Electricity and Magnetism Motion of Charges in Magnetic Fields

Lana Sheridan
De Anza College

Feb 21, 2018

Last time

- introduced magnetism
- magnetic field
- Earth's magnetic field
- force on a moving charge

Overview

- charged particles' motion in magnetic fields

Force on a Moving Charge

The force on a moving electric charge in a magnetic field:

$$
\mathbf{F}_{B}=q \mathbf{v} \times \mathbf{B}
$$

where \mathbf{B} is the magnetic field, \mathbf{v} is the velocity of the charge, and q is the electric charge.

The magnitude of the force is given by:

$$
F_{B}=q v B \sin \theta
$$

if θ is the angle between the \mathbf{v} and \mathbf{B} vectors.

Magnetic field direction reminder

B points out of the page.
B points into the page.

Force on a Moving Charge

For example: here the dots indicate the field is directed upward out of the slide.

The force on the particle is \perp to its velocity and the field.
${ }^{1}$ Figure from Halliday, Resnick, Walker, 9th ed.

Circular Motion of a Charge

If a charge enters a magnetic field with a velocity at right angles to the field, it will feel a force perpendicular to its velocity.

This will change its trajectory, but not its speed.
\Rightarrow Uniform Circular Motion!

The radius of the circle will depend on 4 things:

- mass of the particle
- charge of the particle
- initial velocity
- strength of the field

Circular Motion of a Charge

Circular Motion of a Charge

Electrons in a uniform magnetic field:

${ }^{1}$ Photo from Halliday, Resnick, Walker 9th ed, John Le P. Webb, Sussex University.

Circular Motion of a Charge

To find the radius:

$$
F_{\text {net }}=F_{c}=F_{B}
$$

Since \mathbf{v} and \mathbf{B} are perpendicular $F_{B}=q v B$:

$$
\begin{aligned}
\frac{m v^{2}}{r} & =|q| v B \\
r & =\frac{m v}{|q| B}
\end{aligned}
$$

The sign of q will determine whether the charge circulates clockwise or counter-clockwise.

Circular Motion of a Charge

To find the radius:

$$
F_{\text {net }}=F_{c}=F_{B}
$$

Since \mathbf{v} and \mathbf{B} are perpendicular $F_{B}=q v B$:

$$
\begin{aligned}
\frac{m v^{2}}{r} & =|q| v B \\
r & =\frac{m v}{|q| B}
\end{aligned}
$$

The sign of q will determine whether the charge circulates clockwise or counter-clockwise.

$$
\frac{m v^{2}}{r}=|q| v B
$$

Question

The figure here shows the circular paths of two particles that travel at the same speed in a uniform magnetic field \mathbf{B}, which is directed into the page. One particle is a proton; the other is an electron (which is less massive).
Which particle follows the smaller circle?

(A) proton
(B) electron
${ }^{1}$ Halliday, Resnick, Walker, 9th ed., page 746

Question

The figure here shows the circular paths of two particles that travel at the same speed in a uniform magnetic field \mathbf{B}, which is directed into the page. One particle is a proton; the other is an electron (which is less massive).
Which particle follows the smaller circle?

(A) proton
(B) electron \leftarrow
${ }^{1}$ Halliday, Resnick, Walker, 9th ed., page 746

Question

The figure here shows the circular paths of two particles that travel at the same speed in a uniform magnetic field \mathbf{B}, which is directed into the page. One particle is a proton; the other is an electron (which is less massive).
Which particle travels clockwise (as viewed in the diagram)?

(A) proton
(B) electron
${ }^{1}$ Halliday, Resnick, Walker, 9th ed., page 746

Question

The figure here shows the circular paths of two particles that travel at the same speed in a uniform magnetic field \mathbf{B}, which is directed into the page. One particle is a proton; the other is an electron (which is less massive).
Which particle travels clockwise (as viewed in the diagram)?

(A) proton
(B) electron \leftarrow

[^0]
Circular Motion of a Charge

Can you find the period T for the orbit? (Time for the particle to make a full circle?)

Circular Motion of a Charge

Can you find the period T for the orbit? (Time for the particle to make a full circle?)

$$
T=\frac{2 \pi r}{v}
$$

Circular Motion of a Charge

Can you find the period T for the orbit? (Time for the particle to make a full circle?)

$$
T=\frac{2 \pi r}{v}
$$

$$
T=\frac{2 \pi m}{|q| B}
$$

Circular Motion of a Charge

Can you find the period T for the orbit? (Time for the particle to make a full circle?)

$$
T=\frac{2 \pi r}{v}
$$

$$
T=\frac{2 \pi m}{|q| B}
$$

Also, angular frequency

$$
\omega=\frac{|q| B}{m}
$$

More general case

What if the velocity vector of a charge particle is not perpendicular to the magnetic field?

More general case

What if the velocity vector of a charge particle is not perpendicular to the magnetic field?

There will be some component of the velocity in the direction of the magnetic field.

For the cross product:

$$
|\mathbf{v} \times \mathbf{B}|=v B \sin \phi=(v \sin \phi) B=v_{\perp} B
$$

More general case

What if the velocity vector of a charge particle is not perpendicular to the magnetic field?

There will be some component of the velocity in the direction of the magnetic field.

For the cross product:

$$
|\mathbf{v} \times \mathbf{B}|=v B \sin \phi=(v \sin \phi) B=v_{\perp} B
$$

The force will not depend on the $\|$-component and the ||-component of velocity will not be changed.

Helical Trajectories

Helical Trajectories

The pitch, p, of the helix is

$$
p=v_{\|} T=\frac{2 \pi v_{\|} m}{|q| B}
$$

where T is the time period.

The radius is

$$
r=\frac{m v_{\perp}}{|q| B}
$$

using our equation from earlier.

Non-Uniform Fields: Magnetic Bottle

Non-Uniform Fields: Van Allen Belts

Earth's magnetic field acts as a magnetic bottle for cosmic rays.

Non-Uniform Fields: Van Allen Belts

When these charges particles in the belts are disturbed by the solar wind they can drop down into the atmosphere.

${ }^{1}$ Figure by NASA.

Non-Uniform Fields: Van Allen Belts

When these charges particles in the belts are disturbed by the solar wind they can drop down into the atmosphere. The resulting glow is the aurora borealis.

[^1]
The Lorentz Force

A charged particle can be affected by both electric and magnetic fields.

This means that the total force on a charge is the sum of the electric and magnetic forces:

$$
\mathbf{F}=q \mathbf{E}+q \mathbf{v} \times \mathbf{B}
$$

This total force is called the Lorentz force.

This can always be used to deduce the electromagnetic force on a charged particle in E- or B-fields.

Velocity Selector: Using both electric and magnetic fields

Charges are accelerated with and electric field then travel down a channel with uniform electric and magnetic fields.

Velocity Selector: Using both electric and magnetic fields

The particles only reach the end of the channel if $\mathbf{F}=0$.

$$
\mathbf{F}=q \mathbf{E}+q \mathbf{v} \times \mathbf{B}
$$

so that means

$$
q \mathbf{E}=-q \mathbf{v} \times \mathbf{B}
$$

supposing \mathbf{v} and \mathbf{B} are perpendicular:

$$
v=\frac{E}{B}
$$

Mass Spectrometer

After selecting particles to have velocity $\mathbf{v}=E / B$ along the channel, they are fed into a magnetic field.

Mass Spectrometer

Where they collide with the detector allows us to find the radius of the path, r.

Mass-to-charge ratio:

$$
\frac{m}{|q|}=\frac{r B_{0}}{v}
$$

Summary

- magnetic field lines
- charged particles in crossed-fields
- properties of the electron

Homework Serway \& Jewett:

- PREVIOUS: Ch 29, Obj Qs: 1, 3, 5; Conc. Qs: 1, 7; Problems: 1, 8, 9
- Ch 29, Obj Qs: 7; Problems: 13, 15, 23, 73, 80

[^0]: ${ }^{1}$ Halliday, Resnick, Walker, 9th ed., page 746

[^1]: ${ }^{1}$ Photo by Donald R. Pettit, Expedition Six NASA ISS science officer, 2013.

