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Last time

• dielectrics and capacitors

• uses of capacitors



Overview

• current

• current density

• drift speed



Motion of Charge

Up until now, we have mostly considered charges in fixed positions.

We will now look at steadily moving charges, particularly in
circuits.



Flow of charge in a circuit
Current is the rate of flow of charge.

Conventional current is said to flow from the positive terminal to
the negative terminal.

However, actually it is negatively charged electrons that flow
through metal wires:

−
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conductor of cross-sectional area A (Fig. 27.2). The volume of a segment of the con-
ductor of length Dx (between the two circular cross sections shown in Fig. 27.2) is  
A  Dx. If n represents the number of mobile charge carriers per unit volume (in 
other words, the charge carrier density), the number of carriers in the segment is 
nA Dx. Therefore, the total charge DQ in this segment is

 DQ 5 (nA Dx)q 

where q is the charge on each carrier. If the carriers move with a velocity vSd paral-
lel to the axis of the cylinder, the magnitude of the displacement they experience 
in the x direction in a time interval Dt is Dx 5 vd Dt. Let Dt be the time interval 
required for the charge carriers in the segment to move through a displacement 
whose magnitude is equal to the length of the segment. This time interval is also 
the same as that required for all the charge carriers in the segment to pass through 
the circular area at one end. With this choice, we can write DQ as

 DQ 5 (nAvd Dt)q 

Dividing both sides of this equation by Dt, we find that the average current in the 
conductor is

 I avg 5
DQ
Dt

5 nqvdA  (27.4)

 In reality, the speed of the charge carriers vd is an average speed called the 
drift speed. To understand the meaning of drift speed, consider a conductor in 
which the charge carriers are free electrons. If the conductor is isolated—that 
is, the potential difference across it is zero—these electrons undergo random 
motion that is analogous to the motion of gas molecules. The electrons collide 
repeatedly with the metal atoms, and their resultant motion is complicated and 
zigzagged as in Figure 27.3a. As discussed earlier, when a potential difference 
is applied across the conductor (for example, by means of a battery), an electric 
field is set up in the conductor; this field exerts an electric force on the electrons, 
producing a current. In addition to the zigzag motion due to the collisions with 
the metal atoms, the electrons move slowly along the conductor (in a direction 
opposite that of E

S
) at the drift velocity vSd as shown in Figure 27.3b.

 You can think of the atom–electron collisions in a conductor as an effective 
internal friction (or drag force) similar to that experienced by a liquid’s mol-
ecules flowing through a pipe stuffed with steel wool. The energy transferred 
from the electrons to the metal atoms during collisions causes an increase in 
the atom’s vibrational energy and a corresponding increase in the conductor’s 
temperature.

Q uick Quiz 27.1  Consider positive and negative charges moving horizontally 
through the four regions shown in Figure 27.4. Rank the current in these four 
regions from highest to lowest.
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Figure 27.2  A segment of a uni-
form conductor of cross-sectional 
area A.
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The random motion of the 
charge carriers is modified by 
the field, and they have a drift 
velocity opposite the direction 
of the electric field.

Figure 27.3 (a) A schematic 
diagram of the random motion of 
two charge carriers in a conductor 
in the absence of an electric field. 
The drift velocity is zero. (b) The 
motion of the charge carriers in 
a conductor in the presence of an 
electric field. Because of the accel-
eration of the charge carriers due 
to the electric force, the paths are 
actually parabolic. The drift speed, 
however, is much smaller than the 
average speed, so the parabolic 
shape is not visible on this scale.
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Figure 27.4  (Quick Quiz 27.1) Charges move through four regions.
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1Figure from Serway and Jewett, 9th ed.



Electric Current
Electric current, I, is the rate of flow of charge through some
defined plane:

I =
dQ

dt

The defined plane might be aa ′. However, since charge is
conserved if an amount of charge Q flows through aa ′, then the
same amount of charge Q must flow through bb ′ and cc ′ in the
same time interval.
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As Fig. 26-1a reminds us, any isolated conducting loop—regardless of
whether it has an excess charge—is all at the same potential. No electric field can
exist within it or along its surface. Although conduction electrons are available,
no net electric force acts on them and thus there is no current.

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no
longer at a single potential. Electric fields act inside the material making up
the loop, exerting forces on the conduction electrons, causing them to move
and thus establishing a current. After a very short time, the electron flow
reaches a constant value and the current is in its steady state (it does not vary
with time).

Figure 26-2 shows a section of a conductor, part of a conducting loop in
which current has been established. If charge dq passes through a hypothetical
plane (such as aa!) in time dt, then the current i through that plane is defined as

(definition of current). (26-1)

We can find the charge that passes through the plane in a time interval
extending from 0 to t by integration:

(26-2)

in which the current i may vary with time.

q " ! dq " !t

0
 i dt,

i "
dq
dt

Fig. 26-1 (a) A loop of copper in
electrostatic equilibrium.The entire
loop is at a single potential, and the
electric field is zero at all points in-
side the copper. (b) Adding a battery
imposes an electric potential differ-
ence between the ends of the loop
that are connected to the terminals
of the battery.The battery thus pro-
duces an electric field within the
loop, from terminal to terminal, and
the field causes charges to move
around the loop.This movement of
charges is a current i.

(a)

(b)

Battery

+ – ii
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Fig. 26-2 The current i
through the conductor has
the same value at planes
aa!, bb!, and cc!.
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The current is the same in 
any cross section.

Under steady-state conditions, the current is the same for planes aa!, bb!, and
cc! and indeed for all planes that pass completely through the conductor, no
matter what their location or orientation.This follows from the fact that charge is
conserved. Under the steady-state conditions assumed here, an electron must
pass through plane aa! for every electron that passes through plane cc!. In the
same way, if we have a steady flow of water through a garden hose, a drop of
water must leave the nozzle for every drop that enters the hose at the other end.
The amount of water in the hose is a conserved quantity.

The SI unit for current is the coulomb per second, or the ampere (A), which
is an SI base unit:

1 ampere " 1 A " 1 coulomb per second " 1 C/s.

The formal definition of the ampere is discussed in Chapter 29.
Current, as defined by Eq. 26-1, is a scalar because both charge and time in

that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with
an arrow to indicate that charge is moving. Such arrows are not vectors, however,
and they do not require vector addition. Figure 26-3a shows a conductor with
current i0 splitting at a junction into two branches. Because charge is conserved,
the magnitudes of the currents in the branches must add to yield the magnitude
of the current in the original conductor, so that

i0 " i1 # i2. (26-3)

As Fig. 26-3b suggests, bending or reorienting the wires in space does not change
the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow
along a conductor, not a direction in space.

Fig. 26-3 The relation i0 " i1 # i2

is true at junction a no matter what the
orientation in space of the three wires.
Currents are scalars, not vectors.

i 0  

a  

i 1  

i 2  

(a) 

(b) 

a  
i 2  

i1  

i 0  

The current into the
junction must equal
the current out
(charge is conserved).
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Average Electric Current

Iavg =
∆Q

∆t

∆Q is a net amount of charge and ∆t is a time interval.

The flowing charge could be electrons in a conductor, positive or
negative ions in a solution, electrons and ions in a plasma, etc.



Current
Charge will only move when there is a net force on it. A supplying
a potential difference across two points on a wire will do this.
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Current

Charge will only move when there is a net force on it. A supplying
a potential difference across two points on a wire will do this.

However, notice that if there is a potential difference between two
points in a wire, that must mean that there is a non-zero electric
field between those points - even though the wire is a conductor!68326-2 E LECTR IC CU R R E NT
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Electric Current

The units of current are Amps, A. Formally, amperes. (After
André-Marie Ampère.)

1 A = 1 C/s

Current is a scalar, however, a negative sign can be used to
indicate a current flowing backwards through a loop.



Conventional Current

By convention, current is labeled indicating the direction in which
positive charge carriers would move.

Of course, in very many circumstances, and particularly in
conducting metals, electrons, which are negative charge carries, are
the moving charges.

This means that a current arrow is drawn opposite to the direction
of motion of electrons.



Conventional Current
A conducting wire:

−
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conductor of cross-sectional area A (Fig. 27.2). The volume of a segment of the con-
ductor of length Dx (between the two circular cross sections shown in Fig. 27.2) is  
A  Dx. If n represents the number of mobile charge carriers per unit volume (in 
other words, the charge carrier density), the number of carriers in the segment is 
nA Dx. Therefore, the total charge DQ in this segment is

 DQ 5 (nA Dx)q 

where q is the charge on each carrier. If the carriers move with a velocity vSd paral-
lel to the axis of the cylinder, the magnitude of the displacement they experience 
in the x direction in a time interval Dt is Dx 5 vd Dt. Let Dt be the time interval 
required for the charge carriers in the segment to move through a displacement 
whose magnitude is equal to the length of the segment. This time interval is also 
the same as that required for all the charge carriers in the segment to pass through 
the circular area at one end. With this choice, we can write DQ as

 DQ 5 (nAvd Dt)q 

Dividing both sides of this equation by Dt, we find that the average current in the 
conductor is

 I avg 5
DQ
Dt

5 nqvdA  (27.4)

 In reality, the speed of the charge carriers vd is an average speed called the 
drift speed. To understand the meaning of drift speed, consider a conductor in 
which the charge carriers are free electrons. If the conductor is isolated—that 
is, the potential difference across it is zero—these electrons undergo random 
motion that is analogous to the motion of gas molecules. The electrons collide 
repeatedly with the metal atoms, and their resultant motion is complicated and 
zigzagged as in Figure 27.3a. As discussed earlier, when a potential difference 
is applied across the conductor (for example, by means of a battery), an electric 
field is set up in the conductor; this field exerts an electric force on the electrons, 
producing a current. In addition to the zigzag motion due to the collisions with 
the metal atoms, the electrons move slowly along the conductor (in a direction 
opposite that of E

S
) at the drift velocity vSd as shown in Figure 27.3b.

 You can think of the atom–electron collisions in a conductor as an effective 
internal friction (or drag force) similar to that experienced by a liquid’s mol-
ecules flowing through a pipe stuffed with steel wool. The energy transferred 
from the electrons to the metal atoms during collisions causes an increase in 
the atom’s vibrational energy and a corresponding increase in the conductor’s 
temperature.

Q uick Quiz 27.1  Consider positive and negative charges moving horizontally 
through the four regions shown in Figure 27.4. Rank the current in these four 
regions from highest to lowest.

A
q

vd  

!x

!t

"

"

vd
S

Figure 27.2  A segment of a uni-
form conductor of cross-sectional 
area A.
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charge carriers is modified by 
the field, and they have a drift 
velocity opposite the direction 
of the electric field.

Figure 27.3 (a) A schematic 
diagram of the random motion of 
two charge carriers in a conductor 
in the absence of an electric field. 
The drift velocity is zero. (b) The 
motion of the charge carriers in 
a conductor in the presence of an 
electric field. Because of the accel-
eration of the charge carriers due 
to the electric force, the paths are 
actually parabolic. The drift speed, 
however, is much smaller than the 
average speed, so the parabolic 
shape is not visible on this scale.
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Figure 27.4  (Quick Quiz 27.1) Charges move through four regions.
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We imagine positive charges moving:

−
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they tend to drift with a drift speed vd in the direction opposite that of the applied
electric field that causes the current. The drift speed is tiny compared with the
speeds in the random motion. For example, in the copper conductors of house-
hold wiring, electron drift speeds are perhaps 10!5 or 10!4 m/s, whereas the
random-motion speeds are around 106 m/s.

We can use Fig. 26-5 to relate the drift speed vd of the conduction electrons
in a current through a wire to the magnitude J of the current density in the
wire. For convenience, Fig. 26-5 shows the equivalent drift of positive charge
carriers in the direction of the applied electric field Let us assume that these
charge carriers all move with the same drift speed vd and that the current den-
sity J is uniform across the wire’s cross-sectional area A. The number of charge
carriers in a length L of the wire is nAL, where n is the number of carriers per
unit volume. The total charge of the carriers in the length L, each with charge
e, is then

q " (nAL)e.

Because the carriers all move along the wire with speed vd, this total charge
moves through any cross section of the wire in the time interval

Equation 26-1 tells us that the current i is the time rate of transfer of charge
across a cross section, so here we have

(26-6)

Solving for vd and recalling Eq. 26-5 (J " i/A), we obtain

or, extended to vector form,

(26-7)

Here the product ne, whose SI unit is the coulomb per cubic meter (C/m3), is the
carrier charge density. For positive carriers, ne is positive and Eq. 26-7 predicts
that and have the same direction. For negative carriers, ne is negative and 
and have opposite directions.v:d
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Fig. 26-5 Positive charge carri-
ers drift at speed vd in the direc-
tion of the applied electric field 
By convention, the direction of
the current density and the
sense of the current arrow are
drawn in that same direction.
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CHECKPOINT 2

The figure shows conduction electrons moving left-
ward in a wire. Are the following leftward or right-
ward: (a) the current i, (b) the current density (c)
the electric field in the wire?E
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Current is said to be due to positive charges that
are propelled by the electric field.
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Current Question

QuickQuiz 27.1: Consider positive and negative charges moving
horizontally through the four regions. Rank the current in these
four regions from highest to lowest.
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conductor of cross-sectional area A (Fig. 27.2). The volume of a segment of the con-
ductor of length Dx (between the two circular cross sections shown in Fig. 27.2) is  
A  Dx. If n represents the number of mobile charge carriers per unit volume (in 
other words, the charge carrier density), the number of carriers in the segment is 
nA Dx. Therefore, the total charge DQ in this segment is

 DQ 5 (nA Dx)q 

where q is the charge on each carrier. If the carriers move with a velocity vSd paral-
lel to the axis of the cylinder, the magnitude of the displacement they experience 
in the x direction in a time interval Dt is Dx 5 vd Dt. Let Dt be the time interval 
required for the charge carriers in the segment to move through a displacement 
whose magnitude is equal to the length of the segment. This time interval is also 
the same as that required for all the charge carriers in the segment to pass through 
the circular area at one end. With this choice, we can write DQ as

 DQ 5 (nAvd Dt)q 

Dividing both sides of this equation by Dt, we find that the average current in the 
conductor is
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 In reality, the speed of the charge carriers vd is an average speed called the 
drift speed. To understand the meaning of drift speed, consider a conductor in 
which the charge carriers are free electrons. If the conductor is isolated—that 
is, the potential difference across it is zero—these electrons undergo random 
motion that is analogous to the motion of gas molecules. The electrons collide 
repeatedly with the metal atoms, and their resultant motion is complicated and 
zigzagged as in Figure 27.3a. As discussed earlier, when a potential difference 
is applied across the conductor (for example, by means of a battery), an electric 
field is set up in the conductor; this field exerts an electric force on the electrons, 
producing a current. In addition to the zigzag motion due to the collisions with 
the metal atoms, the electrons move slowly along the conductor (in a direction 
opposite that of E

S
) at the drift velocity vSd as shown in Figure 27.3b.

 You can think of the atom–electron collisions in a conductor as an effective 
internal friction (or drag force) similar to that experienced by a liquid’s mol-
ecules flowing through a pipe stuffed with steel wool. The energy transferred 
from the electrons to the metal atoms during collisions causes an increase in 
the atom’s vibrational energy and a corresponding increase in the conductor’s 
temperature.
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Current Question

QuickQuiz 27.1: Consider positive and negative charges moving
horizontally through the four regions. Rank the current in these
four regions from highest to lowest.
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conductor of cross-sectional area A (Fig. 27.2). The volume of a segment of the con-
ductor of length Dx (between the two circular cross sections shown in Fig. 27.2) is  
A  Dx. If n represents the number of mobile charge carriers per unit volume (in 
other words, the charge carrier density), the number of carriers in the segment is 
nA Dx. Therefore, the total charge DQ in this segment is

 DQ 5 (nA Dx)q 

where q is the charge on each carrier. If the carriers move with a velocity vSd paral-
lel to the axis of the cylinder, the magnitude of the displacement they experience 
in the x direction in a time interval Dt is Dx 5 vd Dt. Let Dt be the time interval 
required for the charge carriers in the segment to move through a displacement 
whose magnitude is equal to the length of the segment. This time interval is also 
the same as that required for all the charge carriers in the segment to pass through 
the circular area at one end. With this choice, we can write DQ as

 DQ 5 (nAvd Dt)q 

Dividing both sides of this equation by Dt, we find that the average current in the 
conductor is

 I avg 5
DQ
Dt

5 nqvdA  (27.4)

 In reality, the speed of the charge carriers vd is an average speed called the 
drift speed. To understand the meaning of drift speed, consider a conductor in 
which the charge carriers are free electrons. If the conductor is isolated—that 
is, the potential difference across it is zero—these electrons undergo random 
motion that is analogous to the motion of gas molecules. The electrons collide 
repeatedly with the metal atoms, and their resultant motion is complicated and 
zigzagged as in Figure 27.3a. As discussed earlier, when a potential difference 
is applied across the conductor (for example, by means of a battery), an electric 
field is set up in the conductor; this field exerts an electric force on the electrons, 
producing a current. In addition to the zigzag motion due to the collisions with 
the metal atoms, the electrons move slowly along the conductor (in a direction 
opposite that of E

S
) at the drift velocity vSd as shown in Figure 27.3b.

 You can think of the atom–electron collisions in a conductor as an effective 
internal friction (or drag force) similar to that experienced by a liquid’s mol-
ecules flowing through a pipe stuffed with steel wool. The energy transferred 
from the electrons to the metal atoms during collisions causes an increase in 
the atom’s vibrational energy and a corresponding increase in the conductor’s 
temperature.

Q uick Quiz 27.1  Consider positive and negative charges moving horizontally 
through the four regions shown in Figure 27.4. Rank the current in these four 
regions from highest to lowest.
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Figure 27.3 (a) A schematic 
diagram of the random motion of 
two charge carriers in a conductor 
in the absence of an electric field. 
The drift velocity is zero. (b) The 
motion of the charge carriers in 
a conductor in the presence of an 
electric field. Because of the accel-
eration of the charge carriers due 
to the electric force, the paths are 
actually parabolic. The drift speed, 
however, is much smaller than the 
average speed, so the parabolic 
shape is not visible on this scale.
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Current and Junctions

Since charge is conserved, all charge that flows into a point, must
flow out of it as well.

We can apply this to a junction: a point at which wires join or
split.

This gives Kirchhoff’s junction rule:

Junction Rule

The sum of the currents entering any junction must be equal to
the sum of the currents leaving that junction.



Current and Junctions

Junction Rule

The sum of the currents entering any junction must be equal to
the sum of the currents leaving that junction.
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As Fig. 26-1a reminds us, any isolated conducting loop—regardless of
whether it has an excess charge—is all at the same potential. No electric field can
exist within it or along its surface. Although conduction electrons are available,
no net electric force acts on them and thus there is no current.

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no
longer at a single potential. Electric fields act inside the material making up
the loop, exerting forces on the conduction electrons, causing them to move
and thus establishing a current. After a very short time, the electron flow
reaches a constant value and the current is in its steady state (it does not vary
with time).

Figure 26-2 shows a section of a conductor, part of a conducting loop in
which current has been established. If charge dq passes through a hypothetical
plane (such as aa!) in time dt, then the current i through that plane is defined as

(definition of current). (26-1)

We can find the charge that passes through the plane in a time interval
extending from 0 to t by integration:

(26-2)

in which the current i may vary with time.

q " ! dq " !t

0
 i dt,

i "
dq
dt

Fig. 26-1 (a) A loop of copper in
electrostatic equilibrium.The entire
loop is at a single potential, and the
electric field is zero at all points in-
side the copper. (b) Adding a battery
imposes an electric potential differ-
ence between the ends of the loop
that are connected to the terminals
of the battery.The battery thus pro-
duces an electric field within the
loop, from terminal to terminal, and
the field causes charges to move
around the loop.This movement of
charges is a current i.

(a)

(b)

Battery

+ – ii

i

i
i

Fig. 26-2 The current i
through the conductor has
the same value at planes
aa!, bb!, and cc!.

i i 

a 

a' 

b 

b' 

c 

c' 

The current is the same in 
any cross section.

Under steady-state conditions, the current is the same for planes aa!, bb!, and
cc! and indeed for all planes that pass completely through the conductor, no
matter what their location or orientation.This follows from the fact that charge is
conserved. Under the steady-state conditions assumed here, an electron must
pass through plane aa! for every electron that passes through plane cc!. In the
same way, if we have a steady flow of water through a garden hose, a drop of
water must leave the nozzle for every drop that enters the hose at the other end.
The amount of water in the hose is a conserved quantity.

The SI unit for current is the coulomb per second, or the ampere (A), which
is an SI base unit:

1 ampere " 1 A " 1 coulomb per second " 1 C/s.

The formal definition of the ampere is discussed in Chapter 29.
Current, as defined by Eq. 26-1, is a scalar because both charge and time in

that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with
an arrow to indicate that charge is moving. Such arrows are not vectors, however,
and they do not require vector addition. Figure 26-3a shows a conductor with
current i0 splitting at a junction into two branches. Because charge is conserved,
the magnitudes of the currents in the branches must add to yield the magnitude
of the current in the original conductor, so that

i0 " i1 # i2. (26-3)

As Fig. 26-3b suggests, bending or reorienting the wires in space does not change
the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow
along a conductor, not a direction in space.

Fig. 26-3 The relation i0 " i1 # i2

is true at junction a no matter what the
orientation in space of the three wires.
Currents are scalars, not vectors.

i 0  

a  

i 1  

i 2  

(a) 

(b) 

a  
i 2  

i1  

i 0  

The current into the
junction must equal
the current out
(charge is conserved).
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In the diagram, i0 = i1 + i2



Question

What are the magnitude and direction of the current i in the lower
right-hand wire?

684 CHAPTE R 26 CU R R E NT AN D R E S I STANCE

We can use this convention because in most situations, the assumed motion
of positive charge carriers in one direction has the same effect as the actual
motion of negative charge carriers in the opposite direction. (When the effect is
not the same, we shall drop the convention and describe the actual motion.)

A current arrow is drawn in the direction in which positive charge carriers would move,
even if the actual charge carriers are negative and move in the opposite direction.

CHECKPOINT 1

The figure here shows a portion of a circuit.
What are the magnitude and direction of the
current i in the lower right-hand wire?

1 A

2 A

3 A 4 A

2 A

2 A

i

Sample Problem

We can express the rate dN/dt in terms of the given vol-
ume flow rate dV/dt by first writing

“Molecules per mole” is Avogadro’s number NA.“Moles per
unit mass” is the inverse of the mass per mole, which is the
molar mass M of water. “Mass per unit volume” is the
(mass) density rmass of water. The volume per second is the
volume flow rate dV/dt.Thus, we have

Substituting this into the equation for i, we find

i ! 10eNAM"1#mass 
dV
dt

.

dN
dt

! NA! 1
M "#mass! dV

dt " !
NA#mass

M
 

dV
dt

.

$ ! mass
per unit
volume

 " !volume
per

second
 ".

!molecules
per

second  " ! !molecules
per

mole  " ! moles
per unit

mass  " 

Current is the rate at which charge passes a point

Water flows through a garden hose at a volume flow rate dV/dt
of 450 cm3/s.What is the current of negative charge?

KEY I DEAS

The current i of negative charge is due to the electrons in the wa-
ter molecules moving through the hose.The current is the rate at
which that negative charge passes through any plane that cuts
completely across the hose.

Calculations: We can write the current in terms of the
number of molecules that pass through such a plane per sec-
ond as

or

We substitute 10 electrons per molecule because a water
(H2O) molecule contains 8 electrons in the single oxygen atom
and 1 electron in each of the two hydrogen atoms.

i ! (e)(10) 
dN
dt

.

i !  ! charge
per

electron " !electrons
per

molecule " !molecules
per

second  "

The Directions of Currents
In Fig. 26-1b we drew the current arrows in the direction in which positively
charged particles would be forced to move through the loop by the electric field.
Such positive charge carriers, as they are often called, would move away from the
positive battery terminal and toward the negative terminal. Actually, the charge
carriers in the copper loop of Fig. 26-1b are electrons and thus are negatively
charged. The electric field forces them to move in the direction opposite the
current arrows, from the negative terminal to the positive terminal. For historical
reasons, however, we use the following convention:
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i = 8 A to the right.

1Halliday, Resnick, Walker, 9th ed, page 684.
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1Halliday, Resnick, Walker, 9th ed, page 684.



Current Density

Current Density, J

The current per unit area through a conductor.

J =
I

A

Strictly, this is the average current density through the area A,
assuming the area A is perpendicular to the direction of the
current.

This view of current density will be sufficient for most purposes in
this course.



Current Density
More formally, current density can be defined so that current is
very similar to flux:

I =

∫
A
J · dA

Whereas flux:

ΦE =

∫
A
E · dA

Current density J can be compared with the electric field, E .
606 CHAPTE R 23 GAUSS’ LAW

HALLIDAY REVISED

Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E
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Current Density

Current density can be represented with streamlines that are
denser where the current density is higher.

(cf. electric field and electric field lines)

26-3 Current Density
Sometimes we are interested in the current i in a particular conductor. At other
times we take a localized view and study the flow of charge through a cross sec-
tion of the conductor at a particular point. To describe this flow, we can use the
current density which has the same direction as the velocity of the moving
charges if they are positive and the opposite direction if they are negative. For
each element of the cross section, the magnitude J is equal to the current per unit
area through that element. We can write the amount of current through the ele-
ment as where is the area vector of the element, perpendicular to the
element.The total current through the surface is then

(26-4)

If the current is uniform across the surface and parallel to then is also uni-
form and parallel to Then Eq. 26-4 becomes

so (26-5)

where A is the total area of the surface. From Eq. 26-4 or 26-5 we see that the SI
unit for current density is the ampere per square meter (A/m2).

In Chapter 22 we saw that we can represent an electric field with electric
field lines. Figure 26-4 shows how current density can be represented with a
similar set of lines, which we can call streamlines. The current, which is toward
the right in Fig. 26-4, makes a transition from the wider conductor at the left to
the narrower conductor at the right. Because charge is conserved during the
transition, the amount of charge and thus the amount of current cannot
change. However, the current density does change—it is greater in the narrower
conductor. The spacing of the streamlines suggests this increase in current den-
sity; streamlines that are closer together imply greater current density.

Drift Speed
When a conductor does not have a current through it, its conduction electrons
move randomly, with no net motion in any direction. When the conductor does
have a current through it, these electrons actually still move randomly, but now

J !
i

A
,

i ! ! J dA ! J ! dA ! JA,

dA
:

.
J
:

dA
:

,

i ! ! J
:

! dA
:

.

dA
:

J
:

! dA
:

,

J
:

,

We know that Avogadro’s number NA is 6.02 " 10 23 mole-
cules/mol, or 6.02 " 10 23 mol#1, and from Table 15-1 we
know that the density of water rmass under normal condi-
tions is 1000 kg/m3. We can get the molar mass of water
from the molar masses listed in Appendix F (in grams per
mole): We add the molar mass of oxygen (16 g/mol) to
twice the molar mass of hydrogen (1 g/mol), obtaining 18
g/mol ! 0.018 kg/mol. So, the current of negative charge
due to the electrons in the water is

(Answer)

This current of negative charge is exactly compensated by a
current of positive charge associated with the nuclei of the
three atoms that make up the water molecule. Thus, there is
no net flow of charge through the hose.

!  24.1 MA.
!  2.41 " 10 7 C/s ! 2.41 " 10 7 A

" (0.018 kg/mol)#1(1000 kg/m3)(450 " 10 #6 m3/s)
i ! (10)(1.6 " 10 #19 C)(6.02 " 10 23 mol#1)

Additional examples, video, and practice available at WileyPLUS

Fig. 26-4 Streamlines representing
current density in the flow of charge
through a constricted conductor.

i
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Microscopic Model of Current

Conduction electrons can be though of as moving in a random way,
colliding with atoms.

Electrons with E = 0:

810 Chapter 27 Current and Resistance

conductor of cross-sectional area A (Fig. 27.2). The volume of a segment of the con-
ductor of length Dx (between the two circular cross sections shown in Fig. 27.2) is  
A  Dx. If n represents the number of mobile charge carriers per unit volume (in 
other words, the charge carrier density), the number of carriers in the segment is 
nA Dx. Therefore, the total charge DQ in this segment is

 DQ 5 (nA Dx)q 

where q is the charge on each carrier. If the carriers move with a velocity vSd paral-
lel to the axis of the cylinder, the magnitude of the displacement they experience 
in the x direction in a time interval Dt is Dx 5 vd Dt. Let Dt be the time interval 
required for the charge carriers in the segment to move through a displacement 
whose magnitude is equal to the length of the segment. This time interval is also 
the same as that required for all the charge carriers in the segment to pass through 
the circular area at one end. With this choice, we can write DQ as

 DQ 5 (nAvd Dt)q 

Dividing both sides of this equation by Dt, we find that the average current in the 
conductor is

 I avg 5
DQ
Dt

5 nqvdA  (27.4)

 In reality, the speed of the charge carriers vd is an average speed called the 
drift speed. To understand the meaning of drift speed, consider a conductor in 
which the charge carriers are free electrons. If the conductor is isolated—that 
is, the potential difference across it is zero—these electrons undergo random 
motion that is analogous to the motion of gas molecules. The electrons collide 
repeatedly with the metal atoms, and their resultant motion is complicated and 
zigzagged as in Figure 27.3a. As discussed earlier, when a potential difference 
is applied across the conductor (for example, by means of a battery), an electric 
field is set up in the conductor; this field exerts an electric force on the electrons, 
producing a current. In addition to the zigzag motion due to the collisions with 
the metal atoms, the electrons move slowly along the conductor (in a direction 
opposite that of E

S
) at the drift velocity vSd as shown in Figure 27.3b.

 You can think of the atom–electron collisions in a conductor as an effective 
internal friction (or drag force) similar to that experienced by a liquid’s mol-
ecules flowing through a pipe stuffed with steel wool. The energy transferred 
from the electrons to the metal atoms during collisions causes an increase in 
the atom’s vibrational energy and a corresponding increase in the conductor’s 
temperature.

Q uick Quiz 27.1  Consider positive and negative charges moving horizontally 
through the four regions shown in Figure 27.4. Rank the current in these four 
regions from highest to lowest.
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Figure 27.2  A segment of a uni-
form conductor of cross-sectional 
area A.
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Figure 27.3 (a) A schematic 
diagram of the random motion of 
two charge carriers in a conductor 
in the absence of an electric field. 
The drift velocity is zero. (b) The 
motion of the charge carriers in 
a conductor in the presence of an 
electric field. Because of the accel-
eration of the charge carriers due 
to the electric force, the paths are 
actually parabolic. The drift speed, 
however, is much smaller than the 
average speed, so the parabolic 
shape is not visible on this scale.
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Figure 27.4  (Quick Quiz 27.1) Charges move through four regions.

with an E-field:
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motion of the charge carriers in 
a conductor in the presence of an 
electric field. Because of the accel-
eration of the charge carriers due 
to the electric force, the paths are 
actually parabolic. The drift speed, 
however, is much smaller than the 
average speed, so the parabolic 
shape is not visible on this scale.
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Figure 27.4  (Quick Quiz 27.1) Charges move through four regions.

With an external field, they tend to drift in the opposite direction
to the field lines.



Drift Speed
The drift speed vd of charge carriers in a conductor is the average
speed at which a charge carrier is expected to move through a
conductor.

The average speed of a charge carrier through a circuit, by
definition is:

vavg =
∆x

∆t

How far (∆x) do we expect a charge carrier to move in time ∆t?
810 Chapter 27 Current and Resistance

conductor of cross-sectional area A (Fig. 27.2). The volume of a segment of the con-
ductor of length Dx (between the two circular cross sections shown in Fig. 27.2) is  
A  Dx. If n represents the number of mobile charge carriers per unit volume (in 
other words, the charge carrier density), the number of carriers in the segment is 
nA Dx. Therefore, the total charge DQ in this segment is

 DQ 5 (nA Dx)q 

where q is the charge on each carrier. If the carriers move with a velocity vSd paral-
lel to the axis of the cylinder, the magnitude of the displacement they experience 
in the x direction in a time interval Dt is Dx 5 vd Dt. Let Dt be the time interval 
required for the charge carriers in the segment to move through a displacement 
whose magnitude is equal to the length of the segment. This time interval is also 
the same as that required for all the charge carriers in the segment to pass through 
the circular area at one end. With this choice, we can write DQ as

 DQ 5 (nAvd Dt)q 

Dividing both sides of this equation by Dt, we find that the average current in the 
conductor is

 I avg 5
DQ
Dt

5 nqvdA  (27.4)

 In reality, the speed of the charge carriers vd is an average speed called the 
drift speed. To understand the meaning of drift speed, consider a conductor in 
which the charge carriers are free electrons. If the conductor is isolated—that 
is, the potential difference across it is zero—these electrons undergo random 
motion that is analogous to the motion of gas molecules. The electrons collide 
repeatedly with the metal atoms, and their resultant motion is complicated and 
zigzagged as in Figure 27.3a. As discussed earlier, when a potential difference 
is applied across the conductor (for example, by means of a battery), an electric 
field is set up in the conductor; this field exerts an electric force on the electrons, 
producing a current. In addition to the zigzag motion due to the collisions with 
the metal atoms, the electrons move slowly along the conductor (in a direction 
opposite that of E

S
) at the drift velocity vSd as shown in Figure 27.3b.

 You can think of the atom–electron collisions in a conductor as an effective 
internal friction (or drag force) similar to that experienced by a liquid’s mol-
ecules flowing through a pipe stuffed with steel wool. The energy transferred 
from the electrons to the metal atoms during collisions causes an increase in 
the atom’s vibrational energy and a corresponding increase in the conductor’s 
temperature.

Q uick Quiz 27.1  Consider positive and negative charges moving horizontally 
through the four regions shown in Figure 27.4. Rank the current in these four 
regions from highest to lowest.
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Drift Speed

Need an expression relating vavg to current.

Suppose there are n free conduction electrons per unit volume.

Then n A∆x electrons move through a cross section A in time ∆t.
(Vol = A∆x)

I =
Q

∆t
=

(nA∆x)e

∆t

Then we can rearrange:

∆x

∆t
=

I

nAe
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Drift Speed

Putting this back into the expression for vd :

vd =
∆x

∆t
=

I

nAe

vd =
I

nAe
=

J

ne

(J = I/A)



Drift velocity

We can also express this as a vector relation:

J = n q vd

where q is the charge of the charge carrier.

686 CHAPTE R 26 CU R R E NT AN D R E S I STANCE

they tend to drift with a drift speed vd in the direction opposite that of the applied
electric field that causes the current. The drift speed is tiny compared with the
speeds in the random motion. For example, in the copper conductors of house-
hold wiring, electron drift speeds are perhaps 10!5 or 10!4 m/s, whereas the
random-motion speeds are around 106 m/s.

We can use Fig. 26-5 to relate the drift speed vd of the conduction electrons
in a current through a wire to the magnitude J of the current density in the
wire. For convenience, Fig. 26-5 shows the equivalent drift of positive charge
carriers in the direction of the applied electric field Let us assume that these
charge carriers all move with the same drift speed vd and that the current den-
sity J is uniform across the wire’s cross-sectional area A. The number of charge
carriers in a length L of the wire is nAL, where n is the number of carriers per
unit volume. The total charge of the carriers in the length L, each with charge
e, is then

q " (nAL)e.

Because the carriers all move along the wire with speed vd, this total charge
moves through any cross section of the wire in the time interval

Equation 26-1 tells us that the current i is the time rate of transfer of charge
across a cross section, so here we have

(26-6)

Solving for vd and recalling Eq. 26-5 (J " i/A), we obtain

or, extended to vector form,

(26-7)

Here the product ne, whose SI unit is the coulomb per cubic meter (C/m3), is the
carrier charge density. For positive carriers, ne is positive and Eq. 26-7 predicts
that and have the same direction. For negative carriers, ne is negative and 
and have opposite directions.v:d

J
:v:dJ

:

 J
:

" (ne)v:d.

vd "
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nAe
"
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ne
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q
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Fig. 26-5 Positive charge carri-
ers drift at speed vd in the direc-
tion of the applied electric field 
By convention, the direction of
the current density and the
sense of the current arrow are
drawn in that same direction.

J
:
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CHECKPOINT 2

The figure shows conduction electrons moving left-
ward in a wire. Are the following leftward or right-
ward: (a) the current i, (b) the current density (c)
the electric field in the wire?E

:
J
:

,

L 
i 

+ 
+ 

+ 
+ 

+ 

vd 

E 

J 

Current is said to be due to positive charges that
are propelled by the electric field.
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Drift Speed of an Electron in Copper

What is the drift speed of the conduction electrons in a copper wire
with radius r = 900 µm when it has a uniform current I = 17 mA?

Assume that each copper atom contributes one conduction
electron to the current and that the current density is uniform
across the wire’s cross section.



Drift Speed of an Electron in Copper

How many electrons per unit volume? Same as number of copper
atoms:

n =
NA ρ

M
=

(6.02× 1023 mol−1)(8.96× 103 kg/m3)

63.54× 10−3 kg/mol

NA is Avagadro’s number, M is the molar mass (kgs per mole of
copper), and ρ is copper’s density.

n = 8.49× 1028 m−3

This is the number of free conduction electrons in a cubic meter of
copper. (A lot.)



Drift Speed of an Electron in Copper

vd =
I

nAe

=
(17× 10−3 A)

(8.49× 1028 m−3)(πr2)(1.6× 10−19 C)

vd = 4.9× 10−7 m/s

Very slow!
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Summary

• current

• current density

• drift speed

2nd Collected Homework due Monday, Feb 12.

Homework
Serway & Jewett:

• PREVIOUS: Ch 26, onward from page 799. Problems: 43, 47,
49, 53, 63

• NEW: Ch 27, onward from page 824. Problems: 1, 5, 7


