab is introduced, the potential energy decreases
by a factor of k.

The “missing” energy, in principle, would be apparent to
the person who introduced the slab.The capacitor would ex-
ert a tiny tug on the slab and would do work on it, in amount

W ! Ui " Uf ! (1055 " 162) pJ ! 893 pJ.

If the slab were allowed to slide between the plates with no
restraint and if there were no friction, the slab would oscillate
back and forth between the plates with a (constant) mechani-
cal energy of 893 pJ, and this system energy would transfer
back and forth between kinetic energy of the moving slab and
potential energy stored in the electric field.

 ! 162 pJ ! 160 pJ.

 Uf !
q2

2#C
!

Ui

#
!

1055 pJ
6.50

Additional examples, video, and practice available at WileyPLUS

Work and energy when a dielectric is inserted into a capacitor

A parallel-plate capacitor whose capacitance C is 13.5 pF is
charged by a battery to a potential difference V ! 12.5 V
between its plates. The charging battery is now discon-
nected, and a porcelain slab (k ! 6.50) is slipped between
the plates.

(a) What is the potential energy of the capacitor before the
slab is inserted?

We can relate the potential energy Ui of the capacitor to the
capacitance C and either the potential V (with Eq. 25-22) or
the charge q (with Eq. 25-21):

Calculation: Because we are given the initial potential
V (! 12.5 V), we use Eq. 25-22 to find the initial stored
energy:

(Answer)

(b) What is the potential energy of the capacitor–slab device
after the slab is inserted? 

! 1.055 $ 10"9 J ! 1055 pJ ! 1100 pJ.
Ui ! 1

2CV 2 ! 1
2(13.5 $ 10"12 F)(12.5 V)2

Ui ! 1
2CV2 !

q2

2C
.

KEY I DEA

KEY I DEA

Fig. 25-14 (a) Molecules
with a permanent electric dipole
moment, showing their random
orientation in the absence of an
external electric field. (b) An
electric field is applied, produc-
ing partial alignment of the
dipoles.Thermal agitation pre-
vents complete alignment.
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Since the dielectric is an insulator, there are no free charges to
move through the substance, but molecules can align.

eg. distilled water

1Figures from Halliday, Resnick, Walker, 9th ed.



Nonpolar Dielectrics

Nonpolar dielectrics are composed of molecules which are not
polar.

However, under the influence of a field, the distribution of the
electrons in the molecules, or the shape of the molecule, is altered.
Each molecule becomes slightly polarized.
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Nonpolar Dielectrics

Nonpolar dielectrics are composed of molecules which are not
polar.

However, under the influence of a field, the distribution of the
electrons in the molecules, or the shape of the molecule, is altered.
Each molecule becomes slightly polarized.
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2. Nonpolar dielectrics. Regardless of whether they have permanent electric
dipole moments, molecules acquire dipole moments by induction when 
placed in an external electric field. In Section 24-8 (see Fig. 24-11), we saw 
that this occurs because the external field tends to “stretch” the molecules,
slightly separating the centers of negative and positive charge.

Figure 25-15a shows a nonpolar dielectric slab with no external electric field
applied. In Fig. 25-15b, an electric field is applied via a capacitor, whose plates
are charged as shown. The result is a slight separation of the centers of the posi-
tive and negative charge distributions within the slab, producing positive charge
on one face of the slab (due to the positive ends of dipoles there) and negative
charge on the opposite face (due to the negative ends of dipoles there). The slab
as a whole remains electrically neutral and—within the slab—there is no excess
charge in any volume element.

Figure 25-15c shows that the induced surface charges on the faces produce an
electric field in the direction opposite that of the applied electric field . The
resultant field inside the dielectric (the vector sum of fields and ) has the
direction of but is smaller in magnitude.

Both the field produced by the surface charges in Fig. 25-15c and the electric
field produced by the permanent electric dipoles in Fig. 25-14 act in the same way—
they oppose the applied field .Thus, the effect of both polar and nonpolar dielectrics
is to weaken any applied field within them,as between the plates of a capacitor.

25-8 Dielectrics and Gauss’ Law
In our discussion of Gauss’ law in Chapter 23, we assumed that the charges
existed in a vacuum. Here we shall see how to modify and generalize that law if
dielectric materials, such as those listed in Table 25-1, are present. Figure 25-16
shows a parallel-plate capacitor of plate area A, both with and without a 
dielectric. We assume that the charge q on the plates is the same in both situa-
tions. Note that the field between the plates induces charges on the faces of the
dielectric by one of the methods described in Section 25-7.

For the situation of Fig. 25-16a, without a dielectric, we can find the electric
field between the plates as we did in Fig. 25-5:We enclose the charge !q on the
top plate with a Gaussian surface and then apply Gauss’ law. Letting E0 represent
the magnitude of the field, we find

(25-30)

or (25-31)

In Fig. 25-16b, with the dielectric in place, we can find the electric field
between the plates (and within the dielectric) by using the same Gaussian sur-
face. However, now the surface encloses two types of charge: It still encloses
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Fig. 25-15 (a) A nonpolar dielectric
slab.The circles represent the electrically
neutral atoms within the slab. (b) An elec-
tric field is applied via charged capacitor
plates; the field slightly stretches the atoms,
separating the centers of positive and nega-
tive charge. (c) The separation produces
surface charges on the slab faces.These
charges set up a field which opposes the
applied field .The resultant field inside
the dielectric (the vector sum of and )
has the same direction as but a smaller
magnitude.
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A parallel-plate
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out and (b) with a di-
electric slab inserted.
The charge q on the
plates is assumed to
be the same in both
cases. (b)

–q'

+q'

+ + + + + + + ++ +

– – – – – – – –– –
+ + + ++

– – – ––

κ

+q

–q

Gaussian surface

EE0

Gaussian surface

+q

–q

(a) 

+ + + + + + + ++ +

– – – – – – – –– –

halliday_c25_656-681v2.qxd  23-11-2009  14:32  Page 672

672 CHAPTE R 25 CAPACITANCE

HALLIDAY REVISED

2. Nonpolar dielectrics. Regardless of whether they have permanent electric
dipole moments, molecules acquire dipole moments by induction when 
placed in an external electric field. In Section 24-8 (see Fig. 24-11), we saw 
that this occurs because the external field tends to “stretch” the molecules,
slightly separating the centers of negative and positive charge.

Figure 25-15a shows a nonpolar dielectric slab with no external electric field
applied. In Fig. 25-15b, an electric field is applied via a capacitor, whose plates
are charged as shown. The result is a slight separation of the centers of the posi-
tive and negative charge distributions within the slab, producing positive charge
on one face of the slab (due to the positive ends of dipoles there) and negative
charge on the opposite face (due to the negative ends of dipoles there). The slab
as a whole remains electrically neutral and—within the slab—there is no excess
charge in any volume element.

Figure 25-15c shows that the induced surface charges on the faces produce an
electric field in the direction opposite that of the applied electric field . The
resultant field inside the dielectric (the vector sum of fields and ) has the
direction of but is smaller in magnitude.

Both the field produced by the surface charges in Fig. 25-15c and the electric
field produced by the permanent electric dipoles in Fig. 25-14 act in the same way—
they oppose the applied field .Thus, the effect of both polar and nonpolar dielectrics
is to weaken any applied field within them,as between the plates of a capacitor.

25-8 Dielectrics and Gauss’ Law
In our discussion of Gauss’ law in Chapter 23, we assumed that the charges
existed in a vacuum. Here we shall see how to modify and generalize that law if
dielectric materials, such as those listed in Table 25-1, are present. Figure 25-16
shows a parallel-plate capacitor of plate area A, both with and without a 
dielectric. We assume that the charge q on the plates is the same in both situa-
tions. Note that the field between the plates induces charges on the faces of the
dielectric by one of the methods described in Section 25-7.

For the situation of Fig. 25-16a, without a dielectric, we can find the electric
field between the plates as we did in Fig. 25-5:We enclose the charge !q on the
top plate with a Gaussian surface and then apply Gauss’ law. Letting E0 represent
the magnitude of the field, we find

(25-30)

or (25-31)

In Fig. 25-16b, with the dielectric in place, we can find the electric field
between the plates (and within the dielectric) by using the same Gaussian sur-
face. However, now the surface encloses two types of charge: It still encloses
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Fig. 25-15 (a) A nonpolar dielectric
slab.The circles represent the electrically
neutral atoms within the slab. (b) An elec-
tric field is applied via charged capacitor
plates; the field slightly stretches the atoms,
separating the centers of positive and nega-
tive charge. (c) The separation produces
surface charges on the slab faces.These
charges set up a field which opposes the
applied field .The resultant field inside
the dielectric (the vector sum of and )
has the same direction as but a smaller
magnitude.
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eg. nitrogen, benzene



Electric field inside the dielectric

The polarized dielectric contributes its own field, E ′.
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2. Nonpolar dielectrics. Regardless of whether they have permanent electric
dipole moments, molecules acquire dipole moments by induction when 
placed in an external electric field. In Section 24-8 (see Fig. 24-11), we saw 
that this occurs because the external field tends to “stretch” the molecules,
slightly separating the centers of negative and positive charge.

Figure 25-15a shows a nonpolar dielectric slab with no external electric field
applied. In Fig. 25-15b, an electric field is applied via a capacitor, whose plates
are charged as shown. The result is a slight separation of the centers of the posi-
tive and negative charge distributions within the slab, producing positive charge
on one face of the slab (due to the positive ends of dipoles there) and negative
charge on the opposite face (due to the negative ends of dipoles there). The slab
as a whole remains electrically neutral and—within the slab—there is no excess
charge in any volume element.

Figure 25-15c shows that the induced surface charges on the faces produce an
electric field in the direction opposite that of the applied electric field . The
resultant field inside the dielectric (the vector sum of fields and ) has the
direction of but is smaller in magnitude.

Both the field produced by the surface charges in Fig. 25-15c and the electric
field produced by the permanent electric dipoles in Fig. 25-14 act in the same way—
they oppose the applied field .Thus, the effect of both polar and nonpolar dielectrics
is to weaken any applied field within them,as between the plates of a capacitor.

25-8 Dielectrics and Gauss’ Law
In our discussion of Gauss’ law in Chapter 23, we assumed that the charges
existed in a vacuum. Here we shall see how to modify and generalize that law if
dielectric materials, such as those listed in Table 25-1, are present. Figure 25-16
shows a parallel-plate capacitor of plate area A, both with and without a 
dielectric. We assume that the charge q on the plates is the same in both situa-
tions. Note that the field between the plates induces charges on the faces of the
dielectric by one of the methods described in Section 25-7.

For the situation of Fig. 25-16a, without a dielectric, we can find the electric
field between the plates as we did in Fig. 25-5:We enclose the charge !q on the
top plate with a Gaussian surface and then apply Gauss’ law. Letting E0 represent
the magnitude of the field, we find

(25-30)

or (25-31)

In Fig. 25-16b, with the dielectric in place, we can find the electric field
between the plates (and within the dielectric) by using the same Gaussian sur-
face. However, now the surface encloses two types of charge: It still encloses
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slab.The circles represent the electrically
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tive charge. (c) The separation produces
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applied field .The resultant field inside
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has the same direction as but a smaller
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The electric field from the charged plates alone E0, is reduced.

The resulting reduced field is E = E0
κ



Summary

• capacitors in series

• practice with capacitors in circuits

• energy stored in a capacitor

• dielectrics

• molecular view of dielectrics

Quiz Friday.

Homework
Serway & Jewett:

• PREVIOUS: Ch 26, onward from page 799. Problems: 13

• NEW: Ch 26. Problems: 17, 21, 25, 31, 33, 35


