
Electricity and Magnetism
Gauss’s Law

Ampère’s Law

Lana Sheridan

De Anza College

Mar 1, 2018



Last time

• magnetic field of a moving charge

• magnetic field of a current

• the Biot-Savart law

• magnetic field around a straight wire



Overview

• Gauss’s Law for magnetism

• Ampère’s Law

• B-field outside and inside a wire

• Solenoids



B-Field around a wire revisited

Using the Biot-Savart law we found that the field around an
infinitely long straight wire, carrying a current I was:

B =
µ0I

2πa

at a distance a from the wire.

Is the another way we could have solved this problem?

When we had an infinite line of charge, there was a law we could
use to find the E-field...

Gauss’s law.

Could we use something similar here?



B-Field around a wire revisited

Using the Biot-Savart law we found that the field around an
infinitely long straight wire, carrying a current I was:

B =
µ0I

2πa

at a distance a from the wire.

Is the another way we could have solved this problem?

When we had an infinite line of charge, there was a law we could
use to find the E-field... Gauss’s law.

Could we use something similar here?



Gauss’s Law for Magnetic Fields

Gauss’s Law for Electric fields:

ΦE =

∮
E · dA =

qenc
ε0

The electric flux through a closed surface is equal to the charge
enclosed by the surface, divided by ε0.

There is a similar expression for magnetic flux!

First we must define magnetic flux, ΦB .



Magnetic Flux
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arbitrarily shaped surface as shown in Figure 30.19. If the magnetic field at this 
element is B

S
,  the magnetic flux through the element is B

S
? d A

S
, where d A

S
 is a vec-

tor that is perpendicular to the surface and has a magnitude equal to the area dA. 
Therefore, the total magnetic flux FB through the surface is

 FB ; 3  B
S

? d A
S

 (30.18)

 Consider the special case of a plane of area A in a uniform field B
S

 that makes an 
angle u with d A

S
. The magnetic flux through the plane in this case is

 FB 5 BA cos u  (30.19)

If the magnetic field is parallel to the plane as in Figure 30.20a, then u 5 908 and the 
flux through the plane is zero. If the field is perpendicular to the plane as in Figure 
30.20b, then u 5 0 and the flux through the plane is BA (the maximum value).
 The unit of magnetic flux is T ? m2, which is defined as a weber (Wb); 1 Wb 5  
1 T ? m2.

�W Definition of magnetic flux

Figure 30.20 Magnetic flux 
through a plane lying in a mag-
netic field.a

d

The flux through the plane is 
zero when the magnetic field is 
parallel to the plane surface.

A
S

B
S

b

dA
S

B
S

The flux through the plane is a 
maximum when the magnetic 
field is perpendicular to the plane.

Example 30.7   Magnetic Flux Through a Rectangular Loop

A rectangular loop of width a and length b is located near a long wire carrying a 
current I (Fig. 30.21). The distance between the wire and the closest side of the 
loop is c. The wire is parallel to the long side of the loop. Find the total magnetic 
flux through the loop due to the current in the wire.

Conceptualize  As we saw in Section 30.3, the magnetic field lines due to the wire 
will be circles, many of which will pass through the rectangular loop. We know that 
the magnetic field is a function of distance r from a long 
wire. Therefore, the magnetic field varies over the area of 
the rectangular loop.

Categorize  Because the magnetic field varies over the 
area of the loop, we must integrate over this area to find 
the total flux. That identifies this as an analysis problem.

S O L U T I O N

continued

b
r

I

c a

dr

Figure 30.21  (Example 
30.7) The magnetic field 
due to the wire carrying 
a current I is not uniform 
over the rectangular loop.

Analyze  Noting that B
S

 is parallel to d A
S

 at any point 
within the loop, find the magnetic flux through the rect-
angular area using Equation 30.18 and incorporate Equa-
tion 30.14 for the magnetic field:

FB 5 3 B
S

? d A
S

5 3 B dA 5  3 
m0I
2pr

 dA

B
S

 
u

d A 
S

Figure 30.19  The magnetic  
flux through an area element dA  
is B

S
? d A

S
5 B dA cos u, where  

d A
S

 is a vector perpendicular to 
the surface.

Magnetic flux

The magnetic flux of a magnetic field through a surface A is

ΦB =

∫
B · dA

Units: Tm2

If the surface is a flat plane and B is uniform, that just reduces to:

ΦB = B · A



Gauss’s Law for Magnetic Fields

Gauss’s Law for magnetic fields.:∮
B · dA = 0

Where the integral is taken over a closed surface A.

We can interpret it as an assertion that magnetic monopoles do
not exist.

In differential form:

∇ · B = 0

The magnetic field has no sources or sinks.
(It is “divergence-free”; we can write B = ∇× a, where a is the
“vector potential”.)



Gauss’s Law for Magnetic Fields∮
B · dA = 0
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CHECKPOINT 1

The figure here shows four closed surfaces with flat top and bottom faces and curved
sides.The table gives the areas A of the faces and the magnitudes B of the uniform and
perpendicular magnetic fields through those faces; the units of A and B are arbitrary
but consistent. Rank the surfaces according to the magnitudes of the magnetic flux
through their curved sides, greatest first.

Surface Atop Btop Abot Bbot

a 2 6, outward 4 3, inward
b 2 1, inward 4 2, inward
c 2 6, inward 2 8, outward
d 2 3, outward 3 2, outward

(a) (b) (c) (d)

32-3 Induced Magnetic Fields
In Chapter 30 you saw that a changing magnetic flux induces an electric field, and
we ended up with Faraday’s law of induction in the form

(Faraday’s law of induction). (32-2)

Here is the electric field induced along a closed loop by the changing magnetic
flux encircled by that loop. Because symmetry is often so powerful in physics,
we should be tempted to ask whether induction can occur in the opposite sense;
that is, can a changing electric flux induce a magnetic field?

The answer is that it can; furthermore, the equation governing the induction
of a magnetic field is almost symmetric with Eq. 32-2. We often call it Maxwell’s
law of induction after James Clerk Maxwell, and we write it as

(Maxwell’s law of induction). (32-3)

Here is the magnetic field induced along a closed loop by the changing electric
flux !E in the region encircled by that loop.

As an example of this sort of induction, we consider the charging of a parallel-
plate capacitor with circular plates. (Although we shall focus on this arrangement,

B
:

! B
:

! ds: " #0$0
d!E

dt

!B

E
:

! E
:

! ds: " %
d!B

dt

Fig. 32-4 The field lines for the
magnetic field of a short bar mag-
net.The red curves represent cross
sections of closed, three-dimensional
Gaussian surfaces.

B
:

Surface IN

S

Surface II

B

Gauss’ law for magnetic fields holds for structures more complicated than
a magnetic dipole, and it holds even if the Gaussian surface does not enclose the
entire structure. Gaussian surface II near the bar magnet of Fig. 32-4 encloses no
poles, and we can easily conclude that the net magnetic flux through it is zero.
Gaussian surface I is more difficult. It may seem to enclose only the north pole of
the magnet because it encloses the label N and not the label S. However, a south
pole must be associated with the lower boundary of the surface because magnetic
field lines enter the surface there. (The enclosed section is like one piece of the
broken bar magnet in Fig. 32-3.) Thus, Gaussian surface I encloses a magnetic
dipole, and the net flux through the surface is zero.
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B-Field around a wire revisited

Gauss’s law will not help us find the strength of the B-field around
the wire: the flux through any closed surface will be zero.

Another law can.



Ampère’s Law
For constant currents (magnetostatics):∮

B · ds = µ0Ienc

The line integral of the magnetic field around a closed loop is
proportional to the current that flows through the loop.1

between the rails, and then back to the current source along the second rail. The
projectile to be fired lies on the far side of the fuse and fits loosely between the
rails. Immediately after the current begins, the fuse element melts and vaporizes,
creating a conducting gas between the rails where the fuse had been.

The curled–straight right-hand rule of Fig. 29-4 reveals that the currents in
the rails of Fig. 29-10a produce magnetic fields that are directed downward
between the rails. The net magnetic field exerts a force on the gas due to the
current i through the gas (Fig. 29-10b). With Eq. 29-12 and the right-hand rule
for cross products, we find that points outward along the rails. As the gas is
forced outward along the rails, it pushes the projectile, accelerating it by as much
as 5 ! 106g, and then launches it with a speed of 10 km/s, all within 1 ms. Some-
day rail guns may be used to launch materials into space from mining operations
on the Moon or an asteroid.

F
:

F
:

B
:

CHECKPOINT 1

The figure here shows three long, straight, parallel, equally spaced wires with identical
currents either into or out of the page. Rank the wires according to the magnitude of
the force on each due to the currents in the other two wires, greatest first.

a b c

29-4 Ampere’s Law
We can find the net electric field due to any distribution of charges by first writing
the differential electric field due to a charge element and then summing the
contributions of from all the elements. However, if the distribution is compli-
cated, we may have to use a computer. Recall, however, that if the distribution
has planar, cylindrical, or spherical symmetry, we can apply Gauss’ law to find the
net electric field with considerably less effort.

Similarly, we can find the net magnetic field due to any distribution of currents
by first writing the differential magnetic field (Eq. 29-3) due to a current-length
element and then summing the contributions of from all the elements.Again we
may have to use a computer for a complicated distribution. However, if the distrib-
ution has some symmetry, we may be able to apply Ampere’s law to find the mag-
netic field with considerably less effort. This law, which can be derived from the
Biot–Savart law, has traditionally been credited to André-Marie Ampère
(1775–1836), for whom the SI unit of current is named. However, the law actually
was advanced by English physicist James Clerk Maxwell.

Ampere’s law is

(Ampere’s law). (29-14)

The loop on the integral sign means that the scalar (dot) product is to be
integrated around a closed loop, called an Amperian loop. The current ienc is the
net current encircled by that closed loop.

To see the meaning of the scalar product and its integral, let us first
apply Ampere’s law to the general situation of Fig. 29-11. The figure shows cross
sections of three long straight wires that carry currents i1, i2, and i3 either directly
into or directly out of the page. An arbitrary Amperian loop lying in the plane of
the page encircles two of the currents but not the third. The counterclockwise
direction marked on the loop indicates the arbitrarily chosen direction of integra-
tion for Eq. 29-14.

To apply Ampere’s law, we mentally divide the loop into differential vector
elements that are everywhere directed along the tangent to the loop in theds:

B
:

! ds:  

B
:

! ds: 

! B
:

! ds: " #0ienc

dB
:

dB
:

dE
:

dE
:
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Fig. 29-11 Ampere’s law applied to an
arbitrary Amperian loop that encircles two
long straight wires but excludes a third
wire. Note the directions of the currents.

i3 

i1 

i2 

Direction of 
integration 

ds 
θ 

Amperian 
loop 

B 

Only the currents
encircled by the
loop are used in
Ampere's law.

halliday_c29_764-790v2.qxd  3-12-2009  16:13  Page 771

1That is, the current that flows through any surface bounded by the loop.



Ampère’s Law
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Fig. 29-13 Using Ampere’s law to find
the magnetic field that a current i produces
outside a long straight wire of circular cross
section.The Amperian loop is a concentric
circle that lies outside the wire.

i  

(   = 0) θ 

r 
Amperian 
loop Wire 

surface 

B 

ds 

All of the current is
encircled and thus all
is used in Ampere's law.

direction of integration. Assume that at the location of the element shown in
Fig. 29-11, the net magnetic field due to the three currents is . Because the wires
are perpendicular to the page, we know that the magnetic field at due to each
current is in the plane of Fig. 29-11; thus, their net magnetic field at must also
be in that plane. However, we do not know the orientation of within the plane.
In Fig. 29-11, is arbitrarily drawn at an angle u to the direction of .

The scalar product on the left side of Eq. 29-14 is equal to B cos u ds.
Thus,Ampere’s law can be written as

(29-15)

We can now interpret the scalar product as being the product of a length ds
of the Amperian loop and the field component B cos u tangent to the loop. Then
we can interpret the integration as being the summation of all such products
around the entire loop.

When we can actually perform this integration, we do not need to know the
direction of before integrating. Instead, we arbitrarily assume to be generally
in the direction of integration (as in Fig. 29-11). Then we use the following
curled–straight right-hand rule to assign a plus sign or a minus sign to each of the
currents that make up the net encircled current ienc:

B
:

B
:

B
:

! ds:

! B
:

! ds: ! ! B cos " ds ! #0ienc.

B
:

! ds:
ds:B

:
B
:

ds:B
:

ds:
B
:

ds:

Curl your right hand around the Amperian loop, with the fingers pointing in the
direction of integration. A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally in the opposite
direction is assigned a minus sign.

Finally, we solve Eq. 29-15 for the magnitude of . If B turns out positive, then
the direction we assumed for is correct. If it turns out negative, we neglect the
minus sign and redraw in the opposite direction.

In Fig. 29-12 we apply the curled–straight right-hand rule for Ampere’s law
to the situation of Fig. 29-11. With the indicated counterclockwise direction of
integration, the net current encircled by the loop is

ienc ! i1 $ i2.

(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as

(29-16)

You might wonder why, since current i3 contributes to the magnetic-field mag-
nitude B on the left side of Eq. 29-16, it is not needed on the right side.The answer
is that the contributions of current i3 to the magnetic field cancel out because the
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions
of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for
the situation of Fig. 29-11 we do not have enough information to simplify and solve
the integral.However,we do know the outcome of the integration; it must be equal to
m0(i1 $ i2), the value of which is set by the net current passing through the loop.

We shall now apply Ampere’s law to two situations in which symmetry does
allow us to simplify and solve the integral, hence to find the magnetic field.

Magnetic Field Outside a Long Straight Wire with Current
Figure 29-13 shows a long straight wire that carries current i directly out of the
page. Equation 29-4 tells us that the magnetic field produced by the current has
the same magnitude at all points that are the same distance r from the wire;

B
:

! B cos " ds ! #0(i1 $ i2).

B
:

B
:

B
:

Fig. 29-12 A right-hand rule for
Ampere’s law, to determine the signs for
currents encircled by an Amperian loop.
The situation is that of Fig. 29-11.

+i1 

–i2 
Direction of 
integration 

This is how to assign a
sign to a current used in
Ampere's law.
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A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally
in the opposite direction is assigned a minus sign.



Question
The figure here shows three equal currents i (two parallel and one
antiparallel) and four Amperian loops. Rank the loops according to
the magnitude of

∮
B · ds along each, greatest first.

77329-4 AM PE R E’S LAW
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that is, the field has cylindrical symmetry about the wire. We can take advan-
tage of that symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and
29-15) if we encircle the wire with a concentric circular Amperian loop of radius
r, as in Fig. 29-13. The magnetic field then has the same magnitude B at every
point on the loop. We shall integrate counterclockwise, so that has the direc-
tion shown in Fig. 29-13.

We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u ! cos 0° ! 1.The integral in Eq. 29-15 then becomes

Note that ! ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-13.The right
side of Ampere’s law becomes "m0 i, and we then have

B(2pr) ! m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-13.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-14 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-14, where now r # R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields

(29-18)

To find the right side of Ampere’s law, we note that because the current is
uniformly distributed, the current ienc encircled by the loop is proportional to the
area encircled by the loop; that is,

(29-19)

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.

B ! " $0i
2%R2  # r

B(2%r) ! $0i 
%r 2

%R2

ienc ! i 
%r2

%R2 .

$ B
:

! ds: ! B $ ds ! B(2%r).

B
:

B
:

B
:

B !
$0i
2%r

$ B
:

! ds: ! $ B cos & ds ! B $ ds ! B(2%r).

B
:

ds:

ds:B
:

ds:
B
:

ds:
B
:

B
:

Fig. 29-14 Using Ampere’s law to find
the magnetic field that a current i produces
inside a long straight wire of circular cross
section.The current is uniformly distrib-
uted over the cross section of the wire and
emerges from the page.An Amperian loop
is drawn inside the wire.

R 

Amperian 
loop 

r 

Wire 
surface

i  

ds 

B 

Only the current encircled
by the loop is used in
Ampere's law.

CHECKPOINT 2

The figure here shows three equal cur-
rents i (two parallel and one antiparal-
lel) and four Amperian loops. Rank the
loops according to the magnitude of

along each, greatest first.! B
:

! ds:  

c d

b

a

ii

i
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A a, b, c, d

B d, b, c, a

C (a and b), d, c

D d, (a and c), b
1Halliday, Resnick, Walker, page 773.



Question
The figure here shows three equal currents i (two parallel and one
antiparallel) and four Amperian loops. Rank the loops according to
the magnitude of

∮
B · ds along each, greatest first.

77329-4 AM PE R E’S LAW
PART 3

HALLIDAY REVISED

that is, the field has cylindrical symmetry about the wire. We can take advan-
tage of that symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and
29-15) if we encircle the wire with a concentric circular Amperian loop of radius
r, as in Fig. 29-13. The magnetic field then has the same magnitude B at every
point on the loop. We shall integrate counterclockwise, so that has the direc-
tion shown in Fig. 29-13.

We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u ! cos 0° ! 1.The integral in Eq. 29-15 then becomes

Note that ! ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-13.The right
side of Ampere’s law becomes "m0 i, and we then have

B(2pr) ! m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-13.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-14 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-14, where now r # R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields

(29-18)

To find the right side of Ampere’s law, we note that because the current is
uniformly distributed, the current ienc encircled by the loop is proportional to the
area encircled by the loop; that is,

(29-19)

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.

B ! " $0i
2%R2  # r

B(2%r) ! $0i 
%r 2

%R2

ienc ! i 
%r2

%R2 .

$ B
:

! ds: ! B $ ds ! B(2%r).

B
:

B
:

B
:

B !
$0i
2%r

$ B
:

! ds: ! $ B cos & ds ! B $ ds ! B(2%r).

B
:

ds:

ds:B
:

ds:
B
:

ds:
B
:

B
:

Fig. 29-14 Using Ampere’s law to find
the magnetic field that a current i produces
inside a long straight wire of circular cross
section.The current is uniformly distrib-
uted over the cross section of the wire and
emerges from the page.An Amperian loop
is drawn inside the wire.

R 

Amperian 
loop 

r 

Wire 
surface

i  

ds 

B 

Only the current encircled
by the loop is used in
Ampere's law.

CHECKPOINT 2

The figure here shows three equal cur-
rents i (two parallel and one antiparal-
lel) and four Amperian loops. Rank the
loops according to the magnitude of

along each, greatest first.! B
:

! ds:  

c d

b

a

ii

i
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A a, b, c, d

B d, b, c, a

C (a and b), d, c

D d, (a and c), b←
1Halliday, Resnick, Walker, page 773.



Ampère’s Law and the Magnetic Field from a
Current Outside a wire

Suppose we want to know the magnitude of the magnetic field at a
distance r outside a wire. Using Ampère’s Law?
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Fig. 29-13 Using Ampere’s law to find
the magnetic field that a current i produces
outside a long straight wire of circular cross
section.The Amperian loop is a concentric
circle that lies outside the wire.

i  

(   = 0) θ 

r 
Amperian 
loop Wire 

surface 

B 

ds 

All of the current is
encircled and thus all
is used in Ampere's law.

direction of integration. Assume that at the location of the element shown in
Fig. 29-11, the net magnetic field due to the three currents is . Because the wires
are perpendicular to the page, we know that the magnetic field at due to each
current is in the plane of Fig. 29-11; thus, their net magnetic field at must also
be in that plane. However, we do not know the orientation of within the plane.
In Fig. 29-11, is arbitrarily drawn at an angle u to the direction of .

The scalar product on the left side of Eq. 29-14 is equal to B cos u ds.
Thus,Ampere’s law can be written as

(29-15)

We can now interpret the scalar product as being the product of a length ds
of the Amperian loop and the field component B cos u tangent to the loop. Then
we can interpret the integration as being the summation of all such products
around the entire loop.

When we can actually perform this integration, we do not need to know the
direction of before integrating. Instead, we arbitrarily assume to be generally
in the direction of integration (as in Fig. 29-11). Then we use the following
curled–straight right-hand rule to assign a plus sign or a minus sign to each of the
currents that make up the net encircled current ienc:

B
:

B
:

B
:

! ds:

! B
:

! ds: ! ! B cos " ds ! #0ienc.

B
:

! ds:
ds:B

:
B
:

ds:B
:

ds:
B
:

ds:

Curl your right hand around the Amperian loop, with the fingers pointing in the
direction of integration. A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally in the opposite
direction is assigned a minus sign.

Finally, we solve Eq. 29-15 for the magnitude of . If B turns out positive, then
the direction we assumed for is correct. If it turns out negative, we neglect the
minus sign and redraw in the opposite direction.

In Fig. 29-12 we apply the curled–straight right-hand rule for Ampere’s law
to the situation of Fig. 29-11. With the indicated counterclockwise direction of
integration, the net current encircled by the loop is

ienc ! i1 $ i2.

(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as

(29-16)

You might wonder why, since current i3 contributes to the magnetic-field mag-
nitude B on the left side of Eq. 29-16, it is not needed on the right side.The answer
is that the contributions of current i3 to the magnetic field cancel out because the
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions
of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for
the situation of Fig. 29-11 we do not have enough information to simplify and solve
the integral.However,we do know the outcome of the integration; it must be equal to
m0(i1 $ i2), the value of which is set by the net current passing through the loop.

We shall now apply Ampere’s law to two situations in which symmetry does
allow us to simplify and solve the integral, hence to find the magnetic field.

Magnetic Field Outside a Long Straight Wire with Current
Figure 29-13 shows a long straight wire that carries current i directly out of the
page. Equation 29-4 tells us that the magnetic field produced by the current has
the same magnitude at all points that are the same distance r from the wire;
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Fig. 29-12 A right-hand rule for
Ampere’s law, to determine the signs for
currents encircled by an Amperian loop.
The situation is that of Fig. 29-11.

+i1 

–i2 
Direction of 
integration 

This is how to assign a
sign to a current used in
Ampere's law.

halliday_c29_764-790v2.qxd  3-12-2009  16:13  Page 772



Ampère’s Law and the Magnetic Field from a
Current Outside a wire

772 CHAPTE R 29 MAG N ETIC F I E LDS DU E TO CU R R E NTS

HALLIDAY REVISED

Fig. 29-13 Using Ampere’s law to find
the magnetic field that a current i produces
outside a long straight wire of circular cross
section.The Amperian loop is a concentric
circle that lies outside the wire.
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direction of integration. Assume that at the location of the element shown in
Fig. 29-11, the net magnetic field due to the three currents is . Because the wires
are perpendicular to the page, we know that the magnetic field at due to each
current is in the plane of Fig. 29-11; thus, their net magnetic field at must also
be in that plane. However, we do not know the orientation of within the plane.
In Fig. 29-11, is arbitrarily drawn at an angle u to the direction of .

The scalar product on the left side of Eq. 29-14 is equal to B cos u ds.
Thus,Ampere’s law can be written as

(29-15)

We can now interpret the scalar product as being the product of a length ds
of the Amperian loop and the field component B cos u tangent to the loop. Then
we can interpret the integration as being the summation of all such products
around the entire loop.

When we can actually perform this integration, we do not need to know the
direction of before integrating. Instead, we arbitrarily assume to be generally
in the direction of integration (as in Fig. 29-11). Then we use the following
curled–straight right-hand rule to assign a plus sign or a minus sign to each of the
currents that make up the net encircled current ienc:
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Curl your right hand around the Amperian loop, with the fingers pointing in the
direction of integration. A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally in the opposite
direction is assigned a minus sign.

Finally, we solve Eq. 29-15 for the magnitude of . If B turns out positive, then
the direction we assumed for is correct. If it turns out negative, we neglect the
minus sign and redraw in the opposite direction.

In Fig. 29-12 we apply the curled–straight right-hand rule for Ampere’s law
to the situation of Fig. 29-11. With the indicated counterclockwise direction of
integration, the net current encircled by the loop is

ienc ! i1 $ i2.

(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as
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is that the contributions of current i3 to the magnetic field cancel out because the
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions
of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for
the situation of Fig. 29-11 we do not have enough information to simplify and solve
the integral.However,we do know the outcome of the integration; it must be equal to
m0(i1 $ i2), the value of which is set by the net current passing through the loop.

We shall now apply Ampere’s law to two situations in which symmetry does
allow us to simplify and solve the integral, hence to find the magnetic field.
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Figure 29-13 shows a long straight wire that carries current i directly out of the
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Ampère’s Law:∮
B · ds = µ0Ienc

To find the B-field at a distance r from the wire’s center choose a
circular path of radius r .

By cylindrical symmetry, everywhere along the circle B · ds is
constant.

The magnetic field lines must form a closed loop ⇒ B · ds = B ds.
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section.The Amperian loop is a concentric
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direction of integration. Assume that at the location of the element shown in
Fig. 29-11, the net magnetic field due to the three currents is . Because the wires
are perpendicular to the page, we know that the magnetic field at due to each
current is in the plane of Fig. 29-11; thus, their net magnetic field at must also
be in that plane. However, we do not know the orientation of within the plane.
In Fig. 29-11, is arbitrarily drawn at an angle u to the direction of .

The scalar product on the left side of Eq. 29-14 is equal to B cos u ds.
Thus,Ampere’s law can be written as
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We can now interpret the scalar product as being the product of a length ds
of the Amperian loop and the field component B cos u tangent to the loop. Then
we can interpret the integration as being the summation of all such products
around the entire loop.

When we can actually perform this integration, we do not need to know the
direction of before integrating. Instead, we arbitrarily assume to be generally
in the direction of integration (as in Fig. 29-11). Then we use the following
curled–straight right-hand rule to assign a plus sign or a minus sign to each of the
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outstretched thumb is assigned a plus sign, and a current generally in the opposite
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Finally, we solve Eq. 29-15 for the magnitude of . If B turns out positive, then
the direction we assumed for is correct. If it turns out negative, we neglect the
minus sign and redraw in the opposite direction.

In Fig. 29-12 we apply the curled–straight right-hand rule for Ampere’s law
to the situation of Fig. 29-11. With the indicated counterclockwise direction of
integration, the net current encircled by the loop is
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(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as
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You might wonder why, since current i3 contributes to the magnetic-field mag-
nitude B on the left side of Eq. 29-16, it is not needed on the right side.The answer
is that the contributions of current i3 to the magnetic field cancel out because the
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions
of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for
the situation of Fig. 29-11 we do not have enough information to simplify and solve
the integral.However,we do know the outcome of the integration; it must be equal to
m0(i1 $ i2), the value of which is set by the net current passing through the loop.

We shall now apply Ampere’s law to two situations in which symmetry does
allow us to simplify and solve the integral, hence to find the magnetic field.

Magnetic Field Outside a Long Straight Wire with Current
Figure 29-13 shows a long straight wire that carries current i directly out of the
page. Equation 29-4 tells us that the magnetic field produced by the current has
the same magnitude at all points that are the same distance r from the wire;
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Ampère’s Law:∮
B · ds = µ0Ienc

To find the B-field at a distance r from the wire’s center choose a
circular path of radius r .

By cylindrical symmetry, everywhere along the circle B · ds is
constant.

The magnetic field lines must form a closed loop ⇒ B · ds = B ds.
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Fig. 29-13 Using Ampere’s law to find
the magnetic field that a current i produces
outside a long straight wire of circular cross
section.The Amperian loop is a concentric
circle that lies outside the wire.
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direction of integration. Assume that at the location of the element shown in
Fig. 29-11, the net magnetic field due to the three currents is . Because the wires
are perpendicular to the page, we know that the magnetic field at due to each
current is in the plane of Fig. 29-11; thus, their net magnetic field at must also
be in that plane. However, we do not know the orientation of within the plane.
In Fig. 29-11, is arbitrarily drawn at an angle u to the direction of .

The scalar product on the left side of Eq. 29-14 is equal to B cos u ds.
Thus,Ampere’s law can be written as

(29-15)

We can now interpret the scalar product as being the product of a length ds
of the Amperian loop and the field component B cos u tangent to the loop. Then
we can interpret the integration as being the summation of all such products
around the entire loop.

When we can actually perform this integration, we do not need to know the
direction of before integrating. Instead, we arbitrarily assume to be generally
in the direction of integration (as in Fig. 29-11). Then we use the following
curled–straight right-hand rule to assign a plus sign or a minus sign to each of the
currents that make up the net encircled current ienc:
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Curl your right hand around the Amperian loop, with the fingers pointing in the
direction of integration. A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally in the opposite
direction is assigned a minus sign.

Finally, we solve Eq. 29-15 for the magnitude of . If B turns out positive, then
the direction we assumed for is correct. If it turns out negative, we neglect the
minus sign and redraw in the opposite direction.

In Fig. 29-12 we apply the curled–straight right-hand rule for Ampere’s law
to the situation of Fig. 29-11. With the indicated counterclockwise direction of
integration, the net current encircled by the loop is

ienc ! i1 $ i2.

(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as

(29-16)

You might wonder why, since current i3 contributes to the magnetic-field mag-
nitude B on the left side of Eq. 29-16, it is not needed on the right side.The answer
is that the contributions of current i3 to the magnetic field cancel out because the
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions
of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for
the situation of Fig. 29-11 we do not have enough information to simplify and solve
the integral.However,we do know the outcome of the integration; it must be equal to
m0(i1 $ i2), the value of which is set by the net current passing through the loop.

We shall now apply Ampere’s law to two situations in which symmetry does
allow us to simplify and solve the integral, hence to find the magnetic field.

Magnetic Field Outside a Long Straight Wire with Current
Figure 29-13 shows a long straight wire that carries current i directly out of the
page. Equation 29-4 tells us that the magnetic field produced by the current has
the same magnitude at all points that are the same distance r from the wire;
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B

∮
ds = µ0Ienc

B(2πr) = µ0I

And again we get

B =
µ0I

2πr



Ampère’s Law and the Magnetic Field from a
Current Inside a wire

We can also use Ampère’s Law in another context, where using the
Biot-Savart Law is harder.
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that is, the field has cylindrical symmetry about the wire. We can take advan-
tage of that symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and
29-15) if we encircle the wire with a concentric circular Amperian loop of radius
r, as in Fig. 29-13. The magnetic field then has the same magnitude B at every
point on the loop. We shall integrate counterclockwise, so that has the direc-
tion shown in Fig. 29-13.

We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u ! cos 0° ! 1.The integral in Eq. 29-15 then becomes

Note that ! ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-13.The right
side of Ampere’s law becomes "m0 i, and we then have

B(2pr) ! m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-13.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-14 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-14, where now r # R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields

(29-18)

To find the right side of Ampere’s law, we note that because the current is
uniformly distributed, the current ienc encircled by the loop is proportional to the
area encircled by the loop; that is,

(29-19)

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.
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Fig. 29-14 Using Ampere’s law to find
the magnetic field that a current i produces
inside a long straight wire of circular cross
section.The current is uniformly distrib-
uted over the cross section of the wire and
emerges from the page.An Amperian loop
is drawn inside the wire.
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Now we place the Amperian loop inside the wire.

We still have
∮

B · ds = 2πrB, but now the current that flows
through the loop is reduced.
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that is, the field has cylindrical symmetry about the wire. We can take advan-
tage of that symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and
29-15) if we encircle the wire with a concentric circular Amperian loop of radius
r, as in Fig. 29-13. The magnetic field then has the same magnitude B at every
point on the loop. We shall integrate counterclockwise, so that has the direc-
tion shown in Fig. 29-13.

We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u ! cos 0° ! 1.The integral in Eq. 29-15 then becomes

Note that ! ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-13.The right
side of Ampere’s law becomes "m0 i, and we then have

B(2pr) ! m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-13.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-14 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-14, where now r # R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields
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To find the right side of Ampere’s law, we note that because the current is
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area encircled by the loop; that is,
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Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us
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Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.
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Ampére’s Law∮
B · ds = 2πrB = µ0

r2

R2
I

So,

B =
µ0I r

2πR2
=

µ0I

2πR

( r

R

)



Ampère’s Law and the Magnetic Field from a
Current Inside a wire

We still have
∮

B · ds = 2πrB, but now the current that flow
through the loop is reduced.

77329-4 AM PE R E’S LAW
PART 3

HALLIDAY REVISED

that is, the field has cylindrical symmetry about the wire. We can take advan-
tage of that symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and
29-15) if we encircle the wire with a concentric circular Amperian loop of radius
r, as in Fig. 29-13. The magnetic field then has the same magnitude B at every
point on the loop. We shall integrate counterclockwise, so that has the direc-
tion shown in Fig. 29-13.

We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u ! cos 0° ! 1.The integral in Eq. 29-15 then becomes

Note that ! ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-13.The right
side of Ampere’s law becomes "m0 i, and we then have

B(2pr) ! m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-13.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-14 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-14, where now r # R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields
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To find the right side of Ampere’s law, we note that because the current is
uniformly distributed, the current ienc encircled by the loop is proportional to the
area encircled by the loop; that is,
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Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.
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Ampère’s Law

For constant currents (magnetostatics):∮
B · ds = µ0Ienc

The line integral of the magnetic field around a closed loop is
proportional to the current that flows through the loop.

Later we will extend this law to deal with the situation where the
fields / currents are changing.



Solenoids

solenoid

A helical coil of tightly wound wire that can carry a current.
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Additional examples, video, and practice available at WileyPLUS

Sample Problem

Note that in these steps we took the differential area dA to
be the area of the thin ring in Figs. 29-15d–f and then re-
placed it with its equivalent, the product of the ring’s cir-
cumference 2pr and its thickness dr.

For the Amperian loop, the direction of integration indi-
cated in Fig. 29-15b is (arbitrarily) clockwise. Applying the
right-hand rule for Ampere’s law to that loop, we find that we
should take ienc as negative because the current is directed out
of the page but our thumb is directed into the page.

We next evaluate the left side of Ampere’s law 
exactly as we did in Fig. 29-14, and we again obtain 
Eq. 29-18.Then Ampere’s law,

gives us

Solving for B and substituting known data yield

Thus, the magnetic field at a point 3.0 cm from the central
axis has magnitude

B ! 2.0 " 10#5 T (Answer)

and forms magnetic field lines that are directed opposite
our direction of integration, hence counterclockwise in
Fig. 29-15b.

B
:

 ! #2.0 " 10#5 T.

  " [(0.030 m)4 # (0.020 m)4]

 ! #
(4$ " 10 #7 T %m/A)(3.0 " 10 6 A/m4)

4(0.030 m)

  B ! #
&0 c
4r

 (r4 # a4)

B(2$r) ! #
& 0$c

2
 (r 4 # a 4).

! B
:

! ds: ! & 0 ienc ,

Ampere’s law to find the field inside a long cylinder of current

Figure 29-15a shows the cross section of a long conducting
cylinder with inner radius a ! 2.0 cm and outer radius 
b ! 4.0 cm. The cylinder carries a current out of the page,
and the magnitude of the current density in the cross sec-
tion is given by J ! cr2, with c ! 3.0 " 10 6 A/m4 and r in
meters. What is the magnetic field at the dot in Fig.
29-15a, which is at radius r ! 3.0 cm from the central axis
of the cylinder?

The point at which we want to evaluate is inside the mate-
rial of the conducting cylinder, between its inner and outer
radii. We note that the current distribution has cylindrical
symmetry (it is the same all around the cross section for any
given radius). Thus, the symmetry allows us to use Ampere’s
law to find at the point. We first draw the Amperian loop
shown in Fig. 29-15b. The loop is concentric with the cylin-
der and has radius r ! 3.0 cm because we want to evaluate

at that distance from the cylinder’s central axis.
Next, we must compute the current ienc that is encircled

by the Amperian loop. However, we cannot set up a propor-
tionality as in Eq. 29-19, because here the current is not uni-
formly distributed. Instead, we must integrate the current
density magnitude from the cylinder’s inner radius a to the
loop radius r , using the steps shown in Figs. 29-15c through h.

Calculations: We write the integral as

 !
$c(r 4 # a4)

2
.

 ! 2$c "r

a
  r 3 dr ! 2$c # r 4

4 $
a

r

  ienc ! "  
J dA ! "r

a
  cr 2(2$r dr)

B
:

B
:

B
:

B
:

KEY I DEAS

29-5 Solenoids and Toroids
Magnetic Field of a Solenoid
We now turn our attention to another situation in which Ampere’s law proves
useful. It concerns the magnetic field produced by the current in a long, tightly
wound helical coil of wire. Such a coil is called a solenoid (Fig. 29-16). We assume
that the length of the solenoid is much greater than the diameter.

Figure 29-17 shows a section through a portion of a “stretched-out” solenoid.
The solenoid’s magnetic field is the vector sum of the fields produced by the indi-Fig. 29-16 A solenoid carrying current i.

i

i
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turn

A single complete loop of wire in a solenoid. “This solenoid has 10
turns,” means it has 10 complete loops.



Magnetic Field inside and around a solenoid
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Fig. 29-15 (a) – (b) To find the magnetic field at a point within this conducting cylinder, we use a con-
centric Amperian loop through the point.We then need the current encircled by the loop. (c) – (h)
Because the current density is nonuniform, we start with a thin ring and then sum (via integration) the
currents in all such rings in the encircled area.

A

Fig. 29-17 A vertical cross section through the central axis of a
“stretched-out” solenoid.The back portions of five turns are shown, as are
the magnetic field lines due to a current through the solenoid. Each turn pro-
duces circular magnetic field lines near itself. Near the solenoid’s axis, the
field lines combine into a net magnetic field that is directed along the axis.
The closely spaced field lines there indicate a strong magnetic field. Outside
the solenoid the field lines are widely spaced; the field there is very weak.

P

Amperian
loop

r
a

r

b

(a) (b) (c) (d)

We want the
magnetic field at
the dot at radius r.

We start with a ring
that is so thin that
we can approximate
the current density as
being uniform within it.

a

(g)

Our job is to sum
the currents in all
rings from this
smallest one ...

(h)

r

... to this largest
one, which has the
same radius as the
Amperian loop.

(e)

dr

Its area dA is the
product of the ring's
circumference
and the width dr.

( f )

dA

The current within the
ring is the product of
the current density J
and the ring's area dA.

So, we put a concentric
Amperian loop through
the dot.

We need to find the
current in the area
encircled by the loop.
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Each turn of wire locally has a circular magnetic field around it.
The fields from all the wires add together to create very dense field
lines inside the solenoid.



Magnetic Field of a solenoid
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Fig. 29-19 Application of Ampere’s law to a section of a long ideal solenoid carrying
a current i.The Amperian loop is the rectangle abcda.

a b

d c
h

i

B

vidual turns (windings) that make up the solenoid. For points very close to a turn,
the wire behaves magnetically almost like a long straight wire, and the lines of 
there are almost concentric circles. Figure 29-17 suggests that the field tends to
cancel between adjacent turns. It also suggests that, at points inside the solenoid
and reasonably far from the wire, is approximately parallel to the (central)
solenoid axis. In the limiting case of an ideal solenoid, which is infinitely long
and consists of tightly packed (close-packed) turns of square wire, the field inside
the coil is uniform and parallel to the solenoid axis.

At points above the solenoid, such as P in Fig. 29-17, the magnetic field set
up by the upper parts of the solenoid turns (these upper turns are marked !)
is directed to the left (as drawn near P) and tends to cancel the field set up at P
by the lower parts of the turns (these lower turns are marked "), which is di-
rected to the right (not drawn). In the limiting case of an ideal solenoid, the
magnetic field outside the solenoid is zero. Taking the external field to be zero
is an excellent assumption for a real solenoid if its length is much greater than
its diameter and if we consider external points such as point P that are not at
either end of the solenoid. The direction of the magnetic field along the sole-
noid axis is given by a curled – straight right-hand rule: Grasp the solenoid with
your right hand so that your fingers follow the direction of the current in the
windings; your extended right thumb then points in the direction of the axial
magnetic field.

Figure 29-18 shows the lines of for a real solenoid.The spacing of these lines
in the central region shows that the field inside the coil is fairly strong and uniform
over the cross section of the coil.The external field, however, is relatively weak.

Let us now apply Ampere’s law,

(29-21)

to the ideal solenoid of Fig. 29-19, where is uniform within the solenoid and
zero outside it, using the rectangular Amperian loop abcda. We write as! B

:
! ds:

B
:

" B
:

! ds: ! " 0 ienc ,

B
:

B
:

B
:

Fig. 29-18 Magnetic field lines for a real solenoid of finite length.The field is strong
and uniform at interior points such as P1 but relatively weak at external points such as P2.

P2

P1
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The wires on opposite sides (top and bottom in the picture) have
currents in opposite directions. The fields add up between them,
but cancel out outside of them.



Magnetic Field of an ideal solenoid
In an ideal solenoid (with infinite length) the field outside is small
(and perpendicular to the Amp. loop) and inside is uniform.
(Similar to a capacitor!)

Can use an Amperian loop to find the B-field inside:
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Fig. 29-19 Application of Ampere’s law to a section of a long ideal solenoid carrying
a current i.The Amperian loop is the rectangle abcda.

a b

d c
h

i

B

vidual turns (windings) that make up the solenoid. For points very close to a turn,
the wire behaves magnetically almost like a long straight wire, and the lines of 
there are almost concentric circles. Figure 29-17 suggests that the field tends to
cancel between adjacent turns. It also suggests that, at points inside the solenoid
and reasonably far from the wire, is approximately parallel to the (central)
solenoid axis. In the limiting case of an ideal solenoid, which is infinitely long
and consists of tightly packed (close-packed) turns of square wire, the field inside
the coil is uniform and parallel to the solenoid axis.

At points above the solenoid, such as P in Fig. 29-17, the magnetic field set
up by the upper parts of the solenoid turns (these upper turns are marked !)
is directed to the left (as drawn near P) and tends to cancel the field set up at P
by the lower parts of the turns (these lower turns are marked "), which is di-
rected to the right (not drawn). In the limiting case of an ideal solenoid, the
magnetic field outside the solenoid is zero. Taking the external field to be zero
is an excellent assumption for a real solenoid if its length is much greater than
its diameter and if we consider external points such as point P that are not at
either end of the solenoid. The direction of the magnetic field along the sole-
noid axis is given by a curled – straight right-hand rule: Grasp the solenoid with
your right hand so that your fingers follow the direction of the current in the
windings; your extended right thumb then points in the direction of the axial
magnetic field.

Figure 29-18 shows the lines of for a real solenoid.The spacing of these lines
in the central region shows that the field inside the coil is fairly strong and uniform
over the cross section of the coil.The external field, however, is relatively weak.

Let us now apply Ampere’s law,

(29-21)

to the ideal solenoid of Fig. 29-19, where is uniform within the solenoid and
zero outside it, using the rectangular Amperian loop abcda. We write as! B

:
! ds:

B
:

" B
:

! ds: ! " 0 ienc ,

B
:

B
:

B
:

Fig. 29-18 Magnetic field lines for a real solenoid of finite length.The field is strong
and uniform at interior points such as P1 but relatively weak at external points such as P2.

P2

P1
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∮
B · ds = µ0Ienc

Here, suppose there are n turns per unit length in the solenoid,
then Ienc = Inh

Bh = µ0Inh

Inside an ideal solenoid:

B = µ0In



Magnetic Field of an ideal solenoid
In an ideal solenoid (with infinite length) the field outside is small
(and perpendicular to the Amp. loop) and inside is uniform.
(Similar to a capacitor!)

Can use an Amperian loop to find the B-field inside:
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Fig. 29-19 Application of Ampere’s law to a section of a long ideal solenoid carrying
a current i.The Amperian loop is the rectangle abcda.

a b

d c
h

i

B

vidual turns (windings) that make up the solenoid. For points very close to a turn,
the wire behaves magnetically almost like a long straight wire, and the lines of 
there are almost concentric circles. Figure 29-17 suggests that the field tends to
cancel between adjacent turns. It also suggests that, at points inside the solenoid
and reasonably far from the wire, is approximately parallel to the (central)
solenoid axis. In the limiting case of an ideal solenoid, which is infinitely long
and consists of tightly packed (close-packed) turns of square wire, the field inside
the coil is uniform and parallel to the solenoid axis.

At points above the solenoid, such as P in Fig. 29-17, the magnetic field set
up by the upper parts of the solenoid turns (these upper turns are marked !)
is directed to the left (as drawn near P) and tends to cancel the field set up at P
by the lower parts of the turns (these lower turns are marked "), which is di-
rected to the right (not drawn). In the limiting case of an ideal solenoid, the
magnetic field outside the solenoid is zero. Taking the external field to be zero
is an excellent assumption for a real solenoid if its length is much greater than
its diameter and if we consider external points such as point P that are not at
either end of the solenoid. The direction of the magnetic field along the sole-
noid axis is given by a curled – straight right-hand rule: Grasp the solenoid with
your right hand so that your fingers follow the direction of the current in the
windings; your extended right thumb then points in the direction of the axial
magnetic field.

Figure 29-18 shows the lines of for a real solenoid.The spacing of these lines
in the central region shows that the field inside the coil is fairly strong and uniform
over the cross section of the coil.The external field, however, is relatively weak.

Let us now apply Ampere’s law,

(29-21)

to the ideal solenoid of Fig. 29-19, where is uniform within the solenoid and
zero outside it, using the rectangular Amperian loop abcda. We write as! B

:
! ds:

B
:

" B
:

! ds: ! " 0 ienc ,

B
:

B
:

B
:

Fig. 29-18 Magnetic field lines for a real solenoid of finite length.The field is strong
and uniform at interior points such as P1 but relatively weak at external points such as P2.

P2

P1
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∮
B · ds = µ0Ienc

Here, suppose there are n turns per unit length in the solenoid,
then Ienc = Inh

Bh = µ0Inh

Inside an ideal solenoid:

B = µ0In



Toroids

A toroid is a solenoid wrapped into a torus (donut) shape.
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the sum of four integrals, one for each loop segment:

(29-22)

The first integral on the right of Eq. 29-22 is Bh, where B is the magnitude of
the uniform field inside the solenoid and h is the (arbitrary) length of the
segment from a to b. The second and fourth integrals are zero because for every
element ds of these segments, either is perpendicular to ds or is zero, and thus
the product is zero. The third integral, which is taken along a segment that
lies outside the solenoid, is zero because B ! 0 at all external points. Thus,

for the entire rectangular loop has the value Bh.
The net current ienc encircled by the rectangular Amperian loop in Fig. 29-19

is not the same as the current i in the solenoid windings because the windings
pass more than once through this loop. Let n be the number of turns per unit
length of the solenoid; then the loop encloses nh turns and

ienc ! i(nh).

Ampere’s law then gives us

Bh ! m0inh

or B ! m0in (ideal solenoid). (29-23)

Although we derived Eq. 29-23 for an infinitely long ideal solenoid, it
holds quite well for actual solenoids if we apply it only at interior points and
well away from the solenoid ends. Equation 29-23 is consistent with the ex-
perimental fact that the magnetic field magnitude B within a solenoid does
not depend on the diameter or the length of the solenoid and that B is uni-
form over the solenoidal cross section. A solenoid thus provides a practical
way to set up a known uniform magnetic field for experimentation, just as a
parallel-plate capacitor provides a practical way to set up a known uniform
electric field.

Magnetic Field of a Toroid
Figure 29-20a shows a toroid, which we may describe as a (hollow) solenoid that
has been curved until its two ends meet, forming a sort of hollow bracelet. What
magnetic field is set up inside the toroid (inside the hollow of the bracelet)? We
can find out from Ampere’s law and the symmetry of the bracelet.

From the symmetry, we see that the lines of form concentric circles inside
the toroid, directed as shown in Fig. 29-20b. Let us choose a concentric circle of

B
:

B
:

! B
:

! ds:

B
:

! ds:
B
:

B
:

" "d

c
 B

:
! ds: " "a

d
 B

:
! ds:. # B

:
! ds: ! "b

a
 B

:
! ds: " "c

b
 B

:
! ds:

Amperian loop

r

i

(b)
B

Fig. 29-20 (a) A toroid carrying a current i. (b) A
horizontal cross section of the toroid.The interior
magnetic field (inside the bracelet-shaped tube) can be
found by applying Ampere’s law with the Amperian
loop shown.

i

(a)
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The two ends of the solenoid are wrapped around an attached to
each other.



Magnetic Field in a Toroid

Cross section through a toroid:
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the sum of four integrals, one for each loop segment:

(29-22)

The first integral on the right of Eq. 29-22 is Bh, where B is the magnitude of
the uniform field inside the solenoid and h is the (arbitrary) length of the
segment from a to b. The second and fourth integrals are zero because for every
element ds of these segments, either is perpendicular to ds or is zero, and thus
the product is zero. The third integral, which is taken along a segment that
lies outside the solenoid, is zero because B ! 0 at all external points. Thus,

for the entire rectangular loop has the value Bh.
The net current ienc encircled by the rectangular Amperian loop in Fig. 29-19

is not the same as the current i in the solenoid windings because the windings
pass more than once through this loop. Let n be the number of turns per unit
length of the solenoid; then the loop encloses nh turns and

ienc ! i(nh).

Ampere’s law then gives us

Bh ! m0inh

or B ! m0in (ideal solenoid). (29-23)

Although we derived Eq. 29-23 for an infinitely long ideal solenoid, it
holds quite well for actual solenoids if we apply it only at interior points and
well away from the solenoid ends. Equation 29-23 is consistent with the ex-
perimental fact that the magnetic field magnitude B within a solenoid does
not depend on the diameter or the length of the solenoid and that B is uni-
form over the solenoidal cross section. A solenoid thus provides a practical
way to set up a known uniform magnetic field for experimentation, just as a
parallel-plate capacitor provides a practical way to set up a known uniform
electric field.

Magnetic Field of a Toroid
Figure 29-20a shows a toroid, which we may describe as a (hollow) solenoid that
has been curved until its two ends meet, forming a sort of hollow bracelet. What
magnetic field is set up inside the toroid (inside the hollow of the bracelet)? We
can find out from Ampere’s law and the symmetry of the bracelet.

From the symmetry, we see that the lines of form concentric circles inside
the toroid, directed as shown in Fig. 29-20b. Let us choose a concentric circle of

B
:

B
:

! B
:

! ds:

B
:

! ds:
B
:

B
:

" "d

c
 B

:
! ds: " "a

d
 B

:
! ds:. # B

:
! ds: ! "b

a
 B

:
! ds: " "c

b
 B

:
! ds:

Amperian loop

r

i

(b)
B

Fig. 29-20 (a) A toroid carrying a current i. (b) A
horizontal cross section of the toroid.The interior
magnetic field (inside the bracelet-shaped tube) can be
found by applying Ampere’s law with the Amperian
loop shown.

i

(a)
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We can use the Amperian loop shown to find the field inside the
toroid’s loop.



Magnetic Field in a Toroid

Suppose the toroid has N turns.
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the sum of four integrals, one for each loop segment:

(29-22)

The first integral on the right of Eq. 29-22 is Bh, where B is the magnitude of
the uniform field inside the solenoid and h is the (arbitrary) length of the
segment from a to b. The second and fourth integrals are zero because for every
element ds of these segments, either is perpendicular to ds or is zero, and thus
the product is zero. The third integral, which is taken along a segment that
lies outside the solenoid, is zero because B ! 0 at all external points. Thus,

for the entire rectangular loop has the value Bh.
The net current ienc encircled by the rectangular Amperian loop in Fig. 29-19

is not the same as the current i in the solenoid windings because the windings
pass more than once through this loop. Let n be the number of turns per unit
length of the solenoid; then the loop encloses nh turns and

ienc ! i(nh).

Ampere’s law then gives us

Bh ! m0inh

or B ! m0in (ideal solenoid). (29-23)

Although we derived Eq. 29-23 for an infinitely long ideal solenoid, it
holds quite well for actual solenoids if we apply it only at interior points and
well away from the solenoid ends. Equation 29-23 is consistent with the ex-
perimental fact that the magnetic field magnitude B within a solenoid does
not depend on the diameter or the length of the solenoid and that B is uni-
form over the solenoidal cross section. A solenoid thus provides a practical
way to set up a known uniform magnetic field for experimentation, just as a
parallel-plate capacitor provides a practical way to set up a known uniform
electric field.

Magnetic Field of a Toroid
Figure 29-20a shows a toroid, which we may describe as a (hollow) solenoid that
has been curved until its two ends meet, forming a sort of hollow bracelet. What
magnetic field is set up inside the toroid (inside the hollow of the bracelet)? We
can find out from Ampere’s law and the symmetry of the bracelet.

From the symmetry, we see that the lines of form concentric circles inside
the toroid, directed as shown in Fig. 29-20b. Let us choose a concentric circle of

B
:

B
:

! B
:

! ds:

B
:

! ds:
B
:

B
:

" "d

c
 B

:
! ds: " "a

d
 B

:
! ds:. # B

:
! ds: ! "b

a
 B

:
! ds: " "c

b
 B

:
! ds:

Amperian loop

r

i

(b)
B

Fig. 29-20 (a) A toroid carrying a current i. (b) A
horizontal cross section of the toroid.The interior
magnetic field (inside the bracelet-shaped tube) can be
found by applying Ampere’s law with the Amperian
loop shown.

i

(a)
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∮
B · ds = µ0Ienc

B(2πr) = µ0NI

Inside a toroid: s

B =
µ0IN

2πr

This is not independent of the radius! The field is stronger closer
to the inside: it is not uniform.



Summary

• Forces on parallel wires

• Gauss’s Law for magnetism

• Ampère’s Law

• Solenoids

3rd Test Friday, Mar 9.

Homework
• Collected homework 3, posted online, due on Monday, Mar 5.

Serway & Jewett:

• PREVIOUS: Ch 30, Problems: 3, 5, 9, 13, 19

• NEW: Ch 30, Problems: 21, 25, 31, 33, 34, 47


