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Last time

• particle accelerators: synchotrons

• force on a wire with a current in a B-field



Overview

• force on a curved wire with a current in a B-field

• torque on a wire loop in a magnetic field

• motors

• relating a current loop to a magnet

• magnetic dipole moment

• torque and potential energy of magnetic dipole



Example 29.4: Magnetic Force on a Wire

What is the net force on this semicircular wire loop in a uniform
B-field, given that the current in the loop is I?
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Example 29.4   Force on a Semicircular Conductor

A wire bent into a semicircle of radius R forms a closed circuit and carries a cur-
rent I. The wire lies in the xy plane, and a uniform magnetic field is directed along 
the positive y axis as in Figure 29.20. Find the magnitude and direction of the mag-
netic force acting on the straight portion of the wire and on the curved portion.

Conceptualize  Using the right-hand rule for cross products, we see that the force  
F
S

1 on the straight portion of the wire is out of the page and the force F
S

2 on the 
curved portion is into the page. Is F

S
2 larger in magnitude than F

S
1 because the 

length of the curved portion is longer than that of the straight portion?

Categorize  Because we are dealing with a current-carrying wire in a magnetic 
field rather than a single charged particle, we must use Equation 29.12 to find 
the total force on each portion of the wire.
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Figure 29.20  (Example 29.4) The 
magnetic force on the straight portion 
of the loop is directed out of the page, 
and the magnetic force on the curved 
portion is directed into the page.

Analyze Notice that d sS is perpendicular to B
S

 
everywhere on the straight portion of the wire. Use 
Equation 29.12 to find the force on this portion:

F
S

1 5 I 3
b

a
d sS 3 B

S
5 I 3

R

2R
B dx k̂ 5 2IRB k̂

where d F
S

B is directed out of the page for the directions of B
S

 and d sS in Figure 
29.19. Equation 29.11 can be considered as an alternative definition of B

S
. That is, 

we can define the magnetic field B
S

 in terms of a measurable force exerted on a 
current element, where the force is a maximum when B

S
 is perpendicular to the ele-

ment and zero when B
S

 is parallel to the element.
 To calculate the total force F

S
B acting on the wire shown in Figure 29.19, we inte-

grate Equation 29.11 over the length of the wire:

 F
S

B 5 I 3
b

a
 d sS 3 B

S
 (29.12)

where a and b represent the endpoints of the wire. When this integration is carried 
out, the magnitude of the magnetic field and the direction the field makes with the 
vector d sS may differ at different points.

Q uick Quiz 29.3  A wire carries current in the plane of this paper toward the top 
of the page. The wire experiences a magnetic force toward the right edge of the 
page. Is the direction of the magnetic field causing this force (a) in the plane of 
the page and toward the left edge, (b) in the plane of the page and toward the 
bottom edge, (c) upward out of the page, or (d) downward into the page?
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B
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The magnetic force on any 
segment d s is I d s ! B and 
is directed out of the page.

SS S

Figure 29.19  A wire segment 
of arbitrary shape carrying a 
current I in a magnetic field B

S
 

experiences a magnetic force.

First: use symmetry. The wire is in the x , y -plane, B = Bj, any
magnetic force can only point in the k-direction.

Mentally, break the wire into two pieces, the bottom, straight piece
and the top curved piece.
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Example 29.4: Magnetic Force on a Wire

Bottom segment:

Fb = IL× B

Since L = 2R i, and B = Bj:

Fb = 2RIB k

Top segment:

Ft = I

∫
ds×B



Example 29.4: Magnetic Force on a Wire

Top segment:

Ft = I

∫
ds×B

The top segment is semi-circular. A path along it is a circular arc:
s = Rθ → ds = R dθ(θ̂θθ).

Ft = I

∫
RB sin θ dθ (−k)

= −IRB k

∫π
0

sin θ dθ

= −IRB k [cos θ]π0

= −2RIB k



Example 29.4: Magnetic Force on a Wire

Top segment:

Ft = I

∫
ds×B

The top segment is semi-circular. A path along it is a circular arc:
s = Rθ → ds = R dθ(θ̂θθ).

Ft = I

∫
RB sin θ dθ (−k)

= −IRB k

∫π
0

sin θ dθ

= −IRB k [cos θ]π0

= −2RIB k



Example 29.4: Magnetic Force on a Wire

Bottom segment:

Fb = 2RIB k

Top segment:

Ft = −2RIB k

Total:
Fnet = 0

This is a general result. The force on any loop of wire in a
uniform magnetic field is zero!



Torque on a Loop of Wire with a Current

Or, how to turn electricity into motion.

Consider two wires in a magnetic field with currents flowing in
opposite directions.
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If a wire is not straight or the field is not uniform, we can imagine the wire
broken up into small straight segments and apply Eq. 28-26 to each segment. The
force on the wire as a whole is then the vector sum of all the forces on the
segments that make it up. In the differential limit, we can write

(28-28)

and we can find the resultant force on any given arrangement of currents by
integrating Eq. 28-28 over that arrangement.

In using Eq. 28-28, bear in mind that there is no such thing as an isolated
current-carrying wire segment of length dL.There must always be a way to intro-
duce the current into the segment at one end and take it out at the other end.

dF
:

B ! i dL
:

! B
:

,

Fig. 28-16 A wire carrying current i
makes an angle f with magnetic field .
The wire has length L in the field and
length vector (in the direction of the cur-
rent).A magnetic force acts
on the wire.

F
:

B ! iL
:

! B
:

L
:

B
:

φ i 

L 

FB 

B 

The force is perpendicular
to both the field and the length.

CHECKPOINT 4

The figure shows a current i through a wire in a uniform magnetic field , as well as
the magnetic force acting on the wire.The field is oriented so that the force is maxi-
mum. In what direction is the field?

F
:

B

B
:

FB

i

y

x

z

Sample Problem

We also want the minimal field magnitude B for to balance
.Thus, we need to maximize sin f in Eq. 28-29.To do so, we

set f ! 90°, thereby arranging for to be perpendicular to
the wire.We then have sin f ! 1, so Eq. 28-29 yields

(28-30)

We write the result this way because we know m/L, the linear
density of the wire. Substituting known data then gives us

(Answer)
This is about 160 times the strength of Earth’s magnetic field.

 ! 1.6 " 10#2 T.

  B !
(46.6 " 10#3 kg/m)(9.8 m/s2)

28 A

B !
mg

iL sin $
!

(m/L)g
i

.

B
:

F
:

g

F
:

B

Additional examples, video, and practice available at WileyPLUS

Magnetic force on a wire carrying current

A straight, horizontal length of copper wire has a current 
i ! 28 A through it. What are the magnitude and direction
of the minimum magnetic field needed to suspend the
wire—that is, to balance the gravitational force on it? The
linear density (mass per unit length) of the wire is 46.6 g/m.

(1) Because the wire carries a current, a magnetic force 
can act on the wire if we place it in a magnetic field . To
balance the downward gravitational force on the wire, we
want to be directed upward (Fig. 28-17). (2) The directionF

:
B

F
:

g

B
:

F
:

B

B
:

KEY I DEAS

Fig. 28-17 A wire (shown in cross section) carrying current out
of the page.

L B

FB

mg

of is related to the directions of and the wire’s lengthB
:

F
:

B

vector by Eq. 28-26 

Calculations: Because is directed horizontally (and the
current is taken to be positive), Eq. 28-26 and the right-hand
rule for cross products tell us that must be horizontal and
rightward (in Fig. 28-17) to give the required upward .F

:
B

B
:

L
:

(F
:

B ! iL
:

! B
:

).L
:

The magnitude of is FB ! iLB sin f (Eq. 28-27).
Because we want to balance , we want

iLB sin f ! mg, (28-29)

where mg is the magnitude of and m is the mass of the wire.F
:

g

F
:

gF
:

B

F
:

B
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They will experience forces in opposite directions.
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Torque on a Loop of Wire with a Current

This is the situation that occurs when a loop of wire is placed in a
B-field.

τ τ 
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Side 4 

Side 2 
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28-9 Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and pro-
duce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector .

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

The net force on the loop is the vector sum of the forces acting on its 
four sides. For side 2 the vector in Eq. 28-26 points in the direction of the cur-
rent and has magnitude b. The angle between and for side 2 (see Fig. 28-19c)
is 90° ! u.Thus, the magnitude of the force acting on this side is

F2 " ibB sin(90° ! u) " ibB cos u. (28-31)

B
:

L
:

L
:

B
:

n:

n:
n:

B
:

!F
:

F
:

B
:

Fig. 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying a
current and free to rotate about a fixed axis,
is placed in a magnetic field. Magnetic
forces on the wire produce a torque that ro-
tates it.A commutator (not shown) reverses
the direction of the current every half-revo-
lution so that the torque always acts in the
same direction.

i

i

N S

F

–FB

Fig. 28-19 A rectangular loop, of
length a and width b and carrying a cur-
rent i, is located in a uniform magnetic
field.A torque t acts to align the normal
vector with the direction of the field. (a)
The loop as seen by looking in the direc-
tion of the magnetic field. (b) A perspec-
tive of the loop showing how the right-
hand rule gives the direction of , which is
perpendicular to the plane of the loop. (c)
A side view of the loop, from side 2.
The loop rotates as indicated.

n:

n:
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These opposing forces on opposite sides of the loop creates a
torque on the loop.



Torque on a Loop of Wire with a Current

The current on the two sides away from the axle gives an upward
force on the left and downward on the right.
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28-9 Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and pro-
duce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector .

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

The net force on the loop is the vector sum of the forces acting on its 
four sides. For side 2 the vector in Eq. 28-26 points in the direction of the cur-
rent and has magnitude b. The angle between and for side 2 (see Fig. 28-19c)
is 90° ! u.Thus, the magnitude of the force acting on this side is

F2 " ibB sin(90° ! u) " ibB cos u. (28-31)
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Fig. 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying a
current and free to rotate about a fixed axis,
is placed in a magnetic field. Magnetic
forces on the wire produce a torque that ro-
tates it.A commutator (not shown) reverses
the direction of the current every half-revo-
lution so that the torque always acts in the
same direction.
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Fig. 28-19 A rectangular loop, of
length a and width b and carrying a cur-
rent i, is located in a uniform magnetic
field.A torque t acts to align the normal
vector with the direction of the field. (a)
The loop as seen by looking in the direc-
tion of the magnetic field. (b) A perspec-
tive of the loop showing how the right-
hand rule gives the direction of , which is
perpendicular to the plane of the loop. (c)
A side view of the loop, from side 2.
The loop rotates as indicated.
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On the two ends that connect to the axle, the force is zero when
the loop lays flat parallel to the B-field.

When the loop rotates, the forces on those two ends are equal and
opposite.



Torque on a Loop of Wire with a Current

τ τ 

Side 1 

Side 4 

Side 2 

Side 3 

i 

b 

(a) a 

Side 2

Side 4 Side 1

i

(b)

n

F3 

F2 

F1 

F4 

B 

θ
b

i

Side 2

Side 3

Side 1

(c)

Rotation

n

F1

F3

B

752 CHAPTE R 28 MAG N ETIC F I E LDS

HALLIDAY REVISED

28-9 Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and pro-
duce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector .

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

The net force on the loop is the vector sum of the forces acting on its 
four sides. For side 2 the vector in Eq. 28-26 points in the direction of the cur-
rent and has magnitude b. The angle between and for side 2 (see Fig. 28-19c)
is 90° ! u.Thus, the magnitude of the force acting on this side is

F2 " ibB sin(90° ! u) " ibB cos u. (28-31)
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Fig. 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying a
current and free to rotate about a fixed axis,
is placed in a magnetic field. Magnetic
forces on the wire produce a torque that ro-
tates it.A commutator (not shown) reverses
the direction of the current every half-revo-
lution so that the torque always acts in the
same direction.
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Fig. 28-19 A rectangular loop, of
length a and width b and carrying a cur-
rent i, is located in a uniform magnetic
field.A torque t acts to align the normal
vector with the direction of the field. (a)
The loop as seen by looking in the direc-
tion of the magnetic field. (b) A perspec-
tive of the loop showing how the right-
hand rule gives the direction of , which is
perpendicular to the plane of the loop. (c)
A side view of the loop, from side 2.
The loop rotates as indicated.
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τF = r × F ; τnet =
∑
i

τi

τnet = r1 × F1 + r2 × F2
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F1 = Ia× B = iaB j = −F3
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28-9 Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and pro-
duce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector .

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

The net force on the loop is the vector sum of the forces acting on its 
four sides. For side 2 the vector in Eq. 28-26 points in the direction of the cur-
rent and has magnitude b. The angle between and for side 2 (see Fig. 28-19c)
is 90° ! u.Thus, the magnitude of the force acting on this side is

F2 " ibB sin(90° ! u) " ibB cos u. (28-31)
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Fig. 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying a
current and free to rotate about a fixed axis,
is placed in a magnetic field. Magnetic
forces on the wire produce a torque that ro-
tates it.A commutator (not shown) reverses
the direction of the current every half-revo-
lution so that the torque always acts in the
same direction.
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Fig. 28-19 A rectangular loop, of
length a and width b and carrying a cur-
rent i, is located in a uniform magnetic
field.A torque t acts to align the normal
vector with the direction of the field. (a)
The loop as seen by looking in the direc-
tion of the magnetic field. (b) A perspec-
tive of the loop showing how the right-
hand rule gives the direction of , which is
perpendicular to the plane of the loop. (c)
A side view of the loop, from side 2.
The loop rotates as indicated.
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τnet = r1 × F1 + r3 × F3
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28-9 Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and pro-
duce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector .

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

The net force on the loop is the vector sum of the forces acting on its 
four sides. For side 2 the vector in Eq. 28-26 points in the direction of the cur-
rent and has magnitude b. The angle between and for side 2 (see Fig. 28-19c)
is 90° ! u.Thus, the magnitude of the force acting on this side is

F2 " ibB sin(90° ! u) " ibB cos u. (28-31)
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Fig. 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying a
current and free to rotate about a fixed axis,
is placed in a magnetic field. Magnetic
forces on the wire produce a torque that ro-
tates it.A commutator (not shown) reverses
the direction of the current every half-revo-
lution so that the torque always acts in the
same direction.
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Fig. 28-19 A rectangular loop, of
length a and width b and carrying a cur-
rent i, is located in a uniform magnetic
field.A torque t acts to align the normal
vector with the direction of the field. (a)
The loop as seen by looking in the direc-
tion of the magnetic field. (b) A perspec-
tive of the loop showing how the right-
hand rule gives the direction of , which is
perpendicular to the plane of the loop. (c)
A side view of the loop, from side 2.
The loop rotates as indicated.
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τnet = r1 × F1 + r2 × F2

=

(
b

2

)
(IaB) sin θ+

(
b

2

)
(IaB) sin θ [cw in diag.]

Noting that the area of the loop A = ab:

τ = IAB sin θ
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886 Chapter 29 Magnetic Fields

The direction of F
S

2, the magnetic force exerted on wire !, is out of the page in the 
view shown in Figure 29.20a and that of F

S
4, the magnetic force exerted on wire ", 

is into the page in the same view. If we view the loop from side # and sight along 
sides ! and ", we see the view shown in Figure 29.21b, and the two magnetic forces 
F
S

2 and F
S

4 are directed as shown. Notice that the two forces point in opposite direc-
tions but are not directed along the same line of action. If the loop is pivoted so that 
it can rotate about point O, these two forces produce about O a torque that rotates 
the loop clockwise. The magnitude of this torque tmax is

 tmax 5 F2 
b
2

1 F4 
b
2

5 1IaB 2 b
2

1 1IaB 2  b
2

5 IabB  

where the moment arm about O is b/2 for each force. Because the area enclosed by 
the loop is A 5 ab, we can express the maximum torque as

 tmax 5 IAB  (29.13)

This maximum-torque result is valid only when the magnetic field is parallel to 
the plane of the loop. The sense of the rotation is clockwise when viewed from 
side # as indicated in Figure 29.21b. If the current direction were reversed, 
the force directions would also reverse and the rotational tendency would be 
counterclockwise.
 Now suppose the uniform magnetic field makes an angle u , 908 with a line 
perpendicular to the plane of the loop as in Figure 29.22. For convenience, let’s 
assume B

S
 is perpendicular to sides ! and ". In this case, the magnetic forces F

S
1 

and F
S

3 exerted on sides $ and # cancel each other and produce no torque because 
they act along the same line. The magnetic forces F

S
2 and F

S
4 acting on sides ! and 

", however, produce a torque about any point. Referring to the edge view shown  
in Figure 29.22, we see that the moment arm of F

S
2 about the point O is equal to 

(b/2) sin u. Likewise, the moment arm of F
S

4 about O is also equal to (b/2) sin u. 
Because F2 5 F4 5 IaB, the magnitude of the net torque about O is

t 5 F2 
b
2

 sin u 1 F4 
b
2

 sin u 

 5 IaB a b
2

 sin ub 1 IaB a b
2

 sin ub 5 IabB sin u

5 IAB sin u

where A 5 ab is the area of the loop. This result shows that the torque has its maxi-
mum value IAB when the field is perpendicular to the normal to the plane of the 
loop (u 5 908) as discussed with regard to Figure 29.21 and is zero when the field is 
parallel to the normal to the plane of the loop (u 5 0).

Ob
2
– sin 
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u u
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B
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A
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When the normal to the loop 
makes an angle u with the 
magnetic field, the moment arm 
for the torque is (b/2) sin u.

Figure 29.22 An edge view 
of the loop in Figure 29.21 
with the normal to the loop 
at an angle u with respect to 
the magnetic field.

τ = IAB sin θ

We can make this expression more compact by defining A = An̂
where n̂ is normal to the loop plane.

τ = IA× B



Torque on a Loop of Wire Question
Which of the rectangular loops has the largest magnitude of the
net force acting on it?

888 Chapter 29 Magnetic Fields

This expression shows that the system has its lowest energy Umin 5 2mB when  
mS points in the same direction as B

S
. The system has its highest energy Umax 5 1mB 

when mS points in the direction opposite B
S

.
 Imagine the loop in Figure 29.22 is pivoted at point O on sides ! and ", so that 
it is free to rotate. If the loop carries current and the magnetic field is turned on, 
the loop is modeled as a rigid object under a net torque, with the torque given by 
Equation 29.17. The torque on the current loop causes the loop to rotate; this effect 
is exploited practically in a motor. Energy enters the motor by electrical transmis-
sion, and the rotating coil can do work on some device external to the motor. For 
example, the motor in a car’s electrical window system does work on the windows, 
applying a force on them and moving them up or down through some displace-
ment. We will discuss motors in more detail in Section 31.5.

Q uick Quiz 29.4  (i) Rank the magnitudes of the torques acting on the rectangu-
lar loops (a), (b), and (c) shown edge-on in Figure 29.24 from highest to lowest. 
All loops are identical and carry the same current. (ii) Rank the magnitudes of 
the net forces acting on the rectangular loops shown in Figure 29.24 from high-
est to lowest.

ca b

Figure 29.24  (Quick Quiz 
29.4) Which current loop (seen 
edge-on) experiences the great-
est torque, (a), (b), or (c)? Which 
experiences the greatest net 
force?

 

Example 29.5   The Magnetic Dipole Moment of a Coil

A rectangular coil of dimensions 5.40 cm 3 8.50 cm consists of 25 turns of wire and carries a current of 15.0 mA.  
A 0.350-T magnetic field is applied parallel to the plane of the coil.

(A)  Calculate the magnitude of the magnetic dipole moment of the coil.

Conceptualize  The magnetic moment of the coil is independent of any magnetic field in which the loop resides, so it 
depends only on the geometry of the loop and the current it carries.

Categorize  We evaluate quantities based on equations developed in this section, so we categorize this example as a 
substitution problem.

S O L U T I O N

Use Equation 29.16 to calculate the magnetic moment 
associated with a coil consisting of N turns:

mcoil 5 NIA 5 (25)(15.0 3 1023 A)(0.054 0 m)(0.085 0 m)

5 1.72 3 1023 A # m2

(B)  What is the magnitude of the torque acting on the loop?

S O L U T I O N

Use Equation 29.17, noting that B
S

 is perpendicular to mScoil: t 5 mcoilB 5 (1.72 3 1023 A ? m2)(0.350 T)

5 6.02 3 1024 N # m

(A) a

(B) b

(C) c

(D) all the same

1Serway & Jewett, 9th ed.
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Equation 29.17. The torque on the current loop causes the loop to rotate; this effect 
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example, the motor in a car’s electrical window system does work on the windows, 
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A rectangular coil of dimensions 5.40 cm 3 8.50 cm consists of 25 turns of wire and carries a current of 15.0 mA.  
A 0.350-T magnetic field is applied parallel to the plane of the coil.

(A)  Calculate the magnitude of the magnetic dipole moment of the coil.

Conceptualize  The magnetic moment of the coil is independent of any magnetic field in which the loop resides, so it 
depends only on the geometry of the loop and the current it carries.

Categorize  We evaluate quantities based on equations developed in this section, so we categorize this example as a 
substitution problem.
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Use Equation 29.16 to calculate the magnetic moment 
associated with a coil consisting of N turns:

mcoil 5 NIA 5 (25)(15.0 3 1023 A)(0.054 0 m)(0.085 0 m)

5 1.72 3 1023 A # m2

(B)  What is the magnitude of the torque acting on the loop?
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1Serway & Jewett, 9th ed.



Torque on a Loop of Wire Question
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 Imagine the loop in Figure 29.22 is pivoted at point O on sides ! and ", so that 
it is free to rotate. If the loop carries current and the magnetic field is turned on, 
the loop is modeled as a rigid object under a net torque, with the torque given by 
Equation 29.17. The torque on the current loop causes the loop to rotate; this effect 
is exploited practically in a motor. Energy enters the motor by electrical transmis-
sion, and the rotating coil can do work on some device external to the motor. For 
example, the motor in a car’s electrical window system does work on the windows, 
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Figure 29.24  (Quick Quiz 
29.4) Which current loop (seen 
edge-on) experiences the great-
est torque, (a), (b), or (c)? Which 
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Example 29.5   The Magnetic Dipole Moment of a Coil

A rectangular coil of dimensions 5.40 cm 3 8.50 cm consists of 25 turns of wire and carries a current of 15.0 mA.  
A 0.350-T magnetic field is applied parallel to the plane of the coil.

(A)  Calculate the magnitude of the magnetic dipole moment of the coil.

Conceptualize  The magnetic moment of the coil is independent of any magnetic field in which the loop resides, so it 
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(A) a, b, c

(B) b, a, c

(C) c, b, a

(D) c, a, b

1Serway & Jewett, 9th ed.
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it is free to rotate. If the loop carries current and the magnetic field is turned on, 
the loop is modeled as a rigid object under a net torque, with the torque given by 
Equation 29.17. The torque on the current loop causes the loop to rotate; this effect 
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sion, and the rotating coil can do work on some device external to the motor. For 
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A rectangular coil of dimensions 5.40 cm 3 8.50 cm consists of 25 turns of wire and carries a current of 15.0 mA.  
A 0.350-T magnetic field is applied parallel to the plane of the coil.

(A)  Calculate the magnitude of the magnetic dipole moment of the coil.

Conceptualize  The magnetic moment of the coil is independent of any magnetic field in which the loop resides, so it 
depends only on the geometry of the loop and the current it carries.

Categorize  We evaluate quantities based on equations developed in this section, so we categorize this example as a 
substitution problem.

S O L U T I O N

Use Equation 29.16 to calculate the magnetic moment 
associated with a coil consisting of N turns:

mcoil 5 NIA 5 (25)(15.0 3 1023 A)(0.054 0 m)(0.085 0 m)

5 1.72 3 1023 A # m2

(B)  What is the magnitude of the torque acting on the loop?

S O L U T I O N

Use Equation 29.17, noting that B
S

 is perpendicular to mScoil: t 5 mcoilB 5 (1.72 3 1023 A ? m2)(0.350 T)

5 6.02 3 1024 N # m

(A) a, b, c

(B) b, a, c

(C) c, b, a←
(D) c, a, b

1Serway & Jewett, 9th ed.



Torque on a Coil of Wire with a Current

τ = IA× B

Remarkably, that equation also holds for other shapes of loop as
long as they are flat (in one plane). A is the area of the loop.

For a coil of N loops stacked together, the effect of each loop adds
up:

τττ = NIA× B



Electric Motors

This effect can be used to turn electricity into mechanical work.

1Figure from hyperphysics.phys-arstr.gsu.edu



Electric Motors

Either direct current (DC) or alternating current (AC) can be used
for a motor.

1Figure from hyperphysics.phys-arstr.gsu.edu



Torque on a Loop of Wire with a Current
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28-9 Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and pro-
duce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector .

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

The net force on the loop is the vector sum of the forces acting on its 
four sides. For side 2 the vector in Eq. 28-26 points in the direction of the cur-
rent and has magnitude b. The angle between and for side 2 (see Fig. 28-19c)
is 90° ! u.Thus, the magnitude of the force acting on this side is

F2 " ibB sin(90° ! u) " ibB cos u. (28-31)
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Fig. 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying a
current and free to rotate about a fixed axis,
is placed in a magnetic field. Magnetic
forces on the wire produce a torque that ro-
tates it.A commutator (not shown) reverses
the direction of the current every half-revo-
lution so that the torque always acts in the
same direction.

i

i

N S

F

–FB

Fig. 28-19 A rectangular loop, of
length a and width b and carrying a cur-
rent i, is located in a uniform magnetic
field.A torque t acts to align the normal
vector with the direction of the field. (a)
The loop as seen by looking in the direc-
tion of the magnetic field. (b) A perspec-
tive of the loop showing how the right-
hand rule gives the direction of , which is
perpendicular to the plane of the loop. (c)
A side view of the loop, from side 2.
The loop rotates as indicated.
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τ = IAB sin θ

We can make this expression more compact by defining A = An̂
where n̂ is normal to the loop plane.

τ = IA× B



Magnetic Moment for a Current Loop

For a current loop, we can define the magnetic moment of the
loop as

µ = IA

And for a coil N turns (loops) of wire carrying a current:

µ = NIA

Then the expression for the torque can be written

τ = µ× B



Reminder: Electric Dipole Moment

Recall our definition for the Electric dipole moment:
dipole moment:

p = q d

where d is a vector pointing from the negative charge to the
positive charge, and its magnitude d is the separation of the
charges and each charge in the dipole has magnitude q.

584 CHAPTE R 22 E LECTR IC F I E LDS

Fig. 22-8 (a) An electric dipole.The
electric field vectors and at point
P on the dipole axis result from the dipole’s
two charges. Point P is at distances r(!) and
r(") from the individual charges that make
up the dipole. (b) The dipole moment of
the dipole points from the negative charge
to the positive charge.
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22-5 The Electric Field Due to an Electric Dipole
Figure 22-8a shows two charged particles of magnitude q but of opposite sign,
separated by a distance d. As was noted in connection with Fig. 22-5, we call this
configuration an electric dipole. Let us find the electric field due to the dipole of
Fig. 22-8a at a point P, a distance z from the midpoint of the dipole and on the
axis through the particles, which is called the dipole axis.

From symmetry, the electric field at point P—and also the fields and
E
:

(") due to the separate charges that make up the dipole—must lie along the
dipole axis, which we have taken to be a z axis.Applying the superposition princi-
ple for electric fields, we find that the magnitude E of the electric field at P is

(22-5)

After a little algebra, we can rewrite this equation as

(22-6)

After forming a common denominator and multiplying its terms, we come to

(22-7)

We are usually interested in the electrical effect of a dipole only at distances
that are large compared with the dimensions of the dipole—that is, at distances such
that z # d. At such large distances, we have d/2z $ 1 in Eq. 22-7. Thus, in our ap-
proximation, we can neglect the d/2z term in the denominator, which leaves us with

(22-8)

The product qd, which involves the two intrinsic properties q and d of the
dipole, is the magnitude p of a vector quantity known as the electric dipole moment

of the dipole. (The unit of is the coulomb-meter.) Thus, we can write Eq. 22-8 as

(electric dipole). (22-9)

The direction of is taken to be from the negative to the positive end of the
dipole, as indicated in Fig. 22-8b. We can use the direction of to specify the
orientation of a dipole.

Equation 22-9 shows that, if we measure the electric field of a dipole only at
distant points, we can never find q and d separately; instead, we can find only their
product. The field at distant points would be unchanged if, for example, q were
doubled and d simultaneously halved. Although Eq. 22-9 holds only for distant
points along the dipole axis, it turns out that E for a dipole varies as 1/r 3 for all
distant points, regardless of whether they lie on the dipole axis; here r is the dis-
tance between the point in question and the dipole center.

Inspection of Fig. 22-8 and of the field lines in Fig. 22-5 shows that the direc-
tion of for distant points on the dipole axis is always the direction of the dipoleE
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Torque on a electric dipole in an
electric field:

τ = p× E

Potential energy:

U = −p · E



Current Loop vs Bar Magnet

A loop of wire with a current in it produces a magnetic field similar
to a bar magnet.

77929-6 A CU R R E NT- CAR RYI NG COI L AS A MAG N ETIC DI POLE
PART 3
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Magnetic Field of a Coil
We turn now to the other aspect of a current-carrying coil as a magnetic dipole.
What magnetic field does it produce at a point in the surrounding space? The
problem does not have enough symmetry to make Ampere’s law useful; so we
must turn to the law of Biot and Savart. For simplicity, we first consider only a
coil with a single circular loop and only points on its perpendicular central axis,
which we take to be a z axis. We shall show that the magnitude of the magnetic
field at such points is

(29-26)

in which R is the radius of the circular loop and z is the distance of the point in
question from the center of the loop. Furthermore, the direction of the mag-
netic field is the same as the direction of the magnetic dipole moment of
the loop.

For axial points far from the loop, we have z R in Eq. 29-26. With that
approximation, the equation reduces to

Recalling that pR2 is the area A of the loop and extending our result to include
a coil of N turns, we can write this equation as

Further, because and have the same direction, we can write the equation in
vector form, substituting from the identity NiA:

(current-carrying coil). (29-27)

Thus, we have two ways in which we can regard a current-carrying coil as a
magnetic dipole: (1) it experiences a torque when we place it in an external
magnetic field; (2) it generates its own intrinsic magnetic field, given, for dis-
tant points along its axis, by Eq. 29-27. Figure 29-21 shows the magnetic field of
a current loop; one side of the loop acts as a north pole (in the direction of )
and the other side as a south pole, as suggested by the lightly drawn magnet in
the figure. If we were to place a current-carrying coil in an external magnetic
field, it would tend to rotate just like a bar magnet would.
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CHECKPOINT 3

The figure here shows four arrangements of circular loops of radius r or 2r, centered on
vertical axes (perpendicular to the loops) and carrying identical currents in the direc-
tions indicated. Rank the arrangements according to the magnitude of the net magnetic
field at the dot, midway between the loops on the central axis, greatest first.

(a) (b) (c) (d)

N

S

i

i

B

µ

Fig. 29-21 A current loop produces a
magnetic field like that of a bar magnet and
thus has associated north and south poles.
The magnetic dipole moment of the loop,
its direction given by a curled–straight
right-hand rule, points from the south pole
to the north pole, in the direction of the
field within the loop.B
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!:
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Magnetic Dipole Moment

magnetic dipole moment, µ

The quantity relating an external magnetic field that a magnet or
coil of wire is in to the torque on the magnet or coil due to that
field.

τ = µ× B

For a magnet, it is a vector pointing from the south pole of a
magnet to the north pole, that is proportional to the strength of
the B-field produced by the magnet itself.

For a coil, it is defined according the the right hand rule for current
in a wire loop and is proportional to the coil area and current.



Potential Energy of a Dipole in a B-Field

τ = µ× B
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Table 28-2

Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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Fig. 28-20 The orientations of highest
and lowest energy of a magnetic dipole
(here a coil carrying current) in an external
magnetic field .The direction of the cur-
rent i gives the direction of the magnetic 
dipole moment via the right-hand rule
shown for in Fig. 28-19b.n:
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The energy can be found by integrating the torque over the angle
of rotation.

U = −µ · B



Question

The figure shows four orientations, at angle θ, of a magnetic dipole
moment µ in a magnetic field. Rank the orientations according to
the magnitude of the torque on the dipole, greatest first.
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Table 28-2

Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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Fig. 28-20 The orientations of highest
and lowest energy of a magnetic dipole
(here a coil carrying current) in an external
magnetic field .The direction of the cur-
rent i gives the direction of the magnetic 
dipole moment via the right-hand rule
shown for in Fig. 28-19b.n:
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(A) 1 and 2, 3 and 4

(B) 1 and 4, 2 and 3

(C) 3, 2, 1, 4

(D) all the same

1Halliday, Resnick, Walker, 9th ed, page 745.



Question

The figure shows four orientations, at angle θ, of a magnetic dipole
moment µ in a magnetic field. Rank the orientations according to
the magnitude of the torque on the dipole, greatest first.
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Table 28-2

Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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Fig. 28-20 The orientations of highest
and lowest energy of a magnetic dipole
(here a coil carrying current) in an external
magnetic field .The direction of the cur-
rent i gives the direction of the magnetic 
dipole moment via the right-hand rule
shown for in Fig. 28-19b.n:
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(A) 1 and 2, 3 and 4

(B) 1 and 4, 2 and 3

(C) 3, 2, 1, 4

(D) all the same←

1Halliday, Resnick, Walker, 9th ed, page 745.



Question

The figure shows four orientations, at angle θ, of a magnetic
dipole moment µ in a magnetic field. Rank the orientations
according to the orientation energy of the dipole, greatest first.
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Table 28-2

Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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Fig. 28-20 The orientations of highest
and lowest energy of a magnetic dipole
(here a coil carrying current) in an external
magnetic field .The direction of the cur-
rent i gives the direction of the magnetic 
dipole moment via the right-hand rule
shown for in Fig. 28-19b.n:

$:

B
:

i i 
µ µ 

µ µ 

Highest 
energy 

Lowest 
energy 

B 

The magnetic moment vector
attempts to align with the
magnetic field.
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(A) 1 and 2, 3 and 4

(B) 1 and 4, 2 and 3

(C) 3, 2, 1, 4

(D) all the same

1Halliday, Resnick, Walker, 9th ed, page 745.



Question

The figure shows four orientations, at angle θ, of a magnetic
dipole moment µ in a magnetic field. Rank the orientations
according to the orientation energy of the dipole, greatest first.
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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.
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Table 28-2

Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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Fig. 28-20 The orientations of highest
and lowest energy of a magnetic dipole
(here a coil carrying current) in an external
magnetic field .The direction of the cur-
rent i gives the direction of the magnetic 
dipole moment via the right-hand rule
shown for in Fig. 28-19b.n:
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:
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B 

The magnetic moment vector
attempts to align with the
magnetic field.
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(A) 1 and 2, 3 and 4

(B) 1 and 4, 2 and 3←
(C) 3, 2, 1, 4

(D) all the same

1Halliday, Resnick, Walker, 9th ed, page 745.



Electric Dipole and Magnetic Dipole

electric dipole magnetic dipole

torque τ τ = p× E τ = µ× B

potential energy U U = −p · E U = −µ · B



Summary

• force on a curved wire in a magnetic field

• torque on a current-carrying wire loop

• relating a current loop to a magnet

• magnetic dipole moment

• torque and potential energy of magnetic dipole

3rd Test Friday, Mar 9.

Homework
• Collected homework 3, due on Monday, Mar 5.

Serway & Jewett:

• PREVIOUS: Ch 29, Problems: 37, 41

• NEW: Ch 29, Problems: 42, 47, 48, 49, 51, 53, 57


