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Last time

• accelerating charged particles

• the electron-Volt

• cyclotrons



Overview

• synchotrons

• magnetic force on a current carrying wire

• torque on a wire loop in a B-field



Cyclotrons
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make and control them. Because electrons and protons are charged, they can be
accelerated to the required high energy if they move through large potential
differences. Because electrons have low mass, accelerating them in this way can
be done in a reasonable distance. However, because protons (and other charged
particles) have greater mass, the distance required for the acceleration is too
long.

A clever solution to this problem is first to let protons and other massive
particles move through a modest potential difference (so that they gain a modest
amount of energy) and then use a magnetic field to cause them to circle back
and move through a modest potential difference again. If this procedure is
repeated thousands of times, the particles end up with a very large energy.

Here we discuss two accelerators that employ a magnetic field to repeatedly
bring particles back to an accelerating region, where they gain more and more
energy until they finally emerge as a high-energy beam.

The Cyclotron
Figure 28-13 is a top view of the region of a cyclotron in which the particles
(protons, say) circulate. The two hollow D-shaped objects (each open on its
straight edge) are made of sheet copper.These dees, as they are called, are part of
an electrical oscillator that alternates the electric potential difference across the
gap between the dees. The electrical signs of the dees are alternated so that the
electric field in the gap alternates in direction, first toward one dee and then
toward the other dee, back and forth. The dees are immersed in a large magnetic
field directed out of the plane of the page. The magnitude B of this field is set via
a control on the electromagnet producing the field.

Suppose that a proton, injected by source S at the center of the cyclotron in
Fig. 28-13, initially moves toward a negatively charged dee. It will accelerate
toward this dee and enter it. Once inside, it is shielded from electric fields by the
copper walls of the dee; that is, the electric field does not enter the dee. The mag-
netic field, however, is not screened by the (nonmagnetic) copper dee, so the
proton moves in a circular path whose radius, which depends on its speed, is given
by Eq. 28-16 (r ! mv/|q|B).

Let us assume that at the instant the proton emerges into the center gap from
the first dee, the potential difference between the dees is reversed. Thus, the pro-
ton again faces a negatively charged dee and is again accelerated. This process
continues, the circulating proton always being in step with the oscillations of the
dee potential, until the proton has spiraled out to the edge of the dee system.
There a deflector plate sends it out through a portal.

The key to the operation of the cyclotron is that the frequency f at which the
proton circulates in the magnetic field (and that does not depend on its speed)
must be equal to the fixed frequency fosc of the electrical oscillator, or

f ! fosc (resonance condition). (28-23)

This resonance condition says that, if the energy of the circulating proton is to
increase, energy must be fed to it at a frequency fosc that is equal to the natural
frequency f at which the proton circulates in the magnetic field.

Combining Eqs. 28-18 ( f ! |q|B/2pm) and 28-23 allows us to write the
resonance condition as

|q|B ! 2pmfosc. (28-24)

For the proton, q and m are fixed. The oscillator (we assume) is designed to work
at a single fixed frequency fosc. We then “tune” the cyclotron by varying B until
Eq. 28-24 is satisfied, and then many protons circulate through the magnetic field,
to emerge as a beam.

Fig. 28-13 The elements of a cy-
clotron, showing the particle source S
and the dees.A uniform magnetic
field is directed up from the plane of
the page. Circulating protons spiral
outward within the hollow dees, gain-
ing energy every time they cross the
gap between the dees.
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halliday_c28_735-763v2.qxd  27-11-2009  16:19  Page 748

f = fosc =
|q|B

2πm



Circular Motion of a Charge

To find the radius:
Fnet = Fc = FB

r =
mv

|q|B

So, v = qBr/m.
When the ion exits the cyclotron, it will have kinetic energy:

K =
1

2
mv2

K =
(qBR)2

2m

where R is the radius of the “dee”.



Cyclotron

The first cyclotron was built in 1934.

882 Chapter 29 Magnetic Fields

of the applied potential difference is adjusted so that the polarity of the dees is 
reversed in the same time interval during which the ion travels around one dee. 
If the applied potential difference is adjusted such that D1 is at a lower electric 
potential than D2 by an amount DV, the ion accelerates across the gap to D1 and its 
kinetic energy increases by an amount q DV. It then moves around D1 in a semicir-
cular path of greater radius (because its speed has increased). After a time interval 
T/2, it again arrives at the gap between the dees. By this time, the polarity across 
the dees has again been reversed and the ion is given another “kick” across the 
gap. The motion continues so that for each half-circle trip around one dee, the ion 
gains additional kinetic energy equal to q DV. When the radius of its path is nearly 
that of the dees, the energetic ion leaves the system through the exit slit. The cyclo-
tron’s operation depends on T being independent of the speed of the ion and of 
the radius of the circular path (Eq. 29.5).
 We can obtain an expression for the kinetic energy of the ion when it exits the 
cyclotron in terms of the radius R of the dees. From Equation 29.3, we know that  
v 5 qBR/m. Hence, the kinetic energy is

 K 5 1
2mv2 5

q 2B 2R2

2m
 (29.9)

 When the energy of the ions in a cyclotron exceeds about 20 MeV, relativistic 
effects come into play. (Such effects are discussed in Chapter 39.) Observations show 
that T increases and the moving ions do not remain in phase with the applied poten-
tial difference. Some accelerators overcome this problem by modifying the period of 
the applied potential difference so that it remains in phase with the moving ions.

29.4  Magnetic Force Acting on a Current- 
Carrying Conductor

If a magnetic force is exerted on a single charged particle when the particle moves 
through a magnetic field, it should not surprise you that a current-carrying wire 
also experiences a force when placed in a magnetic field. The current is a collection 
of many charged particles in motion; hence, the resultant force exerted by the field 
on the wire is the vector sum of the individual forces exerted on all the charged 
particles making up the current. The force exerted on the particles is transmitted 
to the wire when the particles collide with the atoms making up the wire.
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Figure 29.16  (a) A cyclotron consists of an ion source at P, two dees D1 and D2 across which an alternating potential differ-
ence is applied, and a uniform magnetic field. (The south pole of the magnet is not shown.) (b) The first cyclotron, invented by 
E. O. Lawrence and M. S. Livingston in 1934.

The world’s largest cyclotron has a maximum radius of 7.9 m.

1Photo from Lawrence Berkeley National Laboratory.



Synchrotron

Once the charged particles reach ∼ 10% of the speed of light this
stops working.

This is because the effective mass of the particles is increasing, so
fosc =

2πm
|q|B is no longer a constant.

Also, at these speeds the area of the magnetic field for a cyclotron
must be quite big as the radius of the path becomes large.

A solution to this is the synchrotron.



Synchrotron
Synchrotrons operate similarly to cyclotrons, but the frequency of
the potential switching can vary.

1Figure from schoolphysics.co.uk.



Synchrotron

This also means that the particles can be kept on a single loop,
even as their velocity increases.

The magnetic field only has to cover the ring itself.
(Not the area in the middle of the ring.)

The LHC (Large Hadron Collider) at CERN is a type of
synchrotron.

The Tevatron at Fermilab was also one, but it has been shutdown
due to Congressional budget cuts.
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Synchrotron

1Photo copyright c© Synchrotron Soleil, used with permission



Magnetic Force on a Current Carrying Wire

Charged particles moving in a magnetic field experience a force.
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28-8 Magnetic Force on a Current-Carrying Wire
We have already seen (in connection with the Hall effect) that a magnetic field
exerts a sideways force on electrons moving in a wire. This force must then be
transmitted to the wire itself, because the conduction electrons cannot escape
sideways out of the wire.

In Fig. 28-14a, a vertical wire, carrying no current and fixed in place at both
ends, extends through the gap between the vertical pole faces of a magnet.
The magnetic field between the faces is directed outward from the page. In Fig.
28-14b, a current is sent upward through the wire; the wire deflects to the right.
In Fig. 28-14c, we reverse the direction of the current and the wire deflects to
the left.

Figure 28-15 shows what happens inside the wire of Fig. 28-14b. We see one
of the conduction electrons, drifting downward with an assumed drift speed vd.
Equation 28-3, in which we must put f ! 90°, tells us that a force of magni-
tude evdB must act on each such electron. From Eq. 28-2 we see that this force
must be directed to the right. We expect then that the wire as a whole will experi-
ence a force to the right, in agreement with Fig. 28-14b.

If, in Fig. 28-15, we were to reverse either the direction of the magnetic field
or the direction of the current, the force on the wire would reverse, being directed
now to the left. Note too that it does not matter whether we consider negative
charges drifting downward in the wire (the actual case) or positive charges drift-
ing upward. The direction of the deflecting force on the wire is the same. We are
safe then in dealing with a current of positive charge, as we usually do in dealing
with circuits.

Consider a length L of the wire in Fig. 28-15. All the conduction electrons in
this section of wire will drift past plane xx in Fig. 28-15 in a time t ! L/vd. Thus, in
that time a charge given by

will pass through that plane. Substituting this into Eq. 28-3 yields

or FB ! iLB. (28-25)

Note that this equation gives the magnetic force that acts on a length L of straight wire
carrying a current i and immersed in a uniform magnetic field that is perpendicular
to the wire.

If the magnetic field is not perpendicular to the wire, as in Fig. 28-16, the
magnetic force is given by a generalization of Eq. 28-25:

(force on a current). (28-26)

Here is a length vector that has magnitude L and is directed along the wire
segment in the direction of the (conventional) current. The force magnitude FB is

FB ! iLB sin f, (28-27)

where f is the angle between the directions of and . The direction of is
that of the cross product because we take current i to be a positive quan-
tity. Equation 28-26 tells us that is always perpendicular to the plane defined
by vectors and , as indicated in Fig. 28-16.

Equation 28-26 is equivalent to Eq. 28-2 in that either can be taken as the
defining equation for . In practice, we define from Eq. 28-26 because it is
much easier to measure the magnetic force acting on a wire than that on a single
moving charge.
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Fig. 28-15 A close-up view of a section
of the wire of Fig. 28-14b.The current direc-
tion is upward, which means that electrons
drift downward.A magnetic field that
emerges from the plane of the page causes
the electrons and the wire to be deflected
to the right.

Fig. 28-14 A flexible wire passes be-
tween the pole faces of a magnet (only the
farther pole face is shown). (a) Without cur-
rent in the wire, the wire is straight. (b) With
upward current, the wire is deflected right-
ward. (c) With downward current, the de-
flection is leftward.The connections for get-
ting the current into the wire at one end and
out of it at the other end are not shown.
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A force acts on
a current through
a B field.
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A wire carrying a current also experiences a force, since there is a
force on each moving charge confined to the wire.
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The direction of the force depends on the direction of the current.



Magnetic Force on a Current Carrying Wire

The force on the wire in a uniform magnetic field is given by:

F = I L× B

where L is a distance vector that points along the length of the
wire in the direction of the conventional current I and is as long as
the part of the wire inside the field is.

By considering the force on an individual charge, we can motivate
this equation.



Magnetic Force on a Current Carrying Wire

The force on an individual conduction electron is
FB = (−e) vd × B.

The total force will be the sum of the force on all the moving
charges together.

How much conduction charge is in the wire?

q = −neV

where n is the volume density of charge carriers, and V is the
volume of the wire.

Also, this charge is negative, since the flowing charges are
electrons.
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Magnetic Force on a Current Carrying Wire

FB = −neV vd × B

vd =
I

neA
→ IL = neVvd

since V = AL where L is the length of the wire.

If the wire is straight and in a uniform field and we define L to be
a vector of length L pointed in the direction of the conventional
current, then:

FB = I L× B



Magnetic Force on a Current Carrying Wire
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If a wire is not straight or the field is not uniform, we can imagine the wire
broken up into small straight segments and apply Eq. 28-26 to each segment. The
force on the wire as a whole is then the vector sum of all the forces on the
segments that make it up. In the differential limit, we can write

(28-28)

and we can find the resultant force on any given arrangement of currents by
integrating Eq. 28-28 over that arrangement.

In using Eq. 28-28, bear in mind that there is no such thing as an isolated
current-carrying wire segment of length dL.There must always be a way to intro-
duce the current into the segment at one end and take it out at the other end.

dF
:

B ! i dL
:

! B
:

,

Fig. 28-16 A wire carrying current i
makes an angle f with magnetic field .
The wire has length L in the field and
length vector (in the direction of the cur-
rent).A magnetic force acts
on the wire.
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:

L
:
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L 

FB 

B 

The force is perpendicular
to both the field and the length.

CHECKPOINT 4

The figure shows a current i through a wire in a uniform magnetic field , as well as
the magnetic force acting on the wire.The field is oriented so that the force is maxi-
mum. In what direction is the field?
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Sample Problem

We also want the minimal field magnitude B for to balance
.Thus, we need to maximize sin f in Eq. 28-29.To do so, we

set f ! 90°, thereby arranging for to be perpendicular to
the wire.We then have sin f ! 1, so Eq. 28-29 yields

(28-30)

We write the result this way because we know m/L, the linear
density of the wire. Substituting known data then gives us

(Answer)
This is about 160 times the strength of Earth’s magnetic field.

 ! 1.6 " 10#2 T.

  B !
(46.6 " 10#3 kg/m)(9.8 m/s2)

28 A
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i
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g
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Additional examples, video, and practice available at WileyPLUS

Magnetic force on a wire carrying current

A straight, horizontal length of copper wire has a current 
i ! 28 A through it. What are the magnitude and direction
of the minimum magnetic field needed to suspend the
wire—that is, to balance the gravitational force on it? The
linear density (mass per unit length) of the wire is 46.6 g/m.

(1) Because the wire carries a current, a magnetic force 
can act on the wire if we place it in a magnetic field . To
balance the downward gravitational force on the wire, we
want to be directed upward (Fig. 28-17). (2) The directionF

:
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F
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KEY I DEAS

Fig. 28-17 A wire (shown in cross section) carrying current out
of the page.
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of is related to the directions of and the wire’s lengthB
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vector by Eq. 28-26 

Calculations: Because is directed horizontally (and the
current is taken to be positive), Eq. 28-26 and the right-hand
rule for cross products tell us that must be horizontal and
rightward (in Fig. 28-17) to give the required upward .F

:
B
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(F
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B ! iL
:

! B
:

).L
:

The magnitude of is FB ! iLB sin f (Eq. 28-27).
Because we want to balance , we want

iLB sin f ! mg, (28-29)

where mg is the magnitude of and m is the mass of the wire.F
:

g

F
:

gF
:

B

F
:

B
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F = I L× B



Question

A current i passes through a wire in a uniform magnetic field B.
The magnetic force FB acts on the wire. The field is oriented so
that the force is maximum. In what direction is the field?
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(A) +y

(B) −y

(C) +z

(D) −z
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The magnetic force FB acts on the wire. The field is oriented so
that the force is maximum. In what direction is the field?
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The wire has length L in the field and
length vector (in the direction of the cur-
rent).A magnetic force acts
on the wire.
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The force is perpendicular
to both the field and the length.

CHECKPOINT 4

The figure shows a current i through a wire in a uniform magnetic field , as well as
the magnetic force acting on the wire.The field is oriented so that the force is maxi-
mum. In what direction is the field?
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Sample Problem

We also want the minimal field magnitude B for to balance
.Thus, we need to maximize sin f in Eq. 28-29.To do so, we

set f ! 90°, thereby arranging for to be perpendicular to
the wire.We then have sin f ! 1, so Eq. 28-29 yields

(28-30)

We write the result this way because we know m/L, the linear
density of the wire. Substituting known data then gives us

(Answer)
This is about 160 times the strength of Earth’s magnetic field.

 ! 1.6 " 10#2 T.
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(46.6 " 10#3 kg/m)(9.8 m/s2)
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Additional examples, video, and practice available at WileyPLUS

Magnetic force on a wire carrying current

A straight, horizontal length of copper wire has a current 
i ! 28 A through it. What are the magnitude and direction
of the minimum magnetic field needed to suspend the
wire—that is, to balance the gravitational force on it? The
linear density (mass per unit length) of the wire is 46.6 g/m.

(1) Because the wire carries a current, a magnetic force 
can act on the wire if we place it in a magnetic field . To
balance the downward gravitational force on the wire, we
want to be directed upward (Fig. 28-17). (2) The directionF
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Fig. 28-17 A wire (shown in cross section) carrying current out
of the page.
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of is related to the directions of and the wire’s lengthB
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F
:

B

vector by Eq. 28-26 

Calculations: Because is directed horizontally (and the
current is taken to be positive), Eq. 28-26 and the right-hand
rule for cross products tell us that must be horizontal and
rightward (in Fig. 28-17) to give the required upward .F
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).L
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The magnitude of is FB ! iLB sin f (Eq. 28-27).
Because we want to balance , we want

iLB sin f ! mg, (28-29)

where mg is the magnitude of and m is the mass of the wire.F
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F
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Problem

A straight, horizontal length of copper wire has a current I = 28 A
through it. The linear density (mass per unit length) of the wire is
46.6 g/m.

What are the magnitude and direction of the minimum magnetic
field B needed to suspend the wire – that is, to balance the
gravitational force on it?
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PART 3
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If a wire is not straight or the field is not uniform, we can imagine the wire
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Problem

At equilibrium
FB = Fg

ILB sin θ = mg

B = 1.6× 10−2 T



Problem

At equilibrium
FB = Fg

ILB sin θ = mg

B = 1.6× 10−2 T



Magnetic Force on a Current Carrying Wire
What about the case where the wire is curved, or the B-field is not
uniform?

884 Chapter 29 Magnetic Fields

Example 29.4   Force on a Semicircular Conductor

A wire bent into a semicircle of radius R forms a closed circuit and carries a cur-
rent I. The wire lies in the xy plane, and a uniform magnetic field is directed along 
the positive y axis as in Figure 29.20. Find the magnitude and direction of the mag-
netic force acting on the straight portion of the wire and on the curved portion.

Conceptualize  Using the right-hand rule for cross products, we see that the force  
F
S

1 on the straight portion of the wire is out of the page and the force F
S

2 on the 
curved portion is into the page. Is F

S
2 larger in magnitude than F

S
1 because the 

length of the curved portion is longer than that of the straight portion?

Categorize  Because we are dealing with a current-carrying wire in a magnetic 
field rather than a single charged particle, we must use Equation 29.12 to find 
the total force on each portion of the wire.

S O L U T I O N

R

I

x

y

I

d

u

u

u

B
S

Sd s

Figure 29.20  (Example 29.4) The 
magnetic force on the straight portion 
of the loop is directed out of the page, 
and the magnetic force on the curved 
portion is directed into the page.

Analyze Notice that d sS is perpendicular to B
S

 
everywhere on the straight portion of the wire. Use 
Equation 29.12 to find the force on this portion:

F
S

1 5 I 3
b

a
d sS 3 B

S
5 I 3

R

2R
B dx k̂ 5 2IRB k̂

where d F
S

B is directed out of the page for the directions of B
S

 and d sS in Figure 
29.19. Equation 29.11 can be considered as an alternative definition of B

S
. That is, 

we can define the magnetic field B
S

 in terms of a measurable force exerted on a 
current element, where the force is a maximum when B

S
 is perpendicular to the ele-

ment and zero when B
S

 is parallel to the element.
 To calculate the total force F

S
B acting on the wire shown in Figure 29.19, we inte-

grate Equation 29.11 over the length of the wire:

 F
S

B 5 I 3
b

a
 d sS 3 B

S
 (29.12)

where a and b represent the endpoints of the wire. When this integration is carried 
out, the magnitude of the magnetic field and the direction the field makes with the 
vector d sS may differ at different points.

Q uick Quiz 29.3  A wire carries current in the plane of this paper toward the top 
of the page. The wire experiences a magnetic force toward the right edge of the 
page. Is the direction of the magnetic field causing this force (a) in the plane of 
the page and toward the left edge, (b) in the plane of the page and toward the 
bottom edge, (c) upward out of the page, or (d) downward into the page?

I
B
S

Sd s

The magnetic force on any 
segment d s is I d s ! B and 
is directed out of the page.

SS S

Figure 29.19  A wire segment 
of arbitrary shape carrying a 
current I in a magnetic field B

S
 

experiences a magnetic force.

Now we must consider each infinitesimal segment of wire:

dF = I ds×B

Remember that B could depend on s if the field is not uniform.
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F = I

∫
ds×B

The integral is taken over the length of the wire.



Summary

• synchotrons

• force on a curved wire

Homework Serway & Jewett:

• PREVIOUS: Ch 29, Problems: 27, 33, 35

• NEW: Ch 29, Problems: 37, 41


