Electricity and Magnetism B-Fields from Moving Charges

Lana Sheridan
De Anza College

Feb 28, 2018

Last time

- force on a curved current carrying wire
- torque on a wire loop
- magnetic dipole moment

Overview

- B-field from a moving charge
- fields from currents

Magnetic fields from moving charges and currents

We are now moving into chapter 30 .

Anything with a magnet moment creates a magnetic field.

This is a logical consequence of Newton's third law.

Magnetic Permeability

A constant we will need is:

$$
\mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}
$$

μ_{0} is called the magnetic permeability of free space.

It arises when we look at magnetic fields because of our choice of SI units.

Whenever we use μ_{0} we assume we are considering the magnetic field to be in a vacuum or air.
μ_{0} is not the magnetic dipole moment μ !
Another notation coincidence.

Magnetic fields from moving charges

A moving charge will interact with other magnetic poles.

This is because it has a magnetic field of its own.

The field for a moving charge is given by the Biot-Savart Law:

$$
\mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{q \mathbf{v} \times \hat{\mathbf{r}}}{r^{2}}
$$

Magnetic fields from moving charges

A moving charge will interact with other magnetic poles.

This is because it has a magnetic field of its own.

The field for a moving charge is given by the Biot-Savart Law:

$$
\mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{q \mathbf{v} \times \hat{\mathbf{r}}}{r^{2}}
$$

Quite similar to the E-field from a charge:

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}}
$$

Magnetic fields from moving charges

$$
\mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{q \mathbf{v} \times \hat{\mathbf{r}}}{r^{2}}
$$

${ }^{1}$ Figure from rakeshkapoor.us.

Magnetic fields from currents

Consider the field from an infinitesimal amount of charge, dq:

$$
\mathrm{dB}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{dq} \mathbf{v} \times \hat{\mathbf{r}}}{r^{2}}
$$

We can deduce from this what the magnetic field due to the current in a small piece of wire is.

Current is made up of moving charges!

$$
\mathrm{dq} \mathbf{v}=\mathrm{dq} \frac{\mathrm{~d} \mathbf{s}}{\mathrm{dt}}=\frac{\mathrm{dq}}{\mathrm{dt}} \mathrm{~d} \mathbf{s}=I \mathrm{~d} \mathbf{s}
$$

We can replace $d q \mathbf{v}$ in the equation above.

Magnetic fields from currents

This is another version of the Biot-Savart Law:

$$
\mathrm{dB}=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{ds} \times \hat{\mathbf{r}}}{r^{2}}
$$

where $d \mathbf{B}$ is the magnetic field from a small segment of wire, of length ds.

Magnetic fields from currents

Magnetic field around a wire segment, viewed end-on:

Magnetic fields from currents

How to determine the direction of the field lines (right-hand rule):

Using the Biot-Savart Law

$$
\mathrm{d} \mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \mathbf{s} \times \hat{\mathbf{r}}}{r^{2}}
$$

To calculate a B-field vector, we will need to integrate over s.
This is a path integral, similar to what we needed to evaluate:

$$
\Delta V=-\int \mathbf{E} \cdot \mathrm{ds}
$$

Now, however, we are finding the cross product: the perpendicular component of \mathbf{s} relative to the vector \mathbf{r}.

Line Integrals

There is one other special piece of notation used with some line integrals:

$$
\oint
$$

This symbol means that the integral starts and ends at the same point.

The path is a loop.
(We also used the \oint notation before in Gauss's law to indicate a closed surface.)

Magnetic field from a long straight wire

The Biot-Savart Law,

$$
\mathrm{dB}=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \mathbf{s} \times \hat{\mathbf{r}}}{r^{2}}
$$

implies what the magnetic field is at a perpendicular distance a from an infinitely long straight wire:

$$
B=\frac{\mu_{0} I}{2 \pi a}
$$

Magnetic field from a long straight wire

Add up the B-field contributed by each infinitesimal length of wire carrying current I.

$$
\mathrm{d} \mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \mathbf{s} \times \hat{\mathbf{r}}}{r^{2}}
$$

Following from the diagram:

$$
\begin{gathered}
\mathrm{d} \mathbf{s} \times \hat{\mathbf{r}}=\cos \theta \mathrm{d} \times \mathbf{k}=\frac{a}{r} \mathrm{~d} \times \mathbf{k} \\
\mathbf{B}=\frac{\mu_{0}}{4 \pi} I \int \frac{a}{\left(x^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} \times \mathbf{k}
\end{gathered}
$$

Magnetic field from a long straight wire

Add up the B-field contributed by each infinitesimal length of wire carrying current I.

$$
\begin{aligned}
\mathbf{B} & =\frac{\mu_{0}}{4 \pi} I \int \frac{a}{\left(x^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} \mathbf{x} \\
& =\frac{\mu_{0}}{4 \pi} I\left[\frac{x}{a \sqrt{x^{2}+a^{2}}}\right]_{-\ell / 2}^{\ell / 2} \mathbf{k} \\
& =\frac{\mu_{0}}{4 \pi} I\left[\frac{\ell}{a \sqrt{(\ell / 2)^{2}+a^{2}}}\right] \mathbf{k}
\end{aligned}
$$

Magnetic field from a long straight wire

Now consider a very long wire, $\ell \rightarrow \infty$.

$$
\begin{aligned}
\mathbf{B} & =\lim _{\ell \rightarrow \infty} \frac{\mu_{0}}{4 \pi} I\left[\frac{\ell}{a \sqrt{(\ell / 2)^{2}+a^{2}}}\right] \mathbf{k} \\
& =\frac{\mu_{0} I}{4 \pi} \frac{2}{a} \mathbf{k}
\end{aligned}
$$

In general, the field will be a tangential vector:

$$
\mathbf{B}=\frac{\mu_{0} I}{2 \pi r} \hat{\boldsymbol{\varphi}}
$$

at a distance r from the center of the wire.

Current flowing
out of the page
${ }^{1}$ Figure from MIT's Visualizing EM, Liao, Dourmashkin, and Belcher.

Summary

- field from a moving charge
- field from a current

3rd Test Friday, March 9.

Homework

- Collected homework 3, posted online, due on Monday, Mar 5.

Serway \& Jewett:

- PREVIOUS: Ch 29, Problems: 47, 51, 57
- PREVIOUS: Ch 30, Problems: 49
- NEW: Ch 30, Problems: 3, 5, 9, 13, 19

