Electricity and Magnetism DC Circuits Using Kirchhoff's Laws

Lana Sheridan
De Anza College

Feb 9, 2018

Last time

- power
- Kirchhoff's laws

Overview

- more Kirchhoff examples

Example with Two Batteries

Find the current in the circuit.

Suppose the current flows in the direction shown.

Example with Two Batteries

$$
\sum \Delta V=\varepsilon_{1}-I R_{1}-\varepsilon_{2}-I R_{2}=0
$$

Example with Two Batteries

$$
\begin{aligned}
& \sum \Delta V=\varepsilon_{1}-I R_{1}-\varepsilon_{2}-I R_{2}=0 \\
& \quad \Rightarrow \quad I=\frac{\varepsilon_{1}-\varepsilon_{2}}{R_{1}+R_{2}}=-0.33 \mathrm{~A}
\end{aligned}
$$

Minus sign means that the current flows opposite to the direction shown in the diagram.

Using Kirchhoff's Laws examples

Page 726, \#2
-2 In Fig. 27-26, the ideal batteries have emfs $\mathscr{E}_{1}=150 \mathrm{~V}$ and $\mathscr{E}_{2}=50 \mathrm{~V}$ and the resistances are $R_{1}=3.0 \Omega$ and $R_{2}=2.0 \Omega$. If the potential at P is 100 V , what is it at Q ?

Using Kirchhoff's Laws examples

Page 726, \#2

-2 In Fig. 27-26, the ideal batteries have emfs $\mathscr{E}_{1}=150 \mathrm{~V}$ and $\mathscr{E}_{2}=50 \mathrm{~V}$ and the resistances are $R_{1}=3.0 \Omega$ and $R_{2}=2.0 \Omega$. If the potential at P is 100 V , what is it at Q ?

Loop rule: $-\mathcal{E}_{2}-I R_{2}+\mathcal{E}_{1}-I R_{1}=0, I=20 \mathrm{~A}$.
Potential at $Q=-10 \mathrm{~V}$.

Example with a Multiloop Circuit

Find the currents I_{1}, I_{2}, and I_{3} in the circuit.

Suppose the currents flow in the direction shown.

Example with a Multiloop Circuit

Junction rule:

$$
\begin{equation*}
I_{1}+I_{2}=I_{3} \tag{1}
\end{equation*}
$$

Loops:

$$
\begin{gather*}
10 \mathrm{~V}-(6 \Omega) I_{1}-(2 \Omega) I_{3}=0 \tag{2}\\
-14 \mathrm{~V}+(6 \Omega) I_{1}-10 \mathrm{~V}-(4 \Omega) I_{2}=0 \tag{3}\\
-14 \mathrm{~V}-(2 \Omega) I_{3}-(4 \Omega) I_{2}=0 \tag{4}
\end{gather*}
$$

Example with a Multiloop Circuit

$$
I_{1}=+2.0 \mathrm{~A} \quad I_{2}=-3.0 \mathrm{~A} \quad I_{3}=-1.0 \mathrm{~A}
$$

Summary

- using Kirchhoff's Laws

Next Test on Feb 15.

Homework

- Collected homework 2, posted online, due on Monday, Feb 12.

Serway \& Jewett:

- PREVIOUS: Ch 28, onward from page 857. Problems: 5, 9, 15, 27, 31

