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Last time

• Gauss’s Law for magnetic fields

• Ampère’s Law

• magnetic field around a straight wire

• solenoids



Overview

• magnetic field inside a solenoid

• forces between current-carrying wires



Solenoids

solenoid

A helical coil of tightly wound wire that can carry a current.
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Additional examples, video, and practice available at WileyPLUS

Sample Problem

Note that in these steps we took the differential area dA to
be the area of the thin ring in Figs. 29-15d–f and then re-
placed it with its equivalent, the product of the ring’s cir-
cumference 2pr and its thickness dr.

For the Amperian loop, the direction of integration indi-
cated in Fig. 29-15b is (arbitrarily) clockwise. Applying the
right-hand rule for Ampere’s law to that loop, we find that we
should take ienc as negative because the current is directed out
of the page but our thumb is directed into the page.

We next evaluate the left side of Ampere’s law 
exactly as we did in Fig. 29-14, and we again obtain 
Eq. 29-18.Then Ampere’s law,

gives us

Solving for B and substituting known data yield

Thus, the magnetic field at a point 3.0 cm from the central
axis has magnitude

B ! 2.0 " 10#5 T (Answer)

and forms magnetic field lines that are directed opposite
our direction of integration, hence counterclockwise in
Fig. 29-15b.

B
:
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! B
:

! ds: ! & 0 ienc ,

Ampere’s law to find the field inside a long cylinder of current

Figure 29-15a shows the cross section of a long conducting
cylinder with inner radius a ! 2.0 cm and outer radius 
b ! 4.0 cm. The cylinder carries a current out of the page,
and the magnitude of the current density in the cross sec-
tion is given by J ! cr2, with c ! 3.0 " 10 6 A/m4 and r in
meters. What is the magnetic field at the dot in Fig.
29-15a, which is at radius r ! 3.0 cm from the central axis
of the cylinder?

The point at which we want to evaluate is inside the mate-
rial of the conducting cylinder, between its inner and outer
radii. We note that the current distribution has cylindrical
symmetry (it is the same all around the cross section for any
given radius). Thus, the symmetry allows us to use Ampere’s
law to find at the point. We first draw the Amperian loop
shown in Fig. 29-15b. The loop is concentric with the cylin-
der and has radius r ! 3.0 cm because we want to evaluate

at that distance from the cylinder’s central axis.
Next, we must compute the current ienc that is encircled

by the Amperian loop. However, we cannot set up a propor-
tionality as in Eq. 29-19, because here the current is not uni-
formly distributed. Instead, we must integrate the current
density magnitude from the cylinder’s inner radius a to the
loop radius r , using the steps shown in Figs. 29-15c through h.

Calculations: We write the integral as

 !
$c(r 4 # a4)

2
.

 ! 2$c "r

a
  r 3 dr ! 2$c # r 4

4 $
a

r

  ienc ! "  
J dA ! "r

a
  cr 2(2$r dr)
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B
:

B
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B
:

KEY I DEAS

29-5 Solenoids and Toroids
Magnetic Field of a Solenoid
We now turn our attention to another situation in which Ampere’s law proves
useful. It concerns the magnetic field produced by the current in a long, tightly
wound helical coil of wire. Such a coil is called a solenoid (Fig. 29-16). We assume
that the length of the solenoid is much greater than the diameter.

Figure 29-17 shows a section through a portion of a “stretched-out” solenoid.
The solenoid’s magnetic field is the vector sum of the fields produced by the indi-Fig. 29-16 A solenoid carrying current i.

i

i
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turn

A single complete loop of wire in a solenoid. “This solenoid has 10
turns,” means it has 10 complete loops.



Magnetic Field of an ideal solenoid
In an ideal solenoid (with infinite length) the field outside is small
(and perpendicular to the Amp. loop) and inside is uniform.
(Similar to a capacitor!)

Can use an Amperian loop to find the B-field inside:
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Fig. 29-19 Application of Ampere’s law to a section of a long ideal solenoid carrying
a current i.The Amperian loop is the rectangle abcda.

a b

d c
h

i

B

vidual turns (windings) that make up the solenoid. For points very close to a turn,
the wire behaves magnetically almost like a long straight wire, and the lines of 
there are almost concentric circles. Figure 29-17 suggests that the field tends to
cancel between adjacent turns. It also suggests that, at points inside the solenoid
and reasonably far from the wire, is approximately parallel to the (central)
solenoid axis. In the limiting case of an ideal solenoid, which is infinitely long
and consists of tightly packed (close-packed) turns of square wire, the field inside
the coil is uniform and parallel to the solenoid axis.

At points above the solenoid, such as P in Fig. 29-17, the magnetic field set
up by the upper parts of the solenoid turns (these upper turns are marked !)
is directed to the left (as drawn near P) and tends to cancel the field set up at P
by the lower parts of the turns (these lower turns are marked "), which is di-
rected to the right (not drawn). In the limiting case of an ideal solenoid, the
magnetic field outside the solenoid is zero. Taking the external field to be zero
is an excellent assumption for a real solenoid if its length is much greater than
its diameter and if we consider external points such as point P that are not at
either end of the solenoid. The direction of the magnetic field along the sole-
noid axis is given by a curled – straight right-hand rule: Grasp the solenoid with
your right hand so that your fingers follow the direction of the current in the
windings; your extended right thumb then points in the direction of the axial
magnetic field.

Figure 29-18 shows the lines of for a real solenoid.The spacing of these lines
in the central region shows that the field inside the coil is fairly strong and uniform
over the cross section of the coil.The external field, however, is relatively weak.

Let us now apply Ampere’s law,

(29-21)

to the ideal solenoid of Fig. 29-19, where is uniform within the solenoid and
zero outside it, using the rectangular Amperian loop abcda. We write as! B

:
! ds:

B
:

" B
:

! ds: ! " 0 ienc ,

B
:

B
:

B
:

Fig. 29-18 Magnetic field lines for a real solenoid of finite length.The field is strong
and uniform at interior points such as P1 but relatively weak at external points such as P2.

P2

P1
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∮
B · ds = µ0Ienc

Here, suppose there are n turns per unit length in the solenoid,
then Ienc = Inh

Bh = µ0Inh

Inside an ideal solenoid:

B = µ0In



Magnetic Field of an ideal solenoid
In an ideal solenoid (with infinite length) the field outside is small
(and perpendicular to the Amp. loop) and inside is uniform.
(Similar to a capacitor!)

Can use an Amperian loop to find the B-field inside:
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to the ideal solenoid of Fig. 29-19, where is uniform within the solenoid and
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Fig. 29-18 Magnetic field lines for a real solenoid of finite length.The field is strong
and uniform at interior points such as P1 but relatively weak at external points such as P2.
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∮
B · ds = µ0Ienc

Here, suppose there are n turns per unit length in the solenoid,
then Ienc = Inh

Bh = µ0Inh

Inside an ideal solenoid:

B = µ0In



Two Wires carrying Current

With two long, straight current carrying wires, each creates its own
magnetic field:

B =
µ0I

2πa

The result is that the wires interact, much like two bar magnets
producing magnetic fields would.



Forces on parallel wires

Currents in opposite directions repel, currents in the same direction
attract.

1Figure from salisbury.edu.



Forces on parallel wires

1Figure from Stonebrook Physics ic.sunysb.edu.



Forces on parallel wires

To find the magnitude of the force, we need to recall how force
relates to the magnetic field for a wire.

The force on a long, straight current carrying wire is:

F = IL× B



Forces on parallel wires
Suppose that wire a produces a field at b: Ba =

µ0Ia
2πd
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29-3 Force Between Two Parallel Currents
Two long parallel wires carrying currents exert forces on each other. Figure 29-9
shows two such wires, separated by a distance d and carrying currents ia and ib.
Let us analyze the forces on these wires due to each other.

We seek first the force on wire b in Fig. 29-9 due to the current in wire a.That
current produces a magnetic field and it is this magnetic field that actually
causes the force we seek. To find the force, then, we need the magnitude and 
direction of the field at the site of wire b. The magnitude of at every point of
wire b is, from Eq. 29-4,

(29-11)

The curled–straight right-hand rule tells us that the direction of at wire b is
down, as Fig. 29-9 shows.

Now that we have the field, we can find the force it produces on wire b.
Equation 28-26 tells us that the force on a length L of wire b due to the exter-
nal magnetic field is

(29-12)

where is the length vector of the wire. In Fig. 29-9, vectors and are perpen-
dicular to each other, and so with Eq. 29-11, we can write

(29-13)

The direction of is the direction of the cross product Applying
the right-hand rule for cross products to and in Fig. 29-9, we see that is di-
rectly toward wire a, as shown.

The general procedure for finding the force on a current-carrying wire is this:

F
:

baB
:

aL
:

L
:

! B
:

a.F
:

ba

Fba ! ibLBa sin 90" !
#0Liaib

2$d
.

B
:

aL
:

L
:

F
:

ba ! ibL
:

! B
:

a,

B
:

a

F
:

ba

B
:

a

Ba !
#0 ia

2$d
.

B
:

aB
:

a

B
:

a,

To find the force on a current-carrying wire due to a second current-carrying wire,
first find the field due to the second wire at the site of the first wire.Then find the force
on the first wire due to that field.

Parallel currents attract each other, and antiparallel currents repel each other.

We could now use this procedure to compute the force on wire a due to the
current in wire b. We would find that the force is directly toward wire b; hence,
the two wires with parallel currents attract each other. Similarly, if the two cur-
rents were antiparallel, we could show that the two wires repel each other. Thus,

Fig. 29-9 Two parallel wires carrying
currents in the same direction attract each
other. is the magnetic field at wire b pro-
duced by the current in wire a. is the re-
sulting force acting on wire b because it
carries current in .B

:
a

F
:

ba

B
:

a

Fig. 29-10 (a) A rail gun, as a current i
is set up in it.The current rapidly causes the
conducting fuse to vaporize. (b) The cur-
rent produces a magnetic field between
the rails, and the field causes a force to
act on the conducting gas, which is part of
the current path.The gas propels the pro-
jectile along the rails, launching it.

F
:

B
:

Projectile 

Conducting fuse 

Conducting rail 

i 

i 

Conducting
gas 

(a) 

(b) 

i 

i i B 

F 

ia 

ib 

d 
a 

b 

L 

Fba 

Ba (due to ia ) 

L 

The field due to a
at the position of b
creates a force on b.

The force acting between currents in parallel wires is the basis for the defini-
tion of the ampere, which is one of the seven SI base units. The definition,
adopted in 1946, is this: The ampere is that constant current which, if maintained
in two straight, parallel conductors of infinite length, of negligible circular cross
section, and placed 1 m apart in vacuum, would produce on each of these con-
ductors a force of magnitude 2 % 10&7 newton per meter of wire length.

Rail Gun
One application of the physics of Eq. 29-13 is a rail gun. In this device, a magnetic
force accelerates a projectile to a high speed in a short time. The basics of a rail
gun are shown in Fig. 29-10a. A large current is sent out along one of two parallel
conducting rails, across a conducting “fuse” (such as a narrow piece of copper)
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The force on wire b is:

Fb = IbL× Ba = IbL
µ0Ia
2πd

sin(90◦) [toward a]

FB =
µ0IaIb

2πd
L



Forces on parallel wires

It is a bit more intuitive to think about the force per unit length on
the wires (since longer wires will experience larger forces).

The force per unit length on a wire due to another parallel wire at
a distance d :

FB
L

=
µ0I1I2

2πd



Question

The figure here shows three long, straight, parallel, equally spaced
wires with identical currents either into or out of the page. Rank
the wires according to the magnitude of the force on each due to
the currents in the other two wires, greatest first.

between the rails, and then back to the current source along the second rail. The
projectile to be fired lies on the far side of the fuse and fits loosely between the
rails. Immediately after the current begins, the fuse element melts and vaporizes,
creating a conducting gas between the rails where the fuse had been.

The curled–straight right-hand rule of Fig. 29-4 reveals that the currents in
the rails of Fig. 29-10a produce magnetic fields that are directed downward
between the rails. The net magnetic field exerts a force on the gas due to the
current i through the gas (Fig. 29-10b). With Eq. 29-12 and the right-hand rule
for cross products, we find that points outward along the rails. As the gas is
forced outward along the rails, it pushes the projectile, accelerating it by as much
as 5 ! 106g, and then launches it with a speed of 10 km/s, all within 1 ms. Some-
day rail guns may be used to launch materials into space from mining operations
on the Moon or an asteroid.

F
:

F
:

B
:

CHECKPOINT 1

The figure here shows three long, straight, parallel, equally spaced wires with identical
currents either into or out of the page. Rank the wires according to the magnitude of
the force on each due to the currents in the other two wires, greatest first.

a b c

29-4 Ampere’s Law
We can find the net electric field due to any distribution of charges by first writing
the differential electric field due to a charge element and then summing the
contributions of from all the elements. However, if the distribution is compli-
cated, we may have to use a computer. Recall, however, that if the distribution
has planar, cylindrical, or spherical symmetry, we can apply Gauss’ law to find the
net electric field with considerably less effort.

Similarly, we can find the net magnetic field due to any distribution of currents
by first writing the differential magnetic field (Eq. 29-3) due to a current-length
element and then summing the contributions of from all the elements.Again we
may have to use a computer for a complicated distribution. However, if the distrib-
ution has some symmetry, we may be able to apply Ampere’s law to find the mag-
netic field with considerably less effort. This law, which can be derived from the
Biot–Savart law, has traditionally been credited to André-Marie Ampère
(1775–1836), for whom the SI unit of current is named. However, the law actually
was advanced by English physicist James Clerk Maxwell.

Ampere’s law is

(Ampere’s law). (29-14)

The loop on the integral sign means that the scalar (dot) product is to be
integrated around a closed loop, called an Amperian loop. The current ienc is the
net current encircled by that closed loop.

To see the meaning of the scalar product and its integral, let us first
apply Ampere’s law to the general situation of Fig. 29-11. The figure shows cross
sections of three long straight wires that carry currents i1, i2, and i3 either directly
into or directly out of the page. An arbitrary Amperian loop lying in the plane of
the page encircles two of the currents but not the third. The counterclockwise
direction marked on the loop indicates the arbitrarily chosen direction of integra-
tion for Eq. 29-14.

To apply Ampere’s law, we mentally divide the loop into differential vector
elements that are everywhere directed along the tangent to the loop in theds:

B
:

! ds:  

B
:

! ds: 

! B
:

! ds: " #0ienc

dB
:

dB
:

dE
:

dE
:
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Fig. 29-11 Ampere’s law applied to an
arbitrary Amperian loop that encircles two
long straight wires but excludes a third
wire. Note the directions of the currents.

i3 

i1 

i2 

Direction of 
integration 

ds 
θ 

Amperian 
loop 

B 

Only the currents
encircled by the
loop are used in
Ampere's law.
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A a, b, c

B b, c, a

C c, b, a

1Halliday, Resnick, Walker, pg 771.
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long straight wires but excludes a third
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A a, b, c

B b, c, a←
C c, b, a

1Halliday, Resnick, Walker, pg 771.



Definition of the Ampère (Amp)

This relation:

FB
L

=
µ0I1I2

2πd

gives us the formal definition of the Ampère.

Ampère Unit

Two long parallel wires separated by 1 m are said to each carry 1 A
of current when the force per unit length on each wire is
2× 10−7 N/m.



Summary

• Solenoids and Ampère’s Law

• Forces on parallel wires

3rd Test Friday, Mar 9.

Homework
• Collected homework 3, posted online, due on Monday.

Serway & Jewett:

• PREVIOUS: Ch 30, Problems: 21, 25, 31, 33, 34, 47

• NEW: Ch 30, Problems: 41, 45


