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Last time

• using Kirchhoff’s laws



Overview

• two Kirchhoff trick problems

• resistance-capacitance circuits
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Pr at which energy is dissipated as thermal energy in the battery is

Pr ! i2r. (27-16)

The rate Pemf at which the chemical energy in the battery changes is

Pemf ! i!. (27-17)

Series Resistances When resistances are in series, they have
the same current. The equivalent resistance that can replace a se-
ries combination of resistances is

(n resistances in series). (27-7)

Parallel Resistances When resistances are in parallel,
they have the same potential difference. The equivalent resistance
that can replace a parallel combination of resistances is given by

(n resistances in parallel). (27-24)
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RC Circuits When an emf ! is applied to a resistance R and ca-
pacitance C in series, as in Fig. 27-15 with the switch at a, the charge
on the capacitor increases according to

q ! C !(1 " e"t/RC) (charging a capacitor), (27-33)

in which C ! ! q0 is the equilibrium (final) charge and RC ! t is
the capacitive time constant of the circuit. During the charging, the
current is

(charging a capacitor). (27-34)

When a capacitor discharges through a resistance R, the charge on
the capacitor decays according to

q ! q0e"t/RC (discharging a capacitor). (27-39)

During the discharging, the current is

(discharging a capacitor). (27-40) i !
dq
dt

! "" q0

RC #e"t/RC

i !
dq
dt

! " !

R
 #e"t/RC

1 (a) In Fig. 27-18a, with R1 # R2, is the potential difference
across R2 more than, less than, or equal to that across R1? (b) Is the
current through resistor R2 more than, less than, or equal to that
through resistor R1?

Fig. 27-18 Questions 1 and 2.

(a)

+
–

R1 R2

R3

(b)

+
–

R3

R1R2

(d)(c)

R2R1
+
–

R3

R3

+
–

R1

R2

R

Fig. 27-21 Question 6.

2 (a) In Fig. 27-18a, are resistors R1 and R3 in series? (b) Are 
resistors R1 and R2 in parallel? (c) Rank the equivalent resistances
of the four circuits shown in Fig. 27-18, greatest first.

3 You are to connect resistors R1 and R2, with R1 # R2, to a bat-
tery, first individually, then in series, and then in parallel. Rank
those arrangements according to the amount of current through
the battery, greatest first.

4 In Fig. 27-19, a circuit consists of
a battery and two uniform resistors,
and the section lying along an x axis
is divided into five segments of
equal lengths. (a) Assume that R1 !
R2 and rank the segments according
to the magnitude of the average
electric field in them, greatest first. (b) Now assume that R1 # R2

and then again rank the segments. (c) What is the direction of the
electric field along the x axis?

5 For each circuit in Fig. 27-20, are the resistors connected in 
series, in parallel, or neither?

6 Res-monster maze. In Fig. 27-21, all the resistors have a
resistance of 4.0 $ and all the (ideal) batteries have an emf of 4.0
V. What is the current through resistor R? (If you can find the
proper loop through this maze, you can answer the question with a
few seconds of mental calculation.)

Fig. 27-19 Question 4.
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Fig. 27-20 Question 5.

7 A resistor R1 is wired to a battery, then resistor R2 is added in
series. Are (a) the potential difference across R1 and (b) the cur-
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•4 Figure 27-27 shows a circuit of four resistors that are con-
nected to a larger circuit.The graph below the circuit shows the elec-
tric potential V(x) as a function of position x along the lower branch
of the circuit, through resistor 4; the potential VA is 12.0 V. The graph

Fig. 27-24 Question 11.

(1) (2) (3)

sec. 27-6 Potential Difference Between Two Points
•1 In Fig. 27-25, the ideal
batteries have emfs !1 ! 12 V and !2 !
6.0 V. What are (a) the current, the dissi-
pation rate in (b) resistor 1 (4.0 ") and (c)
resistor 2 (8.0 "), and the energy transfer
rate in (d) battery 1 and (e) battery 2? Is
energy being supplied or absorbed by (f)
battery 1 and (g) battery 2?

•2 In Fig. 27-26, the ideal batteries 
have emfs !1 ! 150 V and !2 ! 50 V
and the resistances are R1 ! 3.0 "
and R2 ! 2.0 ". If the potential at P is
100 V, what is it at Q?

•3 A car battery with a 12 V
emf and an internal resistance of 0.040
" is being charged with a current of 50
A. What are (a) the potential differ-
ence V across the terminals, (b) the
rate Pr of energy dissipation inside the battery, and (c) the rate Pemf

of energy conversion to chemical form? When the battery is used to
supply 50 A to the starter motor, what are (d) V and (e) Pr?
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Fig. 27-26 Problem 2.

Fig. 27-27 Problem 4.
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Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

R2 more than, less than, or equal to R1? (d) Is the total current
through R1 and R2 together more than, less than, or equal to the
current through R1 previously?

10 After the switch in Fig. 27-15 is
closed on point a, there is current i
through resistance R. Figure 27-23
gives that current for four sets of
values of R and capacitance C: (1) R0

and C0, (2) 2R0 and C0, (3) R0 and
2C0, (4) 2R0 and 2C0. Which set goes
with which curve?

11 Figure 27-24 shows three sec-
tions of circuit that are to be con-
nected in turn to the same battery
via a switch as in Fig. 27-15.The resistors are all identical, as are the
capacitors. Rank the sections according to (a) the final (equilib-
rium) charge on the capacitor and (b) the time required for the
capacitor to reach 50% of its final charge, greatest first.

rent i1 through R1 now more than, less than, or the same as previ-
ously? (c) Is the equivalent resistance R12 of R1 and R2 more than,
less than, or equal to R1?

8 Cap-monster maze. In Fig. 27-22, all the capacitors have a
capacitance of 6.0 mF, and all the batteries have an emf of 10 V.
What is the charge on capacitor C? (If you can find the proper loop
through this maze, you can answer the question with a few seconds
of mental calculation.)

9 Initially, a single resistor R1 is wired to a battery. Then resistor
R2 is added in parallel. Are (a) the potential difference across R1

and (b) the current i1 through R1 now more than, less than, or the
same as previously? (c) Is the equivalent resistance R12 of R1 and

C

Fig. 27-22 Question 8.

i

dc
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t

Fig. 27-23 Question 10.

Fig. 27-25
Problem 1.
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Time Varying Circuits

In circuits charge is not static, but moving.

Current does not necessarily have to remain constant in time.

Capacitors take some time to charge and discharge due to
resistances in the wires.

Other components also cause current to behave differently at
different times, but for now, we will concentrate on circuits with
resistors and capacitors.



RC Circuits

Circuits with resistors and capacitors are called “RC circuits.”
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Fig. 27-14 A single-loop circuit, show-
ing how to connect an ammeter (A) and a
voltmeter (V).

Fig. 27-15 When switch S is closed on
a, the capacitor is charged through the re-
sistor.When the switch is afterward closed
on b, the capacitor discharges through the
resistor.
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a

Additional examples, video, and practice available at WileyPLUS

With Eq. 27-26 we then find that

i3 ! i1 " i2 ! #0.50 A " 0.25 A
! #0.25 A.

The positive answer we obtained for i2 signals that our
choice of direction for that current is correct. However, the
negative answers for i1 and i3 indicate that our choices for

those currents are wrong.Thus, as a last step here, we correct
the answers by reversing the arrows for i1 and i3 in Fig. 27-13
and then writing

i1 = 0.50 A and i3 = 0.25 A. (Answer)

Caution: Always make any such correction as the last step
and not before calculating all the currents.

27-8 The Ammeter and the Voltmeter
An instrument used to measure currents is called an ammeter. To measure the
current in a wire, you usually have to break or cut the wire and insert the amme-
ter so that the current to be measured passes through the meter. (In Fig. 27-14,
ammeter A is set up to measure current i.)

It is essential that the resistance RA of the ammeter be very much smaller
than other resistances in the circuit. Otherwise, the very presence of the meter
will change the current to be measured.

A meter used to measure potential differences is called a voltmeter. To find
the potential difference between any two points in the circuit, the voltmeter ter-
minals are connected between those points without breaking or cutting the wire.
(In Fig. 27-14, voltmeter V is set up to measure the voltage across R1.)

It is essential that the resistance RV of a voltmeter be very much larger than
the resistance of any circuit element across which the voltmeter is connected.
Otherwise, the meter itself becomes an important circuit element and alters the
potential difference that is to be measured.

Often a single meter is packaged so that, by means of a switch, it can be made
to serve as either an ammeter or a voltmeter—and usually also as an ohmmeter,
designed to measure the resistance of any element connected between its termi-
nals. Such a versatile unit is called a multimeter.

27-9 RC Circuits
In preceding sections we dealt only with circuits in which the currents did not
vary with time. Here we begin a discussion of time-varying currents.

Charging a Capacitor
The capacitor of capacitance C in Fig. 27-15 is initially uncharged.To charge it, we
close switch S on point a. This completes an RC series circuit consisting of the
capacitor, an ideal battery of emf !, and a resistance R.

From Section 25-2, we already know that as soon as the circuit is complete,
charge begins to flow (current exists) between a capacitor plate and a battery
terminal on each side of the capacitor. This current increases the charge q on the
plates and the potential difference VC (! q/C) across the capacitor. When that
potential difference equals the potential difference across the battery (which
here is equal to the emf !), the current is zero. From Eq. 25-1 (q ! CV), the equi-
librium (final) charge on the then fully charged capacitor is equal to C !.

Here we want to examine the charging process. In particular we want to
know how the charge q(t) on the capacitor plates, the potential difference VC(t)
across the capacitor, and the current i(t) in the circuit vary with time during the
charging process. We begin by applying the loop rule to the circuit, traversing it
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Charging a Capacitor

When an uncharged capacitor is first connected to an electrical
potential difference, a current will flow.

Once the capacitor is fully charged however, q = C (∆V ), current
has no where to flow and stops.

The capacitor gently “switches off” the current.



Charge varies with time

The charge on the capacitor changes with time.

72127-9 RC CI RCU ITS
PART 3

HALLIDAY REVISED

clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q ! 0 at t ! 0.

We shall soon show that the solution to Eq. 27-32 is

q ! C !(1 " e"t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) Note
that Eq. 27-33 does indeed satisfy our required initial condition, because at t ! 0
the term e"t/RC is unity; so the equation gives q ! 0. Note also that as t goes to
infinity (that is, a long time later), the term e"t/RC goes to zero; so the equation
gives the proper value for the full (equilibrium) charge on the capacitor—
namely, q ! C !.A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.

i !
dq
dt

! ! !

R "e"t/RC

R 
dq
dt

#
q
C

! !

i !
dq
dt

.

! " iR "
q
C

! 0.

A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current.A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q ! CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC ! 0 at t ! 0 and that VC ! ! when the capacitor becomes
fully charged as t : $.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and

VC !
q
C

! !(1 " e"t/RC)
Fig. 27-16 (a) A plot of Eq. 27-33,
which shows the buildup of charge on the
capacitor of Fig. 27-15. (b) A plot of Eq.
27-34, which shows the decline of the
charging current in the circuit of Fig. 27-
15.The curves are plotted for R ! 2000 %,
C ! 1 mF, and ! ! 10 V; the small trian-
gles represent successive intervals of one
time constant t.
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It is possible to determine how if changes by considering the loop
rule for a resistor in series with a capacitor:

E− iR −
q

C
= 0

Current is the rate of charge flow with time: i = dq
dt .



Charge varies with time

If we replace i in our equation with the derivative:

E− R
dq

dt
−
q

C
= 0

This is a differential equation. There is a way to solve such
equations to find solutions for how q depends on time.

Here, separation of the variables q and t is possible.



Charge varies with time

E− R
dq

dt
−
q

C
= 0

Rearranging:

dq

dt
=

CE

RC
−

q

RC∫
1

CE− q
dq =

∫
1

RC
dt

The limits of our integral will be determined by the initial
conditions for the situation we are considering.



RC Circuits: Charging Capacitor

When charging an initially uncharged capacitor: q = 0 at t = 0

∫q
0

1

CE− q
dq =

∫ t
0

1

RC
dt

− ln(CE− q) + ln(CE− 0) =
t

RC

ln

(
CE

CE− q

)
=

t

RC

CE

CE− q
= et/RC

The solution is:

q(t) = CE
(

1 − e−t/RC
)



RC Circuits: Charging Capacitor

q(t) = CE
(

1 − e−t/RC
)

This solution could also be
written in a different way.

Notice Qmax = CE.

(E takes the place of the
potential difference.)

q(t) = Qmax

(
1 − e−t/RC

)
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clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q ! 0 at t ! 0.

We shall soon show that the solution to Eq. 27-32 is

q ! C !(1 " e"t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) Note
that Eq. 27-33 does indeed satisfy our required initial condition, because at t ! 0
the term e"t/RC is unity; so the equation gives q ! 0. Note also that as t goes to
infinity (that is, a long time later), the term e"t/RC goes to zero; so the equation
gives the proper value for the full (equilibrium) charge on the capacitor—
namely, q ! C !.A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.

i !
dq
dt

! ! !

R "e"t/RC

R 
dq
dt

#
q
C

! !

i !
dq
dt

.

! " iR "
q
C

! 0.

A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current.A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q ! CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC ! 0 at t ! 0 and that VC ! ! when the capacitor becomes
fully charged as t : $.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and

VC !
q
C

! !(1 " e"t/RC)
Fig. 27-16 (a) A plot of Eq. 27-33,
which shows the buildup of charge on the
capacitor of Fig. 27-15. (b) A plot of Eq.
27-34, which shows the decline of the
charging current in the circuit of Fig. 27-
15.The curves are plotted for R ! 2000 %,
C ! 1 mF, and ! ! 10 V; the small trian-
gles represent successive intervals of one
time constant t.
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RC Circuits: Charging Capacitor

Using the equation for q, an equation for current can also be
found, since i = dq

dt :

i(t) =

(
E

R

)
e−t/RC

Dividing the charge by the capacitance C , we can also find the
potential difference across the capacitor:

|∆VC (t)| = E(1 − e−t/RC )



RC Circuits: Charging Capacitor

How the solutions appear with time:

Charge:

q = Qmax (1 − e−t/RC )
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clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q ! 0 at t ! 0.

We shall soon show that the solution to Eq. 27-32 is

q ! C !(1 " e"t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) Note
that Eq. 27-33 does indeed satisfy our required initial condition, because at t ! 0
the term e"t/RC is unity; so the equation gives q ! 0. Note also that as t goes to
infinity (that is, a long time later), the term e"t/RC goes to zero; so the equation
gives the proper value for the full (equilibrium) charge on the capacitor—
namely, q ! C !.A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.

i !
dq
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! ! !

R "e"t/RC

R 
dq
dt

#
q
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! !

i !
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.

! " iR "
q
C

! 0.

A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current.A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q ! CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC ! 0 at t ! 0 and that VC ! ! when the capacitor becomes
fully charged as t : $.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and

VC !
q
C

! !(1 " e"t/RC)
Fig. 27-16 (a) A plot of Eq. 27-33,
which shows the buildup of charge on the
capacitor of Fig. 27-15. (b) A plot of Eq.
27-34, which shows the decline of the
charging current in the circuit of Fig. 27-
15.The curves are plotted for R ! 2000 %,
C ! 1 mF, and ! ! 10 V; the small trian-
gles represent successive intervals of one
time constant t.
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where for this circuit
Qmax = CE

Current:

i = Ii e
−t/RC
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clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q ! 0 at t ! 0.

We shall soon show that the solution to Eq. 27-32 is

q ! C !(1 " e"t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) Note
that Eq. 27-33 does indeed satisfy our required initial condition, because at t ! 0
the term e"t/RC is unity; so the equation gives q ! 0. Note also that as t goes to
infinity (that is, a long time later), the term e"t/RC goes to zero; so the equation
gives the proper value for the full (equilibrium) charge on the capacitor—
namely, q ! C !.A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.

i !
dq
dt

! ! !

R "e"t/RC

R 
dq
dt

#
q
C

! !

i !
dq
dt

.

! " iR "
q
C

! 0.

A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current.A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q ! CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC ! 0 at t ! 0 and that VC ! ! when the capacitor becomes
fully charged as t : $.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and

VC !
q
C

! !(1 " e"t/RC)
Fig. 27-16 (a) A plot of Eq. 27-33,
which shows the buildup of charge on the
capacitor of Fig. 27-15. (b) A plot of Eq.
27-34, which shows the decline of the
charging current in the circuit of Fig. 27-
15.The curves are plotted for R ! 2000 %,
C ! 1 mF, and ! ! 10 V; the small trian-
gles represent successive intervals of one
time constant t.
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where for this circuit Ii =
E
R



RC Circuits: Time Constant

τ = RC

τ is called the time constant of the circuit.

This gives the time for the current in the circuit to fall to 1/e of
its initial value.

It is useful for comparing the “relaxation time” of different
RC-circuits.



RC Circuits: Discharging Capacitor

Imagine that we have charged up the capacitor, so that the charge
on it is Qi .

Now we flip the switch to b, the battery is disconnected, but
charge flows off the capacitor, creating a current:
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+
– R2

A R1

r

a

b

c

d

V

i

i

Fig. 27-14 A single-loop circuit, show-
ing how to connect an ammeter (A) and a
voltmeter (V).

Fig. 27-15 When switch S is closed on
a, the capacitor is charged through the re-
sistor.When the switch is afterward closed
on b, the capacitor discharges through the
resistor.

C
+
–

S

Rb

a

Additional examples, video, and practice available at WileyPLUS

With Eq. 27-26 we then find that

i3 ! i1 " i2 ! #0.50 A " 0.25 A
! #0.25 A.

The positive answer we obtained for i2 signals that our
choice of direction for that current is correct. However, the
negative answers for i1 and i3 indicate that our choices for

those currents are wrong.Thus, as a last step here, we correct
the answers by reversing the arrows for i1 and i3 in Fig. 27-13
and then writing

i1 = 0.50 A and i3 = 0.25 A. (Answer)

Caution: Always make any such correction as the last step
and not before calculating all the currents.

27-8 The Ammeter and the Voltmeter
An instrument used to measure currents is called an ammeter. To measure the
current in a wire, you usually have to break or cut the wire and insert the amme-
ter so that the current to be measured passes through the meter. (In Fig. 27-14,
ammeter A is set up to measure current i.)

It is essential that the resistance RA of the ammeter be very much smaller
than other resistances in the circuit. Otherwise, the very presence of the meter
will change the current to be measured.

A meter used to measure potential differences is called a voltmeter. To find
the potential difference between any two points in the circuit, the voltmeter ter-
minals are connected between those points without breaking or cutting the wire.
(In Fig. 27-14, voltmeter V is set up to measure the voltage across R1.)

It is essential that the resistance RV of a voltmeter be very much larger than
the resistance of any circuit element across which the voltmeter is connected.
Otherwise, the meter itself becomes an important circuit element and alters the
potential difference that is to be measured.

Often a single meter is packaged so that, by means of a switch, it can be made
to serve as either an ammeter or a voltmeter—and usually also as an ohmmeter,
designed to measure the resistance of any element connected between its termi-
nals. Such a versatile unit is called a multimeter.

27-9 RC Circuits
In preceding sections we dealt only with circuits in which the currents did not
vary with time. Here we begin a discussion of time-varying currents.

Charging a Capacitor
The capacitor of capacitance C in Fig. 27-15 is initially uncharged.To charge it, we
close switch S on point a. This completes an RC series circuit consisting of the
capacitor, an ideal battery of emf !, and a resistance R.

From Section 25-2, we already know that as soon as the circuit is complete,
charge begins to flow (current exists) between a capacitor plate and a battery
terminal on each side of the capacitor. This current increases the charge q on the
plates and the potential difference VC (! q/C) across the capacitor. When that
potential difference equals the potential difference across the battery (which
here is equal to the emf !), the current is zero. From Eq. 25-1 (q ! CV), the equi-
librium (final) charge on the then fully charged capacitor is equal to C !.

Here we want to examine the charging process. In particular we want to
know how the charge q(t) on the capacitor plates, the potential difference VC(t)
across the capacitor, and the current i(t) in the circuit vary with time during the
charging process. We begin by applying the loop rule to the circuit, traversing it
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−R
dq

dt
−
q

C
= 0



RC Circuits: Discharging Capacitor

What happens to the charge on the capacitor?

q(t) = Qi e
−t/RC

It decreases exponentially with time.



RC Circuits: Discharging Capacitor

What happens to the charge on the capacitor?

q(t) = Qi e
−t/RC

It decreases exponentially with time.



RC Circuits: Discharging Capacitor

−R
dq

dt
−
q

C
= 0

When discharging an initially charged capacitor: q = Qi at t = 0

∫q
Qi

1

q
dq = −

∫ t
0

1

RC
dt

ln(q) − ln(Qi ) = −
t

RC

ln

(
q

Qi

)
= −

t

RC

The solution is:

q(t) = Qi e
−t/RC



RC Circuits: Discharging Capacitor
What happens to the current?

i(t) = −Ii e
−t/RC

where Ii =
Qi

RC

The negative sign means the current flows in the opposite direction
through the resistor when discharging as compared with charging.
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clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q ! 0 at t ! 0.

We shall soon show that the solution to Eq. 27-32 is

q ! C !(1 " e"t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) Note
that Eq. 27-33 does indeed satisfy our required initial condition, because at t ! 0
the term e"t/RC is unity; so the equation gives q ! 0. Note also that as t goes to
infinity (that is, a long time later), the term e"t/RC goes to zero; so the equation
gives the proper value for the full (equilibrium) charge on the capacitor—
namely, q ! C !.A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.

i !
dq
dt

! ! !

R "e"t/RC

R 
dq
dt

#
q
C

! !

i !
dq
dt

.

! " iR "
q
C

! 0.

A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current.A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q ! CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC ! 0 at t ! 0 and that VC ! ! when the capacitor becomes
fully charged as t : $.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and

VC !
q
C

! !(1 " e"t/RC)
Fig. 27-16 (a) A plot of Eq. 27-33,
which shows the buildup of charge on the
capacitor of Fig. 27-15. (b) A plot of Eq.
27-34, which shows the decline of the
charging current in the circuit of Fig. 27-
15.The curves are plotted for R ! 2000 %,
C ! 1 mF, and ! ! 10 V; the small trian-
gles represent successive intervals of one
time constant t.

q 
( 

 C
) 

12 

i (
m

A
) 

6 

8 

4 

4 

2 

0 

0 

2 4 6 8 10 

2 4 6 8 

Time (ms) 

Time (ms) 

(a) 

(b) 

10 

µ 

C 

/R 

The capacitor’s charge
grows as the resistor's
current dies out.

halliday_c27_705-734v2.qxd  23-11-2009  14:35  Page 721



RC Circuits: Discharging Capacitor

Multiplying the current by the resistance R gives the potential
difference across the resistor:

|∆VR(t)| = (∆V )i e
−t/RC

The same expression describes the potential difference across the
capacitor!

|∆VC (t)| = (∆V )i e
−t/RC

where (∆V )i = IiR = Qi
C .



Summary

• resistance-capacitance circuits

Next Test on Feb 15.

Homework
Serway & Jewett:

• NEW: Ch 28, onward from page 857. CQs: 7; Problems: 37,
41, 43, 45, 65, 71

• NEW: Ch 26, prob: 78.


