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Last time

• capacitors in series

• practice with capacitors in circuits

• Energy stored in a capacitor

• Dielectrics

• molecular view of dielectrics



Warm Up Question

Two capacitors of values 4.0 nF and 6.0 nF are connected in a
circuit as shown:
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the individual capacitances. Statement (2) makes sense because we are essentially 
combining the areas of all the capacitor plates when they are connected with con-
ducting wire, and capacitance of parallel plates is proportional to area (Eq. 26.3).

Series Combination
Two capacitors connected as shown in Figure 26.8a and the equivalent circuit dia-
gram in Figure 26.8b are known as a series combination of capacitors. The left 
plate of capacitor 1 and the right plate of capacitor 2 are connected to the termi-
nals of a battery. The other two plates are connected to each other and to nothing 
else; hence, they form an isolated system that is initially uncharged and must con-
tinue to have zero net charge. To analyze this combination, let’s first consider the 
uncharged capacitors and then follow what happens immediately after a battery is 
connected to the circuit. When the battery is connected, electrons are transferred 
out of the left plate of C1 and into the right plate of C 2. As this negative charge 
accumulates on the right plate of C 2, an equivalent amount of negative charge is 
forced off the left plate of C 2, and this left plate therefore has an excess positive 
charge. The negative charge leaving the left plate of C 2 causes negative charges 
to accumulate on the right plate of C1. As a result, both right plates end up with a 
charge 2Q  and both left plates end up with a charge 1Q . Therefore, the charges 
on capacitors connected in series are the same:

 Q 1 5 Q 2 5 Q  

where Q  is the charge that moved between a wire and the connected outside plate 
of one of the capacitors.
 Figure 26.8a shows the individual voltages DV 1 and DV 2 across the capacitors. 
These voltages add to give the total voltage DVtot across the combination:

 DVtot 5 DV1 1 DV2 5
Q 1

C1
1

Q 2

C 2
 (26.9)

In general, the total potential difference across any number of capacitors connected 
in series is the sum of the potential differences across the individual capacitors.
 Suppose the equivalent single capacitor in Figure 26.8c has the same effect on 
the circuit as the series combination when it is connected to the battery. After it is 
fully charged, the equivalent capacitor must have a charge of 2Q  on its right plate 
and a charge of 1Q  on its left plate. Applying the definition of capacitance to the 
circuit in Figure 26.8c gives
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representation of two 
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Figure 26.8 Two capacitors 
connected in series. All three dia-
grams are equivalent.

(A) 4.0 nF

(B) 6.0 nF

(C) 10 nF

(D) 2.4 nF
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Overview

• Dielectrics

• Gauss’s law with dielectrics

• electric displacement

• some uses of dielectrics



Dielectrics

dielectric

an insulating material that can affects the strength of an electric
field passing through it

Different materials have different dielectric constants, κ.

For air κ ≈ 1. (It is 1 for a perfect vacuum.)

κ is never less than 1. It can be very large > 100.

The effect of sandwiching a dielectric in a capacitor is to change
the capacitance:

C → κC



Dielectrics and Electric Field

Why do dielectrics effect the strength of the electric field?
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2. Nonpolar dielectrics. Regardless of whether they have permanent electric
dipole moments, molecules acquire dipole moments by induction when 
placed in an external electric field. In Section 24-8 (see Fig. 24-11), we saw 
that this occurs because the external field tends to “stretch” the molecules,
slightly separating the centers of negative and positive charge.

Figure 25-15a shows a nonpolar dielectric slab with no external electric field
applied. In Fig. 25-15b, an electric field is applied via a capacitor, whose plates
are charged as shown. The result is a slight separation of the centers of the posi-
tive and negative charge distributions within the slab, producing positive charge
on one face of the slab (due to the positive ends of dipoles there) and negative
charge on the opposite face (due to the negative ends of dipoles there). The slab
as a whole remains electrically neutral and—within the slab—there is no excess
charge in any volume element.

Figure 25-15c shows that the induced surface charges on the faces produce an
electric field in the direction opposite that of the applied electric field . The
resultant field inside the dielectric (the vector sum of fields and ) has the
direction of but is smaller in magnitude.

Both the field produced by the surface charges in Fig. 25-15c and the electric
field produced by the permanent electric dipoles in Fig. 25-14 act in the same way—
they oppose the applied field .Thus, the effect of both polar and nonpolar dielectrics
is to weaken any applied field within them,as between the plates of a capacitor.

25-8 Dielectrics and Gauss’ Law
In our discussion of Gauss’ law in Chapter 23, we assumed that the charges
existed in a vacuum. Here we shall see how to modify and generalize that law if
dielectric materials, such as those listed in Table 25-1, are present. Figure 25-16
shows a parallel-plate capacitor of plate area A, both with and without a 
dielectric. We assume that the charge q on the plates is the same in both situa-
tions. Note that the field between the plates induces charges on the faces of the
dielectric by one of the methods described in Section 25-7.

For the situation of Fig. 25-16a, without a dielectric, we can find the electric
field between the plates as we did in Fig. 25-5:We enclose the charge !q on the
top plate with a Gaussian surface and then apply Gauss’ law. Letting E0 represent
the magnitude of the field, we find

(25-30)

or (25-31)

In Fig. 25-16b, with the dielectric in place, we can find the electric field
between the plates (and within the dielectric) by using the same Gaussian sur-
face. However, now the surface encloses two types of charge: It still encloses
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Fig. 25-15 (a) A nonpolar dielectric
slab.The circles represent the electrically
neutral atoms within the slab. (b) An elec-
tric field is applied via charged capacitor
plates; the field slightly stretches the atoms,
separating the centers of positive and nega-
tive charge. (c) The separation produces
surface charges on the slab faces.These
charges set up a field which opposes the
applied field .The resultant field inside
the dielectric (the vector sum of and )
has the same direction as but a smaller
magnitude.
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The external electric field from the aligns dipoles in the dielectric
material.



Electric field inside the dielectric

The polarized dielectric contributes its own field, E ′.
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The electric field from the charged plates alone E0, is reduced.

The resulting reduced field is E = E0
κ



Dielectric in a Capacitor

ε0 → κε0

For a parallel plate capacitor with a dielectric, the capacitance is
now:

C =
κε0A

d



Dielectric in a Capacitor

If we add a dielectric while the capacitor is connected to a battery:670 CHAPTE R 25 CAPACITANCE
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increase the capacitance of a capacitor, and some materials, such as strontium ti-
tanate, can increase the capacitance by more than two orders of magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form C ! "0!, (25-26)

in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C ! k"0! ! kCair, (25-27)
where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.
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Fig. 25-13 (a) If the potential difference
between the plates of a capacitor is main-
tained, as by battery B, the effect of a dielec-
tric is to increase the charge on the plates.
(b) If the charge on the capacitor plates is
maintained, as in this case, the effect of a 
dielectric is to reduce the potential differ-
ence between the plates.The scale shown is
that of a potentiometer, a device used to 
measure potential difference (here, between
the plates).A capacitor cannot discharge
through a potentiometer.
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• q will increase. (q = CV )

• U will increase. (U = 1
2CV

2)
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in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
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where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
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Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:
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Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes
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Because k is always greater than unity, both these equations show that for a fixed
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• V will decrease. (V = q
C )

• U will decrease. (U = q2

2C )
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Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.
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(b) If the charge on the capacitor plates is
maintained, as in this case, the effect of a 
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through a potentiometer.
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• V will decrease. (V = q
C )

• U will decrease. (U = q2

2C )
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increase the capacitance of a capacitor, and some materials, such as strontium ti-
tanate, can increase the capacitance by more than two orders of magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form C ! "0!, (25-26)

in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C ! k"0! ! kCair, (25-27)
where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.
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The electric field between the plates is E = σ
ε0

originally.

With dielectric added: E → σ
κε0

.

The field strength decreases: E → E
κ (as we know it should)

What happens to the energy density u?
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increase the capacitance of a capacitor, and some materials, such as strontium ti-
tanate, can increase the capacitance by more than two orders of magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form C ! "0!, (25-26)

in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C ! k"0! ! kCair, (25-27)
where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes
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Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.
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The electric field between the plates is E = σ
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κε0
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The field strength decreases: E → E
κ (as we know it should)

What happens to the energy density u?
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Dielectrics and Electric Field

Dielectrics effect the field around a charge

E → E

κ

For example, for a point charge q in free space:

E0 =
k q

r2
=

1

4πε0

q

r2

But in a dielectric, constant κ:

E =
1

4π(κε0)

q

r2
=

E0

κ



Guass’s Law with dielectrics

κε0ΦE = qfree

or: ∮
A

E · dA =
qfree
κε0
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2. Nonpolar dielectrics. Regardless of whether they have permanent electric
dipole moments, molecules acquire dipole moments by induction when 
placed in an external electric field. In Section 24-8 (see Fig. 24-11), we saw 
that this occurs because the external field tends to “stretch” the molecules,
slightly separating the centers of negative and positive charge.

Figure 25-15a shows a nonpolar dielectric slab with no external electric field
applied. In Fig. 25-15b, an electric field is applied via a capacitor, whose plates
are charged as shown. The result is a slight separation of the centers of the posi-
tive and negative charge distributions within the slab, producing positive charge
on one face of the slab (due to the positive ends of dipoles there) and negative
charge on the opposite face (due to the negative ends of dipoles there). The slab
as a whole remains electrically neutral and—within the slab—there is no excess
charge in any volume element.

Figure 25-15c shows that the induced surface charges on the faces produce an
electric field in the direction opposite that of the applied electric field . The
resultant field inside the dielectric (the vector sum of fields and ) has the
direction of but is smaller in magnitude.

Both the field produced by the surface charges in Fig. 25-15c and the electric
field produced by the permanent electric dipoles in Fig. 25-14 act in the same way—
they oppose the applied field .Thus, the effect of both polar and nonpolar dielectrics
is to weaken any applied field within them,as between the plates of a capacitor.

25-8 Dielectrics and Gauss’ Law
In our discussion of Gauss’ law in Chapter 23, we assumed that the charges
existed in a vacuum. Here we shall see how to modify and generalize that law if
dielectric materials, such as those listed in Table 25-1, are present. Figure 25-16
shows a parallel-plate capacitor of plate area A, both with and without a 
dielectric. We assume that the charge q on the plates is the same in both situa-
tions. Note that the field between the plates induces charges on the faces of the
dielectric by one of the methods described in Section 25-7.

For the situation of Fig. 25-16a, without a dielectric, we can find the electric
field between the plates as we did in Fig. 25-5:We enclose the charge !q on the
top plate with a Gaussian surface and then apply Gauss’ law. Letting E0 represent
the magnitude of the field, we find

(25-30)

or (25-31)

In Fig. 25-16b, with the dielectric in place, we can find the electric field
between the plates (and within the dielectric) by using the same Gaussian sur-
face. However, now the surface encloses two types of charge: It still encloses
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Fig. 25-15 (a) A nonpolar dielectric
slab.The circles represent the electrically
neutral atoms within the slab. (b) An elec-
tric field is applied via charged capacitor
plates; the field slightly stretches the atoms,
separating the centers of positive and nega-
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The charge qfree = q in the diagram. It is just the charge on the
plates, the charge that is free to move.



Capacitor with a Metal slab, Ex 26.7
A parallel-plate capacitor has a plate separation d and plate area
A. An uncharged metallic slab of thickness a is inserted midway
between the plates. Find the capacitance of the device.
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Example 26.7   Effect of a Metallic Slab

A parallel-plate capacitor has a plate separation d and plate 
area A. An uncharged metallic slab of thickness a is inserted 
midway between the plates.

(A)  Find the capacitance of the device.

Conceptualize  Figure 26.23a shows the metallic slab between 
the plates of the capacitor. Any charge that appears on one 
plate of the capacitor must induce a charge of equal magni-
tude and opposite sign on the near side of the slab as shown 
in Figure 26.23a. Consequently, the net charge on the slab 
remains zero and the electric field inside the slab is zero.

Categorize  The planes of charge on the metallic slab’s upper 
and lower edges are identical to the distribution of charges 
on the plates of a capacitor. The metal between the slab’s 
edges serves only to make an electrical connection between 
the edges. Therefore, we can model the edges of the slab as 
conducting planes and the bulk of the slab as a wire. As a result, the capacitor in Figure 26.23a is equivalent to two 
capacitors in series, each having a plate separation (d 2 a)/2 as shown in Figure 26.23b.
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Figure 26.23  (Example 26.7) (a) A parallel-plate capaci-
tor of plate separation d partially filled with a metallic slab 
of thickness a. (b) The equivalent circuit of the device in 
(a) consists of two capacitors in series, each having a plate 
separation (d 2 a)/2.

Analyze  Use Equation 26.3 and the rule for adding two 
capacitors in series (Eq. 26.10) to find the equivalent 
capacitance in Figure 26.23b:
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(B)  Show that the capacitance of the original capacitor is unaffected by the insertion of the metallic slab if the slab is 
infinitesimally thin.

S O L U T I O N

In the result for part (A), let a S 0: C 5 lim
a S 0

a P0A
d 2 a

b 5
P0A
d

Finalize  The result of part (B) is the original capacitance before the slab is inserted, which tells us that we can insert 
an infinitesimally thin metallic sheet between the plates of a capacitor without affecting the capacitance. We use this 
fact in the next example.

What if the metallic slab in part (A) is not midway between the plates? How would that affect the capacitance?

Answer  Let’s imagine moving the slab in Figure 26.23a upward so that the distance between the upper edge of the 
slab and the upper plate is b. Then, the distance between the lower edge of the slab and the lower plate is d 2 b 2 a. As 
in part (A), we find the total capacitance of the series combination:
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which is the same result as found in part (A). The capacitance is independent of the value of b, so it does not matter 
where the slab is located. In Figure 26.23b, when the central structure is moved up or down, the decrease in plate sepa-
ration of one capacitor is compensated by the increase in plate separation for the other.

WHAT IF ?

the conductor is equal in magnitude but opposite in sign to that on the plates, 
resulting in a net electric field of zero in the conductor (see Fig. 24.16).
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where the slab is located. In Figure 26.23b, when the central structure is moved up or down, the decrease in plate sepa-
ration of one capacitor is compensated by the increase in plate separation for the other.

WHAT IF ?

the conductor is equal in magnitude but opposite in sign to that on the plates, 
resulting in a net electric field of zero in the conductor (see Fig. 24.16).

 

This is just 2 capacitors in series!
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Example 26.7   Effect of a Metallic Slab

A parallel-plate capacitor has a plate separation d and plate 
area A. An uncharged metallic slab of thickness a is inserted 
midway between the plates.

(A)  Find the capacitance of the device.

Conceptualize  Figure 26.23a shows the metallic slab between 
the plates of the capacitor. Any charge that appears on one 
plate of the capacitor must induce a charge of equal magni-
tude and opposite sign on the near side of the slab as shown 
in Figure 26.23a. Consequently, the net charge on the slab 
remains zero and the electric field inside the slab is zero.

Categorize  The planes of charge on the metallic slab’s upper 
and lower edges are identical to the distribution of charges 
on the plates of a capacitor. The metal between the slab’s 
edges serves only to make an electrical connection between 
the edges. Therefore, we can model the edges of the slab as 
conducting planes and the bulk of the slab as a wire. As a result, the capacitor in Figure 26.23a is equivalent to two 
capacitors in series, each having a plate separation (d 2 a)/2 as shown in Figure 26.23b.
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Figure 26.23  (Example 26.7) (a) A parallel-plate capaci-
tor of plate separation d partially filled with a metallic slab 
of thickness a. (b) The equivalent circuit of the device in 
(a) consists of two capacitors in series, each having a plate 
separation (d 2 a)/2.

Analyze  Use Equation 26.3 and the rule for adding two 
capacitors in series (Eq. 26.10) to find the equivalent 
capacitance in Figure 26.23b:
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(B)  Show that the capacitance of the original capacitor is unaffected by the insertion of the metallic slab if the slab is 
infinitesimally thin.

S O L U T I O N

In the result for part (A), let a S 0: C 5 lim
a S 0

a P0A
d 2 a

b 5
P0A
d

Finalize  The result of part (B) is the original capacitance before the slab is inserted, which tells us that we can insert 
an infinitesimally thin metallic sheet between the plates of a capacitor without affecting the capacitance. We use this 
fact in the next example.

What if the metallic slab in part (A) is not midway between the plates? How would that affect the capacitance?

Answer  Let’s imagine moving the slab in Figure 26.23a upward so that the distance between the upper edge of the 
slab and the upper plate is b. Then, the distance between the lower edge of the slab and the lower plate is d 2 b 2 a. As 
in part (A), we find the total capacitance of the series combination:
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which is the same result as found in part (A). The capacitance is independent of the value of b, so it does not matter 
where the slab is located. In Figure 26.23b, when the central structure is moved up or down, the decrease in plate sepa-
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Partially-Filled Capacitor, Ex 26.8
A parallel-plate capacitor with a plate separation d has a
capacitance C0 in the absence of a dielectric. What is the
capacitance when a slab of dielectric material of dielectric constant
κ and thickness fd is inserted between the plates, where f is a
fraction between 0 and 1?
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Example 26.8   A Partially Filled Capacitor

A parallel-plate capacitor with a plate separation d has a 
capacitance C0 in the absence of a dielectric. What is the 
capacitance when a slab of dielectric material of dielectric 
constant k and thickness fd is inserted between the plates 
(Fig. 26.24a), where f is a fraction between 0 and 1?

Conceptualize  In our previous discussions of dielectrics 
between the plates of a capacitor, the dielectric filled the 
volume between the plates. In this example, only part of the 
volume between the plates contains the dielectric material.

Categorize  In Example 26.7, we found that an infinitesi-
mally thin metallic sheet inserted between the plates of a 
capacitor does not affect the capacitance. Imagine sliding 
an infinitesimally thin metallic slab along the bottom face 
of the dielectric shown in Figure 26.24a. We can model this 
system as a series combination of two capacitors as shown 
in Figure 26.24b. One capacitor has a plate separation fd and is filled with a dielectric; the other has a plate separation 
(1 2 f )d and has air between its plates.
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Figure 26.24 (Example 26.8) (a) A parallel-plate capacitor 
of plate separation d partially filled with a dielectric of thick-
ness fd. (b) The equivalent circuit of the capacitor consists of 
two capacitors connected in series.

Invert and substitute for the capacitance without the 
dielectric, C 0 5 P0A/d :

C 5
k

f 1 k 11 2 f 2  P0A
d

5
k

f 1 k 11 2 f 2  C 0

Find the equivalent capacitance C from Equation 26.10 
for two capacitors combined in series:
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Analyze  Evaluate the two capacitances in Figure 26.24b 
from Equation 26.15:

C 1 5
kP0A

fd
 and C 2 5

P0A11 2 f 2d

Finalize  Let’s test this result for some known limits. If f S 0, the dielectric should disappear. In this limit, C S C 0, 
which is consistent with a capacitor with air between the plates. If f S 1, the dielectric fills the volume between the 
plates. In this limit, C S kC 0, which is consistent with Equation 26.14.

 

Summary

 A capacitor consists of two conductors carrying charges of equal 
magnitude and opposite sign. The capacitance C of any capacitor is the 
ratio of the charge Q on either conductor to the potential difference DV 
between them:

 C ;
Q

DV
 (26.1)

The capacitance depends only on the geometry of the conductors and 
not on an external source of charge or potential difference. The SI unit 
of capacitance is coulombs per volt, or the farad (F): 1 F 5 1 C/V.

 The electric dipole moment pS of 
an electric dipole has a magnitude

 p ; 2aq (26.16)

where 2a is the distance between the 
charges q and 2q. The direction of the 
electric dipole moment vector is from 
the negative charge toward the posi-
tive charge.

Definitions
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What is the capacitance when a slab of dielectric material of
dielectric constant κ and thickness fd is inserted between the
plates, where f is a fraction between 0 and 1?
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Example 26.8   A Partially Filled Capacitor
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capacitor does not affect the capacitance. Imagine sliding 
an infinitesimally thin metallic slab along the bottom face 
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system as a series combination of two capacitors as shown 
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of plate separation d partially filled with a dielectric of thick-
ness fd. (b) The equivalent circuit of the capacitor consists of 
two capacitors connected in series.
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Analyze  Evaluate the two capacitances in Figure 26.24b 
from Equation 26.15:
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 and C 2 5

P0A11 2 f 2d

Finalize  Let’s test this result for some known limits. If f S 0, the dielectric should disappear. In this limit, C S C 0, 
which is consistent with a capacitor with air between the plates. If f S 1, the dielectric fills the volume between the 
plates. In this limit, C S kC 0, which is consistent with Equation 26.14.
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ratio of the charge Q on either conductor to the potential difference DV 
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where 2a is the distance between the 
charges q and 2q. The direction of the 
electric dipole moment vector is from 
the negative charge toward the posi-
tive charge.
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constant k and thickness fd is inserted between the plates 
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volume between the plates contains the dielectric material.
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capacitor does not affect the capacitance. Imagine sliding 
an infinitesimally thin metallic slab along the bottom face 
of the dielectric shown in Figure 26.24a. We can model this 
system as a series combination of two capacitors as shown 
in Figure 26.24b. One capacitor has a plate separation fd and is filled with a dielectric; the other has a plate separation 
(1 2 f )d and has air between its plates.

S O L U T I O N

fd

(1 ! f )dd

C 1

C 2(1 ! f )d

k

k

a b

fd

Figure 26.24 (Example 26.8) (a) A parallel-plate capacitor 
of plate separation d partially filled with a dielectric of thick-
ness fd. (b) The equivalent circuit of the capacitor consists of 
two capacitors connected in series.

Invert and substitute for the capacitance without the 
dielectric, C 0 5 P0A/d :

C 5
k

f 1 k 11 2 f 2  P0A
d

5
k

f 1 k 11 2 f 2  C 0

Find the equivalent capacitance C from Equation 26.10 
for two capacitors combined in series:

 
1
C

5
1

C 1
1

1
C 2

5
fd

kP0A
1

11 2 f 2d
P0 A

 
1
C

5
fd

kP0A
1

k 11 2 f 2d
kP0A

5
f 1 k 11 2 f 2

k
 

d
P0A

Analyze  Evaluate the two capacitances in Figure 26.24b 
from Equation 26.15:
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Finalize  Let’s test this result for some known limits. If f S 0, the dielectric should disappear. In this limit, C S C 0, 
which is consistent with a capacitor with air between the plates. If f S 1, the dielectric fills the volume between the 
plates. In this limit, C S kC 0, which is consistent with Equation 26.14.

 

Summary

 A capacitor consists of two conductors carrying charges of equal 
magnitude and opposite sign. The capacitance C of any capacitor is the 
ratio of the charge Q on either conductor to the potential difference DV 
between them:
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The capacitance depends only on the geometry of the conductors and 
not on an external source of charge or potential difference. The SI unit 
of capacitance is coulombs per volt, or the farad (F): 1 F 5 1 C/V.

 The electric dipole moment pS of 
an electric dipole has a magnitude
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where 2a is the distance between the 
charges q and 2q. The direction of the 
electric dipole moment vector is from 
the negative charge toward the posi-
tive charge.
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Again, 2 capacitors in series!
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Partially-Filled Capacitor

What about this case?

 Problems 807

 76. A parallel-plate capacitor with plates of area LW and 
plate separation t has the region between its plates 
filled with wedges of two dielectric materials as shown 
in Figure P26.76. Assume t is much less than both L 
and W. (a) Determine its capacitance. (b) Should the 
capacitance be the same if the labels k1 and k2 are 
interchanged? Demonstrate that your expression does 
or does not have this property. (c) Show that if k1 and 
k2 approach equality to a common value k, your result 
becomes the same as the capacitance of a capacitor 
containing a single dielectric: C 5 kP0LW/t.

k2
k1t

L
W

Figure P26.76

 77. Calculate the equivalent capacitance between points 
a and b in Figure P26.77. Notice that this system is 
not a simple series or parallel combination. Sug-
gestion: Assume a potential difference DV  between 
points a and b. Write expressions for DVab in terms 
of the charges and capacitances for the various pos-
sible pathways from a to b and require conservation of 
charge for those capacitor plates that are connected 
to each other.

a

b2.00 mF

4.00 mF

2.00 mF 4.00 mF8.00 mF

Figure P26.77

 78. A capacitor is constructed from two square, metal-
lic plates of sides , and separation d. Charges 1Q 
and 2Q are placed on the plates, and the power sup-
ply is then removed. A material of dielectric constant 
k is inserted a distance x into the capacitor as shown 
in Figure P26.78. Assume d is much smaller than x.  
(a) Find the equivalent capacitance of the device.  
(b) Calculate the energy stored in the capacitor. (c) Find 
the direction and magnitude of the force exerted by the 
plates on the dielectric. (d) Obtain a numerical value 
for the force when x 5 ,/2, assuming , 5 5.00 cm, d 5  
2.00 mm, the dielectric is glass (k 5 4.50), and the 
capacitor was charged to 2.00 3 103 V before the 
dielectric was inserted. Suggestion: The system can be 
considered as two capacitors connected in parallel.

Q/C
S

plates. The immediately available supply is a box of five  
100-mF capacitors, each having a maximum voltage 
capability of 50 V. (a) What combination of these 
capacitors has the proper electrical characteristics? 
Will the technician use all the capacitors in the box? 
Explain your answers. (b) In the combination of capac-
itors obtained in part (a), what will be the maximum 
voltage across each of the capacitors used?

Challenge Problems
 72. The inner conductor of a coaxial cable has a radius of 

0.800 mm, and the outer conductor’s inside radius is 
3.00 mm. The space between the conductors is filled 
with polyethylene, which has a dielectric constant of 
2.30 and a dielectric strength of 18.0 3 106 V/m. What 
is the maximum potential difference this cable can 
withstand?

 73. Some physical systems possessing capacitance continu-
ously distributed over space can be modeled as an infi-
nite array of discrete circuit elements. Examples are 
a microwave waveguide and the axon of a nerve cell. 
To practice analysis of an infinite array, determine the 
equivalent capacitance C  between terminals X and Y 
of the infinite set of capacitors represented in Figure 
P26.73. Each capacitor has capacitance C0. Suggestions: 
Imagine that the ladder is cut at the line AB and note 
that the equivalent capacitance of the infinite section 
to the right of AB is also C.

C0

C0

C0

X

Y

A

B

Figure P26.73

 74. Consider two long, parallel, and oppositely charged 
wires of radius r with their centers separated by a 
distance D that is much larger than r. Assuming the 
charge is distributed uniformly on the surface of each 
wire, show that the capacitance per unit length of this 
pair of wires is

C
,

5
pP0

ln 1D/r 2
 75. Determine the equivalent capacitance of the combina-

tion shown in Figure P26.75. Suggestion: Consider the 
symmetry involved.
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Figure P26.78
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Figure P26.75



Electric Displacement Field

It is sometimes convenient to package the effect of the electric
field together with the effect of the dielectric.

For this, people use a quantity, Electric Displacement field,
which can be expressed1

D = κε0E

Gauss’s law is very often written in terms of the electric
displacement, rather than the electric field, if the field being
studied is in a polarizable material.

1In a linear, homogeneous, isotropic dielectric with instantaneous response.



Uses of Dielectric Effects

792 Chapter 26 Capacitance and Dielectrics

Types of Capacitors
Many capacitors are built into integrated circuit chips, but some electrical devices 
still use stand-alone capacitors. Commercial capacitors are often made from metal-
lic foil interlaced with thin sheets of either paraffin-impregnated paper or Mylar 
as the dielectric material. These alternate layers of metallic foil and dielectric are 
rolled into a cylinder to form a small package (Fig. 26.14a). High-voltage capacitors 
commonly consist of a number of interwoven metallic plates immersed in silicone 
oil (Fig. 26.14b). Small capacitors are often constructed from ceramic materials.
 Often, an electrolytic capacitor is used to store large amounts of charge at relatively 
low voltages. This device, shown in Figure 26.14c, consists of a metallic foil in con-
tact with an electrolyte, a solution that conducts electricity by virtue of the motion of 
ions contained in the solution. When a voltage is applied between the foil and the 
electrolyte, a thin layer of metal oxide (an insulator) is formed on the foil, and this 
layer serves as the dielectric. Very large values of capacitance can be obtained in 
an electrolytic capacitor because the dielectric layer is very thin and therefore the 
plate separation is very small.
 Electrolytic capacitors are not reversible as are many other capacitors. They 
have a polarity, which is indicated by positive and negative signs marked on the 
device. When electrolytic capacitors are used in circuits, the polarity must be cor-
rect. If the polarity of the applied voltage is the opposite of what is intended, the 
oxide layer is removed and the capacitor conducts electricity instead of storing 
charge.
 Variable capacitors (typically 10 to 500 pF) usually consist of two interwoven sets 
of metallic plates, one fixed and the other movable, and contain air as the dielec-
tric (Fig. 26.15). These types of capacitors are often used in radio tuning circuits.

Q uick Quiz 26.5  If you have ever tried to hang a picture or a mirror, you know it 
can be difficult to locate a wooden stud in which to anchor your nail or screw. A 
carpenter’s stud finder is a capacitor with its plates arranged side by side instead 
of facing each other as shown in Figure 26.16. When the device is moved over a 
stud, does the capacitance (a) increase or (b) decrease?

Plates

Electrolyte
Case

Metallic foil ! oxide layer

Contacts

Metal foil

Paper

An electrolytic 
capacitor

Oil

a b c

A tubular capacitor 
whose plates are 
separated by paper 
and then rolled into 
a cylinder

A high-voltage 
capacitor consisting 
of many parallel 
plates separated by 
insulating oil

Figure 26.14  Three commercial capacitor designs.

When one set of metal plates is 
rotated so as to lie between a fixed 
set of plates, the capacitance of the 
device changes.

Figure 26.15  A variable capacitor. 
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The materials between the 
plates of the capacitor are 
the wallboard and air.

When the capacitor moves across 
a stud in the wall, the materials 
between the plates are the 
wallboard and the wood stud. 
The change in the dielectric 
constant causes a signal light to 
illuminate.

Figure 26.16  (Quick Quiz 26.5)  
A stud finder.

Example 26.5   Energy Stored Before and After 

A parallel-plate capacitor is charged with a battery to a charge Q 0. The battery is then removed, and a slab of material 
that has a dielectric constant k is inserted between the plates. Identify the system as the capacitor and the dielectric. 
Find the energy stored in the system before and after the dielectric is inserted.

AM

1Figures from Serway & Jewett, 9th ed.
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Example 26.1   The Cylindrical Capacitor

A solid cylindrical conductor of radius a and charge 
Q is coaxial with a cylindrical shell of negligible thick-
ness, radius b . a, and charge 2Q (Fig. 26.4a). Find the 
capacitance of this cylindrical capacitor if its length 
is ,.

Conceptualize  Recall that any pair of conductors 
qualifies as a capacitor, so the system described in this 
example therefore qualifies. Figure 26.4b helps visual-
ize the electric field between the conductors. We expect 
the capacitance to depend only on geometric factors, 
which, in this case, are a, b, and ,.

Categorize  Because of the cylindrical symmetry of the 
system, we can use results from previous studies of cylin-
drical systems to find the capacitance.

S O L U T I O N

Substituting this result into Equation 26.1, we find that the capacitance is

 C 5
Q

DV
5

Q
Qd/P0A

 

 C 5
P0A
d

 (26.3)

That is, the capacitance of a parallel-plate capacitor is proportional to the area of 
its plates and inversely proportional to the plate separation.
 Let’s consider how the geometry of these conductors influences the capacity of 
the pair of plates to store charge. As a capacitor is being charged by a battery, elec-
trons flow into the negative plate and out of the positive plate. If the capacitor 
plates are large, the accumulated charges are able to distribute themselves over a 
substantial area and the amount of charge that can be stored on a plate for a given 
potential difference increases as the plate area is increased. Therefore, it is reason-
able that the capacitance is proportional to the plate area A as in Equation 26.3.
 Now consider the region that separates the plates. Imagine moving the plates 
closer together. Consider the situation before any charges have had a chance to 
move in response to this change. Because no charges have moved, the electric field 
between the plates has the same value but extends over a shorter distance. There-
fore, the magnitude of the potential difference between the plates DV 5 Ed (Eq. 
25.6) is smaller. The difference between this new capacitor voltage and the terminal 
voltage of the battery appears as a potential difference across the wires connecting 
the battery to the capacitor, resulting in an electric field in the wires that drives 
more charge onto the plates and increases the potential difference between the 
plates. When the potential difference between the plates again matches that of the 
battery, the flow of charge stops. Therefore, moving the plates closer together causes 
the charge on the capacitor to increase. If d is increased, the charge decreases. As a 
result, the inverse relationship between C and d in Equation 26.3 is reasonable.

Q uick Quiz 26.2  Many computer keyboard buttons are constructed of capacitors 
as shown in Figure 26.3. When a key is pushed down, the soft insulator between 
the movable plate and the fixed plate is compressed. When the key is pressed, 
what happens to the capacitance? (a) It increases. (b) It decreases. (c) It changes 
in a way you cannot determine because the electric circuit connected to the key-
board button may cause a change in DV.

Capacitance of parallel plates X

Key
B

Movable plate

Insulator
Fixed plate

Figure 26.3  (Quick Quiz 26.2) 
One type of computer keyboard 
button.
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Figure 26.4  (Example 26.1) (a) A cylindrical capacitor consists 
of a solid cylindrical conductor of radius a and length , sur-
rounded by a coaxial cylindrical shell of radius b. (b) End view. 
The electric field lines are radial. The dashed line represents the 
end of a cylindrical gaussian surface of radius r and length ,.



Summary

• dielectrics

• Gauss’s law with dielectrics

• electric displacement

• some uses of dielectrics

Quiz tomorrow.

Homework
Serway & Jewett:

• PREVIOUS: Ch 26, onward from page 799. Problems: 13, 17,
21, 25, 31, 33, 35

• NEW: Ch 26. Problems: 43, 47, 49, 53, 63


