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Last time

• resistance-capacitance circuits



Overview

• resistance-capacitance circuits

• meters

• grounding a circuit

• household wiring



RC Circuits: Discharging Capacitor
Charge:

q(t) = Qi e
−t/RC

Current, with Ii =
Qi
RC :

i(t) = −Ii e
−t/RC

The negative sign means the current flows in the opposite direction
through the resistor when discharging as compared with charging.
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clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q ! 0 at t ! 0.

We shall soon show that the solution to Eq. 27-32 is

q ! C !(1 " e"t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) Note
that Eq. 27-33 does indeed satisfy our required initial condition, because at t ! 0
the term e"t/RC is unity; so the equation gives q ! 0. Note also that as t goes to
infinity (that is, a long time later), the term e"t/RC goes to zero; so the equation
gives the proper value for the full (equilibrium) charge on the capacitor—
namely, q ! C !.A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.
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A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current.A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q ! CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC ! 0 at t ! 0 and that VC ! ! when the capacitor becomes
fully charged as t : $.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and

VC !
q
C

! !(1 " e"t/RC)
Fig. 27-16 (a) A plot of Eq. 27-33,
which shows the buildup of charge on the
capacitor of Fig. 27-15. (b) A plot of Eq.
27-34, which shows the decline of the
charging current in the circuit of Fig. 27-
15.The curves are plotted for R ! 2000 %,
C ! 1 mF, and ! ! 10 V; the small trian-
gles represent successive intervals of one
time constant t.
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RC Circuits: Discharging Capacitor

Multiplying the current by the resistance R gives the potential
difference across the resistor:

|∆VR(t)| = (∆V )i e
−t/RC

The same expression describes the potential difference across the
capacitor!

|∆VC (t)| = (∆V )i e
−t/RC

where (∆V )i = IiR = Qi
C .



RC Circuits Question
Quick Quiz 28.5: Consider the circuit shown and assume the
battery has no internal resistance.

 28.4 RC Circuits 849

 The following dimensional analysis shows that t has units of time:

 3t 4 5 3RC 4 5 c aDV
I
b a Q

DV
b d 5 c Q

Q /Dt
d 5 3Dt 4 5 T  

Because t 5 RC has units of time, the combination t/RC is dimensionless, as it must 
be to be an exponent of e in Equations 28.14 and 28.15.
 The energy supplied by the battery during the time interval required to fully 
charge the capacitor is Q maxe 5 Ce2. After the capacitor is fully charged, the 
energy stored in the capacitor is 12Q maxe 5 12Ce2, which is only half the energy out-
put of the battery. It is left as a problem (Problem 68) to show that the remaining 
half of the energy supplied by the battery appears as internal energy in the resistor.

Discharging a Capacitor
Imagine that the capacitor in Figure 28.16b is completely charged. An initial poten-
tial difference Q i/C exists across the capacitor, and there is zero potential differ-
ence across the resistor because i 5 0. If the switch is now thrown to position b at  
t 5 0 (Fig. 28.16c), the capacitor begins to discharge through the resistor. At some 
time t during the discharge, the current in the circuit is i and the charge on the 
capacitor is q. The circuit in Figure 28.16c is the same as the circuit in Figure 28.16b 
except for the absence of the battery. Therefore, we eliminate the emf e from Equa-
tion 28.11 to obtain the appropriate loop equation for the circuit in Figure 28.16c:

 2
q
C

2 iR 5 0  (28.17)

When we substitute i 5 dq/dt into this expression, it becomes

 2R 
dq
dt

5
q
C

 

 
dq
q 5 2

1
RC

 dt  

Integrating this expression using q 5 Q i  at t 5 0 gives

 3
q

Q i

 
dq
q 5 2

1
RC

 3
t

0
 dt 

 ln a q
Q i

b 5 2
t

RC
 

 q 1t 2 5 Q ie2t/RC  (28.18)

Differentiating Equation 28.18 with respect to time gives the instantaneous current 
as a function of time:

 i 1t 2 5 2
Q i

RC
 e2t/RC  (28.19)

where Q i /RC 5 Ii is the initial current. The negative sign indicates that as the 
capacitor discharges, the current direction is opposite its direction when the capaci-
tor was being charged. (Compare the current directions in Figs. 28.16b and 28.16c.) 
Both the charge on the capacitor and the current decay exponentially at a rate 
characterized by the time constant t 5 RC.

Q uick Quiz 28.5  Consider the circuit in Figure 28.18 and assume the battery has 
no internal resistance. (i) Just after the switch is closed, what is the current in the 
battery? (a) 0 (b) e/2R (c) 2e/R (d) e/R (e) impossible to determine (ii) After a 
very long time, what is the current in the battery? Choose from the same choices.

�W  Charge as a function of time 
for a discharging capacitor

�W  Current as a function of time 
for a discharging capacitor
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"

Figure 28.18  (Quick Quiz 28.5) 
How does the current vary after 
the switch is closed?

(i) Just after the switch is closed, what is the current in the
battery?

(A) 0

(B) E/2R

(C) 2E/R

(D) E/R
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Figure 28.18  (Quick Quiz 28.5) 
How does the current vary after 
the switch is closed?

(i) Just after the switch is closed, what is the current in the
battery?

(A) 0

(B) E/2R

(C) 2E/R ←
(D) E/R
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Figure 28.18  (Quick Quiz 28.5) 
How does the current vary after 
the switch is closed?

(ii) After a very long time, what is the current in the battery?

(A) 0

(B) E/2R

(C) 2E/R

(D) E/R
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Quick Quiz 28.5: Consider the circuit shown and assume the
battery has no internal resistance.
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RC Circuits Example 28.10

Consider a capacitor of capacitance C that is being discharged
through a resistor of resistance R as shown in the figure.

 28.4 RC Circuits 847

Charging a Capacitor
Figure 28.16 shows a simple series RC circuit. Let’s assume the capacitor in this cir-
cuit is initially uncharged. There is no current while the switch is open (Fig. 28.16a). 
If the switch is thrown to position a at t 5 0 (Fig. 28.16b), however, charge begins to 
flow, setting up a current in the circuit, and the capacitor begins to charge.3 Notice 
that during charging, charges do not jump across the capacitor plates because the 
gap between the plates represents an open circuit. Instead, charge is transferred 
between each plate and its connecting wires due to the electric field established in 
the wires by the battery until the capacitor is fully charged. As the plates are being 
charged, the potential difference across the capacitor increases. The value of the 
maximum charge on the plates depends on the voltage of the battery. Once the 
maximum charge is reached, the current in the circuit is zero because the potential 
difference across the capacitor matches that supplied by the battery.
 To analyze this circuit quantitatively, let’s apply Kirchhoff’s loop rule to the cir-
cuit after the switch is thrown to position a. Traversing the loop in Figure 28.16b 
clockwise gives

 e 2
q
C

2 iR 5 0  (28.11)

where q/C is the potential difference across the capacitor and iR is the potential 
difference across the resistor. We have used the sign conventions discussed earlier 
for the signs on e and iR. The capacitor is traversed in the direction from the posi-
tive plate to the negative plate, which represents a decrease in potential. Therefore, 
we use a negative sign for this potential difference in Equation 28.11. Note that  
lowercase q and i are instantaneous values that depend on time (as opposed to 
steady-state values) as the capacitor is being charged.
 We can use Equation 28.11 to find the initial current Ii in the circuit and the 
maximum charge Q max on the capacitor. At the instant the switch is thrown to posi-
tion a (t 5 0), the charge on the capacitor is zero. Equation 28.11 shows that the 
initial current Ii in the circuit is a maximum and is given by

 Ii 5
e
R
 1current at t 5 0 2  (28.12)

At this time, the potential difference from the battery terminals appears entirely 
across the resistor. Later, when the capacitor is charged to its maximum value Q max, 
charges cease to flow, the current in the circuit is zero, and the potential difference 
from the battery terminals appears entirely across the capacitor. Substituting i 5 0 
into Equation 28.11 gives the maximum charge on the capacitor:

 Q max 5 Ce  (maximum charge) (28.13)

 To determine analytical expressions for the time dependence of the charge and 
current, we must solve Equation 28.11, a single equation containing two variables q 
and i. The current in all parts of the series circuit must be the same. Therefore, the 
current in the resistance R must be the same as the current between each capacitor 
plate and the wire connected to it. This current is equal to the time rate of change 
of the charge on the capacitor plates. Therefore, we substitute i 5 dq/dt into Equa-
tion 28.11 and rearrange the equation:

 
dq
dt

5
e
R

2
q

RC
 

To find an expression for q, we solve this separable differential equation as follows. 
First combine the terms on the right-hand side:

 
dq
dt

5
Ce
RC

2
q

RC
5 2

q 2 Ce
RC

 

3In previous discussions of capacitors, we assumed a steady-state situation, in which no current was present in any 
branch of the circuit containing a capacitor. Now we are considering the case before the steady-state condition is real-
ized; in this situation, charges are moving and a current exists in the wires connected to the capacitor.
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When the switch is thrown 
to position a, the capacitor 
begins to charge up. 

When the switch is thrown 
to position b, the capacitor 
discharges.

a

b

c

Figure 28.16 A capacitor in 
series with a resistor, switch, and 
battery.

After how many time constants is the charge on the capacitor
one-fourth its initial value?



RC Circuits Example 28.10

After how many time constants is the charge on the capacitor
one-fourth its initial value?

q(t) = Qi e
−t/RC

Let T be the time when the charge is 1/4 of the initial charge.

q(T )

Qi
=

1

4

e−T/τ =
1

4
T

τ
= ln 4

So,
T = (ln 4)τ = 1.39τ
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begins to charge up. 

When the switch is thrown 
to position b, the capacitor 
discharges.
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Figure 28.16 A capacitor in 
series with a resistor, switch, and 
battery.

The energy stored in the capacitor decreases with time as the
capacitor discharges. After how many time constants is this stored
energy one-fourth its initial value?
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After how many time constants is this stored energy one-fourth its
initial value?

U =
q2

2C

Now let T be the time when the energy stored is 1/4 of the initial
energy.

U(T )

Ui
=

1

4

q(T )2

Q2
i

=
1

4

e−T/τ =
1

2

So,
T = (ln 2)τ = 0.693τ
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RC Circuits Example 28.11: Energy delivered

A 5.00 µF capacitor is charged to a potential difference of 800 V
and then discharged through a resistor. How much energy is
delivered to the resistor in the time interval required to fully
discharge the capacitor?

 28.4 RC Circuits 847

Charging a Capacitor
Figure 28.16 shows a simple series RC circuit. Let’s assume the capacitor in this cir-
cuit is initially uncharged. There is no current while the switch is open (Fig. 28.16a). 
If the switch is thrown to position a at t 5 0 (Fig. 28.16b), however, charge begins to 
flow, setting up a current in the circuit, and the capacitor begins to charge.3 Notice 
that during charging, charges do not jump across the capacitor plates because the 
gap between the plates represents an open circuit. Instead, charge is transferred 
between each plate and its connecting wires due to the electric field established in 
the wires by the battery until the capacitor is fully charged. As the plates are being 
charged, the potential difference across the capacitor increases. The value of the 
maximum charge on the plates depends on the voltage of the battery. Once the 
maximum charge is reached, the current in the circuit is zero because the potential 
difference across the capacitor matches that supplied by the battery.
 To analyze this circuit quantitatively, let’s apply Kirchhoff’s loop rule to the cir-
cuit after the switch is thrown to position a. Traversing the loop in Figure 28.16b 
clockwise gives

 e 2
q
C

2 iR 5 0  (28.11)

where q/C is the potential difference across the capacitor and iR is the potential 
difference across the resistor. We have used the sign conventions discussed earlier 
for the signs on e and iR. The capacitor is traversed in the direction from the posi-
tive plate to the negative plate, which represents a decrease in potential. Therefore, 
we use a negative sign for this potential difference in Equation 28.11. Note that  
lowercase q and i are instantaneous values that depend on time (as opposed to 
steady-state values) as the capacitor is being charged.
 We can use Equation 28.11 to find the initial current Ii in the circuit and the 
maximum charge Q max on the capacitor. At the instant the switch is thrown to posi-
tion a (t 5 0), the charge on the capacitor is zero. Equation 28.11 shows that the 
initial current Ii in the circuit is a maximum and is given by

 Ii 5
e
R
 1current at t 5 0 2  (28.12)

At this time, the potential difference from the battery terminals appears entirely 
across the resistor. Later, when the capacitor is charged to its maximum value Q max, 
charges cease to flow, the current in the circuit is zero, and the potential difference 
from the battery terminals appears entirely across the capacitor. Substituting i 5 0 
into Equation 28.11 gives the maximum charge on the capacitor:

 Q max 5 Ce  (maximum charge) (28.13)

 To determine analytical expressions for the time dependence of the charge and 
current, we must solve Equation 28.11, a single equation containing two variables q 
and i. The current in all parts of the series circuit must be the same. Therefore, the 
current in the resistance R must be the same as the current between each capacitor 
plate and the wire connected to it. This current is equal to the time rate of change 
of the charge on the capacitor plates. Therefore, we substitute i 5 dq/dt into Equa-
tion 28.11 and rearrange the equation:

 
dq
dt

5
e
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q
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To find an expression for q, we solve this separable differential equation as follows. 
First combine the terms on the right-hand side:

 
dq
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5
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2
q
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5 2

q 2 Ce
RC

 

3In previous discussions of capacitors, we assumed a steady-state situation, in which no current was present in any 
branch of the circuit containing a capacitor. Now we are considering the case before the steady-state condition is real-
ized; in this situation, charges are moving and a current exists in the wires connected to the capacitor.
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When the switch is thrown 
to position a, the capacitor 
begins to charge up. 

When the switch is thrown 
to position b, the capacitor 
discharges.
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Figure 28.16 A capacitor in 
series with a resistor, switch, and 
battery.



RC Circuits Example 28.11: Energy delivered

C = 5.00 µF, ∆V = 800 V. How much energy is delivered to the
resistor in the time interval required to fully discharge the
capacitor?

Two ways: (1) Energy conservation. (2) “sum up” the power
delivered over the time.



RC Circuits Example 28.11: Energy delivered

Way (1): Energy not stored in the resistor must have been
delivered to the resistor.

∆UC + ∆ER = 0

∆ER = UC ,i − UC ,f

=
Q2

i

2C
− 0

=
(C ∆V )2

2C
− 0

=
C (∆V )2

2

∆ER = 1.60 J



RC Circuits Example 28.11: Energy delivered

Way (1): Energy not stored in the resistor must have been
delivered to the resistor.

∆UC + ∆ER = 0

∆ER = UC ,i − UC ,f

=
Q2

i

2C
− 0

=
(C ∆V )2

2C
− 0

=
C (∆V )2

2

∆ER = 1.60 J



RC Circuits Example 28.11: Energy delivered
Way (2): integrate the power delivered over the time

P =
dW

dt

∆ER =

∫
P dt

=

∫
i2R dt

= R

∫∞
0

I2i e
−2t/RC dt

= I2i R

[
−
RC

2
e−2t/RC

]∞
0

=

(
∆V

R

)2 R2C

2

=
C (∆V )2

2

Same! ∆ER = 1.60 J
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Fig. 27-14 A single-loop circuit, show-
ing how to connect an ammeter (A) and a
voltmeter (V).

Fig. 27-15 When switch S is closed on
a, the capacitor is charged through the re-
sistor.When the switch is afterward closed
on b, the capacitor discharges through the
resistor.

C
+
–

S

Rb

a

Additional examples, video, and practice available at WileyPLUS

With Eq. 27-26 we then find that

i3 ! i1 " i2 ! #0.50 A " 0.25 A
! #0.25 A.

The positive answer we obtained for i2 signals that our
choice of direction for that current is correct. However, the
negative answers for i1 and i3 indicate that our choices for

those currents are wrong.Thus, as a last step here, we correct
the answers by reversing the arrows for i1 and i3 in Fig. 27-13
and then writing

i1 = 0.50 A and i3 = 0.25 A. (Answer)

Caution: Always make any such correction as the last step
and not before calculating all the currents.

27-8 The Ammeter and the Voltmeter
An instrument used to measure currents is called an ammeter. To measure the
current in a wire, you usually have to break or cut the wire and insert the amme-
ter so that the current to be measured passes through the meter. (In Fig. 27-14,
ammeter A is set up to measure current i.)

It is essential that the resistance RA of the ammeter be very much smaller
than other resistances in the circuit. Otherwise, the very presence of the meter
will change the current to be measured.

A meter used to measure potential differences is called a voltmeter. To find
the potential difference between any two points in the circuit, the voltmeter ter-
minals are connected between those points without breaking or cutting the wire.
(In Fig. 27-14, voltmeter V is set up to measure the voltage across R1.)

It is essential that the resistance RV of a voltmeter be very much larger than
the resistance of any circuit element across which the voltmeter is connected.
Otherwise, the meter itself becomes an important circuit element and alters the
potential difference that is to be measured.

Often a single meter is packaged so that, by means of a switch, it can be made
to serve as either an ammeter or a voltmeter—and usually also as an ohmmeter,
designed to measure the resistance of any element connected between its termi-
nals. Such a versatile unit is called a multimeter.

27-9 RC Circuits
In preceding sections we dealt only with circuits in which the currents did not
vary with time. Here we begin a discussion of time-varying currents.

Charging a Capacitor
The capacitor of capacitance C in Fig. 27-15 is initially uncharged.To charge it, we
close switch S on point a. This completes an RC series circuit consisting of the
capacitor, an ideal battery of emf !, and a resistance R.

From Section 25-2, we already know that as soon as the circuit is complete,
charge begins to flow (current exists) between a capacitor plate and a battery
terminal on each side of the capacitor. This current increases the charge q on the
plates and the potential difference VC (! q/C) across the capacitor. When that
potential difference equals the potential difference across the battery (which
here is equal to the emf !), the current is zero. From Eq. 25-1 (q ! CV), the equi-
librium (final) charge on the then fully charged capacitor is equal to C !.

Here we want to examine the charging process. In particular we want to
know how the charge q(t) on the capacitor plates, the potential difference VC(t)
across the capacitor, and the current i(t) in the circuit vary with time during the
charging process. We begin by applying the loop rule to the circuit, traversing it
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Ammeter

A device for measuring current through a component in a circuit.

Voltmeter

A device for measuring potential difference across a component
of a circuit.

ammeter → ← voltmeter



Ammeter
For an ammeter to work, the same current that you want to
measure must go through the ammeter.

Therefore, it must be connected in series in the part of the circuit
where you want to test the current.

Any resistance from the ammeter (rA) will decrease the current in
that part of the circuit.

I =
∆V

R + rA

If rA = 0 the current through that part of the circuit is unchanged.

The current cannot actually be zero, but it needs to be as small as
possible for an accurate measurement:

rA << R
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Voltmeter
For an voltmeter to work, the same potential difference must be
across the voltmeter as the part of the circuit to be measured.

This means he voltmeter must be connected in parallel across the
component where you wish to measure the potential drop.

Because this creates another path for the current, the resistance of
the voltmeter affects the effective resistance of that part of the
circuit:

∆V = IReq = I

(
R

R/rV + 1

)
If rV is infinite, the potential difference in that part of the circuit is
unchanged.

It cannot actually be infinite, but we need

rV >> R
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Meters

Some meters can be used either as ammeters or voltmeters with
different settings.

These are called multimeters.

You (may?) have used three different ones already in lab:

• Hewlitt Packard digital multimeter (HP-DMM)

• Extech digital multimeter (hand-held DMM)

• Simpson Volt-Ohm meter (Simpson VOM)

Since the internal resistance must be very much less for an
ammeter than a voltmeter it is important to use the meters in the
correct mode.

If a meter is in ammeter mode and put in parallel as if it is a
voltmeter a very large current may flow through it. This can
damage the device. Usually meters are fused in ammeter mode.
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Grounding a circuit
A circuit can be “grounded”, that is, connected to the Earth. This
should drain any built-up charge off of that part of the circuit.

By convention, we label the potential at this point V = 0. This
gives us an absolute scale for potential, rather that simply speaking
of potential differences.712 CHAPTE R 27 CI RCU ITS
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Grounding a Circuit
Figure 27-7a shows the same circuit as Fig. 27-6 except that here point a is directly
connected to ground, as indicated by the common symbol . Grounding a cir-
cuit usually means connecting the circuit to a conducting path to Earth’s surface
(actually to the electrically conducting moist dirt and rock below ground). Here,
such a connection means only that the potential is defined to be zero at the
grounding point in the circuit. Thus in Fig. 27-7a, the potential at a is defined to
be Va ! 0. Equation 27-11 then tells us that the potential at b is Vb ! 8.0 V.

Figure 27-7b is the same circuit except that point b is now directly connected
to ground. Thus, the potential there is defined to be Vb ! 0. Equation 27-11 now
tells us that the potential at a is Va ! "8.0 V.

Power, Potential, and Emf
When a battery or some other type of emf device does work on the charge carri-
ers to establish a current i, the device transfers energy from its source of energy
(such as the chemical source in a battery) to the charge carriers. Because a real
emf device has an internal resistance r, it also transfers energy to internal thermal
energy via resistive dissipation (Section 26-7). Let us relate these transfers.

The net rate P of energy transfer from the emf device to the charge carriers is
given by Eq. 26-26:

P ! iV, (27-14)

where V is the potential across the terminals of the emf device. From Eq. 27-13,
we can substitute V ! ! " ir into Eq. 27-14 to find

P ! i(! " ir) ! i! " i2r. (27-15)

From Eq. 26-27, we recognize the term i2r in Eq. 27-15 as the rate Pr of energy
transfer to thermal energy within the emf device:

Pr ! i2r (internal dissipation rate). (27-16)

Then the term i! in Eq. 27-15 must be the rate Pemf at which the emf device
transfers energy both to the charge carriers and to internal thermal energy. Thus,

Pemf ! i! (power of emf device). (27-17)

If a battery is being recharged, with a “wrong way” current through it, the
energy transfer is then from the charge carriers to the battery—both to the
battery’s chemical energy and to the energy dissipated in the internal resistance r.
The rate of change of the chemical energy is given by Eq. 27-17, the rate of dissi-
pation is given by Eq. 27-16, and the rate at which the carriers supply energy is
given by Eq. 27-14.

Fig. 27-7 (a) Point a is directly con-
nected to ground. (b) Point b is directly
connected to ground.

CHECKPOINT 3

A battery has an emf of 12 V and an in-
ternal resistance of 2 #. Is the terminal-
to-terminal potential difference greater
than, less than, or equal to 12 V if the
current in the battery is (a) from the
negative to the positive terminal, (b)
from the positive to the negative termi-
nal, and (c) zero?

R = 4.0 Ω 

i 

r = 2.0 Ω 

 = 12 V 

i a 

b + 

–  

(a) 

R = 4.0 Ω

i

r = 2.0 Ω

 = 12 V

ia

b +

– 

(b)Ground is taken
to be zero potential.
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Grounding a circuit is represented with a three-line symbol.



Grounding a circuit and changes in potential

What is happening to the surface charges in the circuit?
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In (a), the potential at a, Va = 0 V and at b, Vb = 8 V.

In (b), the potential at b, Vb = 0 V and at a, Va = −8 V.



Household Wiring
Electricity is delivered to your house in two line or “live” wires,
each at 120V (rms), but with different polarities.

These wires are then split and power runs to sockets with one line
wire and one neutral wire.

The neutral wire is supposed to be at 0V, but in practice charge
can build up.

It is best to treat is as also “live”.



Household Wiring
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lel to these wires. One wire is called the live wire4 as illustrated in Figure 28.19, and 
the other is called the neutral wire. The neutral wire is grounded; that is, its electric 
potential is taken to be zero. The potential difference between the live and neutral 
wires is approximately 120 V. This voltage alternates in time, and the potential of 
the live wire oscillates relative to ground. Much of what we have learned so far for 
the constant-emf situation (direct current) can also be applied to the alternating 
current that power companies supply to businesses and households. (Alternating 
voltage and current are discussed in Chapter 33.)
 To record a household’s energy consumption, a meter is connected in series with 
the live wire entering the house. After the meter, the wire splits so that there are 
several separate circuits in parallel distributed throughout the house. Each circuit 
contains a circuit breaker (or, in older installations, a fuse). A circuit breaker is a 
special switch that opens if the current exceeds the rated value for the circuit breaker. 
The wire and circuit breaker for each circuit are carefully selected to meet the cur-
rent requirements for that circuit. If a circuit is to carry currents as large as 30 A, a 
heavy wire and an appropriate circuit breaker must be selected to handle this cur-
rent. A circuit used to power only lamps and small appliances often requires only 
20 A. Each circuit has its own circuit breaker to provide protection for that part of 
the entire electrical system of the house.
 As an example, consider a circuit in which a toaster oven, a microwave oven, 
and a coffee maker are connected (corresponding to R1, R 2, and R3 in Fig. 28.19). 
We can calculate the current in each appliance by using the expression P 5 I DV. 
The toaster oven, rated at 1 000 W, draws a current of 1 000 W/120 V 5 8.33 A. 
The microwave oven, rated at 1 300 W, draws 10.8 A, and the coffee maker, rated 
at 800 W, draws 6.67 A. When the three appliances are operated simultaneously, 
they draw a total current of 25.8 A. Therefore, the circuit must be wired to handle 
at least this much current. If the rating of the circuit breaker protecting the circuit 
is too small—say, 20 A—the breaker will be tripped when the third appliance is 
turned on, preventing all three appliances from operating. To avoid this situation, 
the toaster oven and coffee maker can be operated on one 20-A circuit and the 
microwave oven on a separate 20-A circuit.
 Many heavy-duty appliances such as electric ranges and clothes dryers require 
240 V for their operation. The power company supplies this voltage by provid-
ing a third wire that is 120 V below ground potential (Fig. 28.20). The poten-
tial difference between this live wire and the other live wire (which is 120 V 
above ground potential) is 240 V. An appliance that operates from a 240-V line 
requires half as much current compared with operating it at 120 V; therefore, 
smaller wires can be used in the higher-voltage circuit without overheating.

Electrical Safety
When the live wire of an electrical outlet is connected directly to ground, the circuit 
is completed and a short-circuit condition exists. A short circuit occurs when almost 
zero resistance exists between two points at different potentials, and the result is 
a very large current. When that happens accidentally, a properly operating circuit 
breaker opens the circuit and no damage is done. A person in contact with ground, 
however, can be electrocuted by touching the live wire of a frayed cord or other 
exposed conductor. An exceptionally effective (and dangerous!) ground contact is 
made when the person either touches a water pipe (normally at ground potential) or 
stands on the ground with wet feet. The latter situation represents effective ground 
contact because normal, nondistilled water is a conductor due to the large number 
of ions associated with impurities. This situation should be avoided at all cost.

R1

Live
120 V

Neutral

0 V

R2

Circuit
breaker

Electrical
meter

R3

W

The electrical meter measures 
the power in watts.

Figure 28.19 Wiring diagram 
for a household circuit. The 
resistances represent appliances 
or other electrical devices that 
operate with an applied voltage 
of 120 V.

!120 V "120 V 

b

Figure 28.20 (a) An outlet for 
connection to a 240-V supply.  
(b) The connections for each of 
the openings in a 240-V outlet.
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4Live wire is a common expression for a conductor whose electric potential is above or below ground potential.
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 Electric shock can result in fatal burns or can cause the muscles of vital organs 
such as the heart to malfunction. The degree of damage to the body depends 
on the magnitude of the current, the length of time it acts, the part of the body 
touched by the live wire, and the part of the body in which the current exists. Cur-
rents of 5 mA or less cause a sensation of shock, but ordinarily do little or no dam-
age. If the current is larger than about 10 mA, the muscles contract and the person 
may be unable to release the live wire. If the body carries a current of about 100 
mA for only a few seconds, the result can be fatal. Such a large current paralyzes 
the respiratory muscles and prevents breathing. In some cases, currents of approxi-
mately 1 A can produce serious (and sometimes fatal) burns. In practice, no con-
tact with live wires is regarded as safe whenever the voltage is greater than 24 V.
 Many 120-V outlets are designed to accept a three-pronged power cord. (This 
feature is required in all new electrical installations.) One of these prongs is the 
live wire at a nominal potential of 120 V. The second is the neutral wire, nominally 
at 0 V, which carries current to ground. Figure 28.21a shows a connection to an 
electric drill with only these two wires. If the live wire accidentally makes contact 
with the casing of the electric drill (which can occur if the wire insulation wears 
off), current can be carried to ground by way of the person, resulting in an electric 
shock. The third wire in a three-pronged power cord, the round prong, is a safety 
ground wire that normally carries no current. It is both grounded and connected 
directly to the casing of the appliance. If the live wire is accidentally shorted to the 
casing in this situation, most of the current takes the low-resistance path through 
the appliance to ground as shown in Figure 28.21b.
 Special power outlets called ground-fault circuit interrupters, or GFCIs, are used 
in kitchens, bathrooms, basements, exterior outlets, and other hazardous areas of 
homes. These devices are designed to protect persons from electric shock by sens-
ing small currents (, 5 mA) leaking to ground. (The principle of their operation 

In the situation shown, the live wire has come into contact 
with the drill case. As a result, the person holding the drill acts 
as a current path to ground and receives an electric shock.

In this situation, the drill case remains at ground 
potential and no current exists in the person.

“Ouch!”

Motor

“Hot”

Circuit
breaker 120 V 

“Neutral”

Ground

I

I

Wall
outlet

Motor

“Hot”

Circuit
breaker

120 V 

“Neutral”

Ground

“Ground”

I

I

3-wire
outlet

I
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b

Figure 28.21 (a) A diagram 
of the circuit for an electric drill 
with only two connecting wires. 
The normal current path is  
from the live wire through the 
motor connections and back to 
ground through the neutral wire. 
(b) This shock can be avoided 
by connecting the drill case to 
ground through a third ground 
wire. The wire colors represent 
electrical standards in the United 
States: the “hot” wire is black,  
the ground wire is green, and the 
neutral wire is white (shown as 
gray in the figure).
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feature is required in all new electrical installations.) One of these prongs is the 
live wire at a nominal potential of 120 V. The second is the neutral wire, nominally 
at 0 V, which carries current to ground. Figure 28.21a shows a connection to an 
electric drill with only these two wires. If the live wire accidentally makes contact 
with the casing of the electric drill (which can occur if the wire insulation wears 
off), current can be carried to ground by way of the person, resulting in an electric 
shock. The third wire in a three-pronged power cord, the round prong, is a safety 
ground wire that normally carries no current. It is both grounded and connected 
directly to the casing of the appliance. If the live wire is accidentally shorted to the 
casing in this situation, most of the current takes the low-resistance path through 
the appliance to ground as shown in Figure 28.21b.
 Special power outlets called ground-fault circuit interrupters, or GFCIs, are used 
in kitchens, bathrooms, basements, exterior outlets, and other hazardous areas of 
homes. These devices are designed to protect persons from electric shock by sens-
ing small currents (, 5 mA) leaking to ground. (The principle of their operation 

In the situation shown, the live wire has come into contact 
with the drill case. As a result, the person holding the drill acts 
as a current path to ground and receives an electric shock.

In this situation, the drill case remains at ground 
potential and no current exists in the person.

“Ouch!”
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Figure 28.21 (a) A diagram 
of the circuit for an electric drill 
with only two connecting wires. 
The normal current path is  
from the live wire through the 
motor connections and back to 
ground through the neutral wire. 
(b) This shock can be avoided 
by connecting the drill case to 
ground through a third ground 
wire. The wire colors represent 
electrical standards in the United 
States: the “hot” wire is black,  
the ground wire is green, and the 
neutral wire is white (shown as 
gray in the figure).



Summary

• RC circuits

• meters

• grounding a circuit

• household wiring

Next Test on Feb 15.

Homework
Serway & Jewett:

• PREVIOUS: Ch 28, onward from page 857. CQs: 7;
Problems: 37, 41, 43, 45, 65, 71

• NEW: Ch 28. OQs: 12; CQs: 3; Problems: 25, 29, 47, 55


