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Last time

• magnetic field inside a solenoid

• forces between current-carrying wires



Overview

• magnetic field around a current loop

• more about magnetic dipoles

• magnetism of matter



Current loops and Magnetic dipoles

We are now going to return to current loops and see why they
have associated magnetic dipole moments, and how these behave.



Magnetic field from a circular loop of wire
In the last lecture, we considered the magnetic moment of a loop
of wire, now we look at the magnetic field along a line through the
center of the loop.
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Answer Yes, it can. The straight wires in Figure 30.4 do not contribute to the magnetic field. The only contribution is 
from the curved segment. As the angle u increases, the curved segment becomes a full circle when u 5 2p. Therefore, 
you can find the magnetic field at the center of a wire loop by letting u 5 2p in Equation 30.6:

B 5
m0I
4pa

 2p 5
m0I
2a

This result is a limiting case of a more general result discussed in Example 30.3.

Example 30.3   Magnetic Field on the Axis of a Circular Current Loop

Consider a circular wire loop of radius a located in the yz 
plane and carrying a steady current I as in Figure 30.5. Cal-
culate the magnetic field at an axial point P a distance x 
from the center of the loop.

Conceptualize  Compare this problem to Example 23.8 for 
the electric field due to a ring of charge. Figure 30.5 shows 
the magnetic field contribution d B

S
  at P due to a single cur-

rent element at the top of the ring. This field vector can be 
resolved into components dBx parallel to the axis of the ring 
and dB! perpendicular to the axis. Think about the mag-
netic field contributions from a current element at the bot-
tom of the loop. Because of the symmetry of the situation, 
the perpendicular components of the field due to elements 
at the top and bottom of the ring cancel. This cancellation 
occurs for all pairs of segments around the ring, so we can ignore the perpendicular component of the field and focus 
solely on the parallel components, which simply add.

Categorize  We are asked to find the magnetic field due to a simple current distribution, so this example is a typical 
problem for which the Biot–Savart law is appropriate.

Analyze  In this situation, every length element d sS is perpendicular to the vector r̂ at the location of the element. 
Therefore, for any element, 0d sS 3 r̂ 0 5 1ds 2 11 2  sin 908 5 ds. Furthermore, all length elements around the loop are at 
the same distance r from P, where r 2 5 a2 1 x2.
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Figure 30.5  (Example 30.3) Geometry for calculating the 
magnetic field at a point P lying on the axis of a current loop. 
By symmetry, the total field B

S
 is along this axis.

Use Equation 30.1 to find the magnitude of d B
S

  
due to the current in any length element d sS:

dB 5
m0I
4p

  
0 d sS 3 r̂ 0

r 2 5
m0I
4p

  
ds1a 2 1 x2 2

Find the x component of the field element: dBx 5
m0I
4p

  
ds1a 2 1 x 2 2   cos u

Integrate over the entire loop: Bx 5 C dBx 5
m0I
4p

 C 
ds cos u
a 2 1 x 2

From the geometry, evaluate cos u: cos u 5
a1a 2 1 x2 21/2

Substitute this expression for cos u into the inte-
gral and note that x and a are both constant:

Bx 5
m0I
4p

 C  
ds

a 2 1 x 2  c a1a 2 1 x 2 21/2 d 5
m0I
4p

  
a1a 2 1 x 2 23/2 C ds

Integrate around the loop: Bx 5
m0I
4p

  
a1a 2 1 x 2 23/2 12pa 2 5

m0Ia 2

2 1a 2 1 x2 23/2  (30.7)

 

▸ 30.2 c o n t i n u e d

Each little segment of wire ds with current I contributes a field dB.

By symmetry, we can see the the components that are parallel to
the plane of the ring will cancel.
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▸ 30.2 c o n t i n u e d

dB =
µ0

4π

I ds×r̂

r2

This time r ⊥ ds

ds×r̂ = ds (cos θi + sin θj)



Magnetic field from a circular loop of wire

(y -comp. cancels)

B =
µ0

4π
I

∮
cos θ

r2
ds i

Notice cosθ = a
r , and r =

√
a2 + x2.

They are independent of the integration variable!

B =
µ0

4π

Ia

(a2 + x2)3/2

∮
ds i

=
µ0

4π

Ia

(a2 + x2)3/2
(2πa) i

=
µ0Ia

2

2(a2 + x2)3/2
i

Similar to the E-field of an electric dipole...
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Magnetic field from a circular loop of wire

Very far from the wire,

B =
µ0Ia

2

2πx3
i

In terms of the magnetic moment µ = Iπa2

B =
µ0

2π

µ

x3
i

Far from an electric dipole, along the axis of the dipole:

E =
1

2πε0

p

x3
i



Current Loop Question
Consider the four arrangements of circular loops of radius r or 2r ,
centered on vertical axes (perpendicular to the loops) and carrying
identical currents in the directions indicated. Rank the
arrangements according to the magnitude of the net magnetic field
at the dot, midway between the loops on the central axis, greatest
first.
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Magnetic Field of a Coil
We turn now to the other aspect of a current-carrying coil as a magnetic dipole.
What magnetic field does it produce at a point in the surrounding space? The
problem does not have enough symmetry to make Ampere’s law useful; so we
must turn to the law of Biot and Savart. For simplicity, we first consider only a
coil with a single circular loop and only points on its perpendicular central axis,
which we take to be a z axis. We shall show that the magnitude of the magnetic
field at such points is

(29-26)

in which R is the radius of the circular loop and z is the distance of the point in
question from the center of the loop. Furthermore, the direction of the mag-
netic field is the same as the direction of the magnetic dipole moment of
the loop.

For axial points far from the loop, we have z R in Eq. 29-26. With that
approximation, the equation reduces to

Recalling that pR2 is the area A of the loop and extending our result to include
a coil of N turns, we can write this equation as

Further, because and have the same direction, we can write the equation in
vector form, substituting from the identity NiA:

(current-carrying coil). (29-27)

Thus, we have two ways in which we can regard a current-carrying coil as a
magnetic dipole: (1) it experiences a torque when we place it in an external
magnetic field; (2) it generates its own intrinsic magnetic field, given, for dis-
tant points along its axis, by Eq. 29-27. Figure 29-21 shows the magnetic field of
a current loop; one side of the loop acts as a north pole (in the direction of )
and the other side as a south pole, as suggested by the lightly drawn magnet in
the figure. If we were to place a current-carrying coil in an external magnetic
field, it would tend to rotate just like a bar magnet would.
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B
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CHECKPOINT 3

The figure here shows four arrangements of circular loops of radius r or 2r, centered on
vertical axes (perpendicular to the loops) and carrying identical currents in the direc-
tions indicated. Rank the arrangements according to the magnitude of the net magnetic
field at the dot, midway between the loops on the central axis, greatest first.

(a) (b) (c) (d)

N

S

i

i

B

µ

Fig. 29-21 A current loop produces a
magnetic field like that of a bar magnet and
thus has associated north and south poles.
The magnetic dipole moment of the loop,
its direction given by a curled–straight
right-hand rule, points from the south pole
to the north pole, in the direction of the
field within the loop.B

:

!:
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A a, b, c, d

B b, c, d, a

C d, a, (b and c)

D (b and c), d, a
1Halliday, Resnick, Walker, pg 779.
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A a, b, c, d

B b, c, d, a

C d, a, (b and c)←
D (b and c), d, a

1Halliday, Resnick, Walker, pg 779.



Magnetic Moment for a Current Loop

For a current loop, we can define the magnetic moment of the
loop as

µ = IA

And for a coil N turns (loops) of wire carrying a current:

µ = NIA

Then the expression for the torque can be written

τ = µ× B



Reminder: Electric Dipole Moment

Recall our definition for the Electric dipole moment:
dipole moment:

p = q d

where d is a vector pointing from the negative charge to the
positive charge, and its magnitude d is the separation of the
charges and each charge in the dipole has magnitude q.

584 CHAPTE R 22 E LECTR IC F I E LDS

Fig. 22-8 (a) An electric dipole.The
electric field vectors and at point
P on the dipole axis result from the dipole’s
two charges. Point P is at distances r(!) and
r(") from the individual charges that make
up the dipole. (b) The dipole moment of
the dipole points from the negative charge
to the positive charge.
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field dominates.
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22-5 The Electric Field Due to an Electric Dipole
Figure 22-8a shows two charged particles of magnitude q but of opposite sign,
separated by a distance d. As was noted in connection with Fig. 22-5, we call this
configuration an electric dipole. Let us find the electric field due to the dipole of
Fig. 22-8a at a point P, a distance z from the midpoint of the dipole and on the
axis through the particles, which is called the dipole axis.

From symmetry, the electric field at point P—and also the fields and
E
:

(") due to the separate charges that make up the dipole—must lie along the
dipole axis, which we have taken to be a z axis.Applying the superposition princi-
ple for electric fields, we find that the magnitude E of the electric field at P is

(22-5)

After a little algebra, we can rewrite this equation as

(22-6)

After forming a common denominator and multiplying its terms, we come to

(22-7)

We are usually interested in the electrical effect of a dipole only at distances
that are large compared with the dimensions of the dipole—that is, at distances such
that z # d. At such large distances, we have d/2z $ 1 in Eq. 22-7. Thus, in our ap-
proximation, we can neglect the d/2z term in the denominator, which leaves us with

(22-8)

The product qd, which involves the two intrinsic properties q and d of the
dipole, is the magnitude p of a vector quantity known as the electric dipole moment

of the dipole. (The unit of is the coulomb-meter.) Thus, we can write Eq. 22-8 as

(electric dipole). (22-9)

The direction of is taken to be from the negative to the positive end of the
dipole, as indicated in Fig. 22-8b. We can use the direction of to specify the
orientation of a dipole.

Equation 22-9 shows that, if we measure the electric field of a dipole only at
distant points, we can never find q and d separately; instead, we can find only their
product. The field at distant points would be unchanged if, for example, q were
doubled and d simultaneously halved. Although Eq. 22-9 holds only for distant
points along the dipole axis, it turns out that E for a dipole varies as 1/r 3 for all
distant points, regardless of whether they lie on the dipole axis; here r is the dis-
tance between the point in question and the dipole center.

Inspection of Fig. 22-8 and of the field lines in Fig. 22-5 shows that the direc-
tion of for distant points on the dipole axis is always the direction of the dipoleE
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Torque on a electric dipole in an
electric field:

τ = p× E

Potential energy:

U = −p · E



Current Loop vs Bar Magnet

A loop of wire with a current in it produces a magnetic field
somewhat similar to a bar magnet.
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Magnetic Field of a Coil
We turn now to the other aspect of a current-carrying coil as a magnetic dipole.
What magnetic field does it produce at a point in the surrounding space? The
problem does not have enough symmetry to make Ampere’s law useful; so we
must turn to the law of Biot and Savart. For simplicity, we first consider only a
coil with a single circular loop and only points on its perpendicular central axis,
which we take to be a z axis. We shall show that the magnitude of the magnetic
field at such points is

(29-26)

in which R is the radius of the circular loop and z is the distance of the point in
question from the center of the loop. Furthermore, the direction of the mag-
netic field is the same as the direction of the magnetic dipole moment of
the loop.

For axial points far from the loop, we have z R in Eq. 29-26. With that
approximation, the equation reduces to

Recalling that pR2 is the area A of the loop and extending our result to include
a coil of N turns, we can write this equation as

Further, because and have the same direction, we can write the equation in
vector form, substituting from the identity NiA:

(current-carrying coil). (29-27)

Thus, we have two ways in which we can regard a current-carrying coil as a
magnetic dipole: (1) it experiences a torque when we place it in an external
magnetic field; (2) it generates its own intrinsic magnetic field, given, for dis-
tant points along its axis, by Eq. 29-27. Figure 29-21 shows the magnetic field of
a current loop; one side of the loop acts as a north pole (in the direction of )
and the other side as a south pole, as suggested by the lightly drawn magnet in
the figure. If we were to place a current-carrying coil in an external magnetic
field, it would tend to rotate just like a bar magnet would.
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its direction given by a curled–straight
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to the north pole, in the direction of the
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Magnetic Dipole Moment

magnetic dipole moment, µ

The quantity relating an external magnetic field that a magnet or
coil of wire is in to the torque on the magnet or coil due to that
field.

τ = µ× B

For a magnet, it is a vector pointing from the south pole of a
magnet to the north pole, that is proportional to the strength of
the B-field produced by the magnet itself.

For a coil, it is defined according the the right hand rule for current
in a wire loop and is proportional to the coil area and current.



Potential Energy of a Dipole in a B-Field

τ = µ× B
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Table 28-2

Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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Fig. 28-20 The orientations of highest
and lowest energy of a magnetic dipole
(here a coil carrying current) in an external
magnetic field .The direction of the cur-
rent i gives the direction of the magnetic 
dipole moment via the right-hand rule
shown for in Fig. 28-19b.n:
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The magnetic moment vector
attempts to align with the
magnetic field.
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The energy can be found by integrating the torque over the angle
of rotation, choosing U(π/2) = 0. (See Lecture 13 for derivation.)

U = −µ · B



Question

The figure shows four orientations, at angle θ, of a magnetic dipole
moment µ in a magnetic field. Rank the orientations according to
the magnitude of the torque on the dipole, greatest first.
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Table 28-2

Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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Fig. 28-20 The orientations of highest
and lowest energy of a magnetic dipole
(here a coil carrying current) in an external
magnetic field .The direction of the cur-
rent i gives the direction of the magnetic 
dipole moment via the right-hand rule
shown for in Fig. 28-19b.n:
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(A) (1 and 2), (3 and 4)

(B) (1 and 4), (2 and 3)

(C) 3, 2, 1, 4

(D) all the same

1Halliday, Resnick, Walker, 9th ed, page 745.



Question

The figure shows four orientations, at angle θ, of a magnetic dipole
moment µ in a magnetic field. Rank the orientations according to
the magnitude of the torque on the dipole, greatest first.
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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Fig. 28-20 The orientations of highest
and lowest energy of a magnetic dipole
(here a coil carrying current) in an external
magnetic field .The direction of the cur-
rent i gives the direction of the magnetic 
dipole moment via the right-hand rule
shown for in Fig. 28-19b.n:

$:

B
:

i i 
µ µ 

µ µ 

Highest 
energy 

Lowest 
energy 

B 

The magnetic moment vector
attempts to align with the
magnetic field.

halliday_c28_735-763v2.qxd  27-11-2009  16:19  Page 754

(A) (1 and 2), (3 and 4)

(B) (1 and 4), (2 and 3)

(C) 3, 2, 1, 4

(D) all the same←

1Halliday, Resnick, Walker, 9th ed, page 745.



Question

The figure shows four orientations, at angle θ, of a magnetic
dipole moment µ in a magnetic field. Rank the orientations
according to the orientation energy of the dipole, greatest first.
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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and lowest energy of a magnetic dipole
(here a coil carrying current) in an external
magnetic field .The direction of the cur-
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(A) (1 and 2), (3 and 4)

(B) (1 and 4), (2 and 3)

(C) 3, 2, 1, 4

(D) all the same

1Halliday, Resnick, Walker, 9th ed, page 745.



Question

The figure shows four orientations, at angle θ, of a magnetic
dipole moment µ in a magnetic field. Rank the orientations
according to the orientation energy of the dipole, greatest first.
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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(A) (1 and 2), (3 and 4)

(B) (1 and 4), (2 and 3)←
(C) 3, 2, 1, 4

(D) all the same

1Halliday, Resnick, Walker, 9th ed, page 745.



Electric Dipole and Magnetic Dipole

electric dipole magnetic dipole

torque τ τ = p× E τ = µ× B

potential energy U U = −p · E U = −µ · B



Magnetism in Matter: Magnetic Moment of Atoms
Atoms and subatomic particles also have magnetic moments!

Why? Consider a classical model of a hydrogen atom. One
electron orbits the nucleus.

µ = IA

 30.6 Magnetism in Matter 919

This statement represents that isolated magnetic poles (monopoles) have never 
been detected and perhaps do not exist. Nonetheless, scientists continue the search 
because certain theories that are otherwise successful in explaining fundamental 
physical behavior suggest the possible existence of magnetic monopoles.

30.6 Magnetism in Matter
The magnetic field produced by a current in a coil of wire gives us a hint as to 
what causes certain materials to exhibit strong magnetic properties. Earlier we 
found that a solenoid like the one shown in Figure 30.17a has a north pole and a 
south pole. In general, any current loop has a magnetic field and therefore has a 
magnetic dipole moment, including the atomic-level current loops described in 
some models of the atom.

The Magnetic Moments of Atoms
Let’s begin our discussion with a classical model of the atom in which electrons 
move in circular orbits around the much more massive nucleus. In this model, an 
orbiting electron constitutes a tiny current loop (because it is a moving charge), 
and the magnetic moment of the electron is associated with this orbital motion. 
Although this model has many deficiencies, some of its predictions are in good 
agreement with the correct theory, which is expressed in terms of quantum 
physics.
 In our classical model, we assume an electron is a particle in uniform circular 
motion: it moves with constant speed v in a circular orbit of radius r about the 
nucleus as in Figure 30.24. The current I associated with this orbiting electron is its 
charge e divided by its period T. Using Equation 4.15 from the particle in uniform 
circular motion model, T 5 2pr/v, gives

I 5
e
T

5
ev

2pr
The magnitude of the magnetic moment associated with this current loop is given 
by m 5 IA, where A 5 pr 2 is the area enclosed by the orbit. Therefore,

 m 5 IA 5 a ev
2pr

bpr 2 5 1
2evr  (30.21)

Because the magnitude of the orbital angular momentum of the electron is given 
by L 5 mevr (Eq. 11.12 with f 5 908), the magnetic moment can be written as

 m 5 a e
2me

bL  (30.22)

This result demonstrates that the magnetic moment of the electron is proportional 
to its orbital angular momentum. Because the electron is negatively charged, the 
 vectors mS and L

S
 point in opposite directions. Both vectors are perpendicular to the 

plane of the orbit as indicated in Figure 30.24.
 A fundamental outcome of quantum physics is that orbital angular momentum 
is quantized and is equal to multiples of " 5 h/2p 5 1.05 3 10234 J ? s, where h is 
Planck’s constant (see Chapter 40). The smallest nonzero value of the electron’s 
magnetic moment resulting from its orbital motion is

 m 5 "2 
e

2me
 U  (30.23)

We shall see in Chapter 42 how expressions such as Equation 30.23 arise.
 Because all substances contain electrons, you may wonder why most substances 
are not magnetic. The main reason is that, in most substances, the magnetic 

�W Orbital magnetic moment

The electron has an angular 
momentum     in one direction 
and a magnetic moment     in 
the opposite direction.
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Figure 30.24  An electron mov-
ing in the direction of the gray 
arrow in a circular orbit of radius 
r. Because the electron carries 
a negative charge, the direction 
of the current due to its motion 
about the nucleus is opposite the 
direction of that motion.



Magnetic Moment of Atoms
The current is the rate of charge flow with time:

I =
−e

T
= −e

v

2πr

assuming an orbital radius of r , speed v .

µ = IA

= −e
v

2πr
(πr2n̂)

= −
evr

2
n̂

Recall that for a particle of mass m orbiting at a radius r ,
velocity v , the angular momentum is:

L = mvr

µ = −
e

2me
L
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Magnetism in Matter: Magnetic Moment of Atoms

Orbital magnetic moment

µ = −
e
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This statement represents that isolated magnetic poles (monopoles) have never 
been detected and perhaps do not exist. Nonetheless, scientists continue the search 
because certain theories that are otherwise successful in explaining fundamental 
physical behavior suggest the possible existence of magnetic monopoles.

30.6 Magnetism in Matter
The magnetic field produced by a current in a coil of wire gives us a hint as to 
what causes certain materials to exhibit strong magnetic properties. Earlier we 
found that a solenoid like the one shown in Figure 30.17a has a north pole and a 
south pole. In general, any current loop has a magnetic field and therefore has a 
magnetic dipole moment, including the atomic-level current loops described in 
some models of the atom.

The Magnetic Moments of Atoms
Let’s begin our discussion with a classical model of the atom in which electrons 
move in circular orbits around the much more massive nucleus. In this model, an 
orbiting electron constitutes a tiny current loop (because it is a moving charge), 
and the magnetic moment of the electron is associated with this orbital motion. 
Although this model has many deficiencies, some of its predictions are in good 
agreement with the correct theory, which is expressed in terms of quantum 
physics.
 In our classical model, we assume an electron is a particle in uniform circular 
motion: it moves with constant speed v in a circular orbit of radius r about the 
nucleus as in Figure 30.24. The current I associated with this orbiting electron is its 
charge e divided by its period T. Using Equation 4.15 from the particle in uniform 
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The magnitude of the magnetic moment associated with this current loop is given 
by m 5 IA, where A 5 pr 2 is the area enclosed by the orbit. Therefore,
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Because the magnitude of the orbital angular momentum of the electron is given 
by L 5 mevr (Eq. 11.12 with f 5 908), the magnetic moment can be written as
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This result demonstrates that the magnetic moment of the electron is proportional 
to its orbital angular momentum. Because the electron is negatively charged, the 
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plane of the orbit as indicated in Figure 30.24.
 A fundamental outcome of quantum physics is that orbital angular momentum 
is quantized and is equal to multiples of " 5 h/2p 5 1.05 3 10234 J ? s, where h is 
Planck’s constant (see Chapter 40). The smallest nonzero value of the electron’s 
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Electron Spin Angular Momentum

Electrons also have another kind of angular momentum: intrinsic
angular momentum. This is also called “spin”.

Spin is an inherent property of all electrons. It cannot be
understood with classical mechanics, but also contributes a
magnetic moment.
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Substituting for Sz from Eq. 32-23 then gives us

(32-24)

where the plus and minus signs correspond to ms,z being parallel and antiparallel
to the z axis, respectively.

The quantity on the right side of Eq. 32-24 is called the Bohr magneton mB:

(Bohr magneton). (32-25)

Spin magnetic dipole moments of electrons and other elementary particles can
be expressed in terms of mB. For an electron, the magnitude of the measured z
component of is

|ms,z| ! 1mB. (32-26)

(The quantum physics of the electron, called quantum electrodynamics, or QED, re-
veals that ms,z is actually slightly greater than 1mB, but we shall neglect that fact.)

When an electron is placed in an external magnetic field , an energy U can
be associated with the orientation of the electron’s spin magnetic dipole moment

just as an energy can be associated with the orientation of the magnetic dipole
moment of a current loop placed in . From Eq. 28-38, the orentation energy
for the electron is

(32-27)

where the z axis is taken to be in the direction of .
If we imagine an electron to be a microscopic sphere (which it is not), we can

represent the spin , the spin magnetic dipole moment , and the associated mag-
netic dipole field as in Fig. 32-10.Although we use the word “spin” here, electrons do
not spin like tops. How, then, can something have angular momentum without actu-
ally rotating? Again, we would need quantum physics to provide the answer.

Protons and neutrons also have an intrinsic angular momentum called spin and
an associated intrinsic spin magnetic dipole moment. For a proton those two vectors
have the same direction, and for a neutron they have opposite directions. We shall
not examine the contributions of these dipole moments to the magnetic fields of
atoms because they are about a thousand times smaller than that due to an electron.
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CHECKPOINT 4

The figure here shows the spin orientations of two particles
in an external magnetic field . (a) If the particles are
electrons, which spin orientation is at lower energy? (b) If,
instead, the particles are protons, which spin orientation is
at lower energy?
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Fig. 32-10 The spin , spin magnetic
dipole moment , and magnetic dipole
field of an electron represented as a mi-
croscopic sphere.
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is opposite the magnetic
dipole moment.

Orbital Magnetic Dipole Moment
When it is in an atom, an electron has an additional angular momentum called
its orbital angular momentum . Associated with is an orbital magnetic
dipole moment ; the two are related by

(32-28)

The minus sign means that and have opposite directions.L
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Electron Spin Angular Momentum

You might imagine an electron as a rigid charge sphere spinning on
an axis through its center...

920 Chapter 30 Sources of the Magnetic Field

moment of one electron in an atom is canceled by that of another electron orbiting 
in the opposite direction. The net result is that, for most materials, the magnetic 
effect produced by the orbital motion of the electrons is either zero or very small.
 In addition to its orbital magnetic moment, an electron (as well as protons, neu-
trons, and other particles) has an intrinsic property called spin that also contrib-
utes to its magnetic moment. Classically, the electron might be viewed as spinning 
about its axis as shown in Figure 30.25, but you should be very careful with the clas-
sical interpretation. The magnitude of the angular momentum S

S
 associated with 

spin is on the same order of magnitude as the magnitude of the angular momen-
tum L

S
 due to the orbital motion. The magnitude of the spin angular momentum 

of an electron predicted by quantum theory is

S 5
"3

2
 U

The magnetic moment characteristically associated with the spin of an electron has 
the value

 mspin 5
e U

2me
 (30.24)

This combination of constants is called the Bohr magneton mB:

 mB 5
e U
2me

5 9.27 3 10224 J/T  (30.25)

Therefore, atomic magnetic moments can be expressed as multiples of the Bohr 
magneton. (Note that 1 J/T 5 1 A ? m2.)
 In atoms containing many electrons, the electrons usually pair up with their 
spins opposite each other; therefore, the spin magnetic moments cancel. Atoms 
containing an odd number of electrons, however, must have at least one unpaired 
electron and therefore some spin magnetic moment. The total magnetic moment 
of an atom is the vector sum of the orbital and spin magnetic moments, and a few 
examples are given in Table 30.1. Notice that helium and neon have zero moments 
because their individual spin and orbital moments cancel.
 The nucleus of an atom also has a magnetic moment associated with its constitu-
ent protons and neutrons. The magnetic moment of a proton or neutron, however, 
is much smaller than that of an electron and can usually be neglected. We can 
understand this smaller value by inspecting Equation 30.25 and replacing the mass 
of the electron with the mass of a proton or a neutron. Because the masses of the 
proton and neutron are much greater than that of the electron, their magnetic 
moments are on the order of 103 times smaller than that of the electron.

Ferromagnetism
A small number of crystalline substances exhibit strong magnetic effects called fer-
romagnetism. Some examples of ferromagnetic substances are iron, cobalt, nickel, 
gadolinium, and dysprosium. These substances contain permanent atomic mag-
netic moments that tend to align parallel to each other even in a weak external 
magnetic field. Once the moments are aligned, the substance remains magnetized 
after the external field is removed. This permanent alignment is due to a strong 
coupling between neighboring moments, a coupling that can be understood only 
in quantum-mechanical terms.
 All ferromagnetic materials are made up of microscopic regions called domains, 
regions within which all magnetic moments are aligned. These domains have vol-
umes of about 10212 to 1028 m3 and contain 1017 to 1021 atoms. The boundaries 
between the various domains having different orientations are called domain walls. 
In an unmagnetized sample, the magnetic moments in the domains are randomly 

Pitfall Prevention 30.3
The Electron Does Not Spin The 
electron is not physically spinning. 
It has an intrinsic angular momen-
tum as if it were spinning, but the 
notion of rotation for a point 
particle is meaningless. Rotation 
applies only to a rigid object, with 
an extent in space, as in Chapter 
10. Spin angular momentum is 
actually a relativistic effect.

spin

S
S

m
S

Figure 30.25  Classical model of 
a spinning electron. We can adopt 
this model to remind ourselves 
that electrons have an intrinsic 
angular momentum. The model 
should not be pushed too far, 
however; it gives an incorrect mag-
nitude for the magnetic moment, 
incorrect quantum numbers, and 
too many degrees of freedom.

Table 30.1 Magnetic 
Moments of Some Atoms 
and Ions
 Magnetic
 Moment
Atom or Ion (10224 J/T)

H 9.27
He 0
Ne 0
Ce31 19.8
Yb31 37.1

...but really, it’s not.



Electron Spin Angular Momentum
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Substituting for Sz from Eq. 32-23 then gives us

(32-24)

where the plus and minus signs correspond to ms,z being parallel and antiparallel
to the z axis, respectively.

The quantity on the right side of Eq. 32-24 is called the Bohr magneton mB:

(Bohr magneton). (32-25)

Spin magnetic dipole moments of electrons and other elementary particles can
be expressed in terms of mB. For an electron, the magnitude of the measured z
component of is

|ms,z| ! 1mB. (32-26)

(The quantum physics of the electron, called quantum electrodynamics, or QED, re-
veals that ms,z is actually slightly greater than 1mB, but we shall neglect that fact.)

When an electron is placed in an external magnetic field , an energy U can
be associated with the orientation of the electron’s spin magnetic dipole moment

just as an energy can be associated with the orientation of the magnetic dipole
moment of a current loop placed in . From Eq. 28-38, the orentation energy
for the electron is

(32-27)

where the z axis is taken to be in the direction of .
If we imagine an electron to be a microscopic sphere (which it is not), we can

represent the spin , the spin magnetic dipole moment , and the associated mag-
netic dipole field as in Fig. 32-10.Although we use the word “spin” here, electrons do
not spin like tops. How, then, can something have angular momentum without actu-
ally rotating? Again, we would need quantum physics to provide the answer.

Protons and neutrons also have an intrinsic angular momentum called spin and
an associated intrinsic spin magnetic dipole moment. For a proton those two vectors
have the same direction, and for a neutron they have opposite directions. We shall
not examine the contributions of these dipole moments to the magnetic fields of
atoms because they are about a thousand times smaller than that due to an electron.
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CHECKPOINT 4

The figure here shows the spin orientations of two particles
in an external magnetic field . (a) If the particles are
electrons, which spin orientation is at lower energy? (b) If,
instead, the particles are protons, which spin orientation is
at lower energy?
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Fig. 32-10 The spin , spin magnetic
dipole moment , and magnetic dipole
field of an electron represented as a mi-
croscopic sphere.
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For an electron, the spin
is opposite the magnetic
dipole moment.

Orbital Magnetic Dipole Moment
When it is in an atom, an electron has an additional angular momentum called
its orbital angular momentum . Associated with is an orbital magnetic
dipole moment ; the two are related by

(32-28)

The minus sign means that and have opposite directions.L
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Electron’s spin magnetic dipole moment:

µs = −
g e

2me
S

where g ≈ 2.



Magnetic Moment of Atoms

In atoms with many electrons, the electrons tend to cancel out
each other’s magnetic moments, but outer-shell, unpaired electrons
can contribute a significant magnetic moment.

The particles in the nucleus also have magnetic moments, but they
are much smaller.

Most of an atom’s magnetic moment comes from unpaired
electons.

These tiny magnetic moments add up to big effects in bulk
materials.



Three Types of Bulk Magnetism

• ferromagnetism

• paramagnetism

• diamagnetism



Ferromagnetism

Atoms of ferromagnetic materials have non-zero magnetic
moments.

Interactions between outer electrons in different atoms causes
alignment of each atom’s magnetic moment.

Magnetic moments reenforce each other and will tend to
spontaneously align within domains.

Examples of ferromagnetic materials:

• iron

• nickel

• cobalt

• gadolinium

• dysprosium
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Ferromagnetism

No external B-field
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oriented so that the net magnetic moment is zero as in Figure 30.26a. When the sam-
ple is placed in an external magnetic field B

S
,  the size of those domains with mag-

netic moments aligned with the field grows, which results in a magnetized sample as 
in Figure 30.26b. As the external field becomes very strong as in Figure 30.26c, the 
domains in which the magnetic moments are not aligned with the field become very 
small. When the external field is removed, the sample may retain a net magnetiza-
tion in the direction of the original field. At ordinary temperatures, thermal agita-
tion is not sufficient to disrupt this preferred orientation of magnetic moments.
 When the temperature of a ferromagnetic substance reaches or exceeds a critical 
temperature called the Curie temperature, the substance loses its residual magne-
tization. Below the Curie temperature, the magnetic moments are aligned and the 
substance is ferromagnetic. Above the Curie temperature, the thermal agitation 
is great enough to cause a random orientation of the moments and the substance 
becomes paramagnetic. Curie temperatures for several ferromagnetic substances 
are given in Table 30.2.

Paramagnetism
Paramagnetic substances have a weak magnetism resulting from the presence of 
atoms (or ions) that have permanent magnetic moments. These moments inter-
act only weakly with one another and are randomly oriented in the absence of an 
external magnetic field. When a paramagnetic substance is placed in an external 
magnetic field, its atomic moments tend to line up with the field. This alignment 
process, however, must compete with thermal motion, which tends to randomize 
the magnetic moment orientations.

Diamagnetism
When an external magnetic field is applied to a diamagnetic substance, a weak 
magnetic moment is induced in the direction opposite the applied field, causing 
diamagnetic substances to be weakly repelled by a magnet. Although diamagne-
tism is present in all matter, its effects are much smaller than those of paramagnet-
ism or ferromagnetism and are evident only when those other effects do not exist.
 We can attain some understanding of diamagnetism by considering a classical 
model of two atomic electrons orbiting the nucleus in opposite directions but with 
the same speed. The electrons remain in their circular orbits because of the attractive 
electrostatic force exerted by the positively charged nucleus. Because the magnetic  
moments of the two electrons are equal in magnitude and opposite in direction, 
they cancel each other and the magnetic moment of the atom is zero. When an 
external magnetic field is applied, the electrons experience an additional mag-
netic force q vS 3 B

S
. This added magnetic force combines with the electrostatic  

force to increase the orbital speed of the electron whose magnetic moment is anti-
parallel to the field and to decrease the speed of the electron whose magnetic 
moment is parallel to the field. As a result, the two magnetic moments of the elec-
trons no longer cancel and the substance acquires a net magnetic moment that is 
opposite the applied field.

a

c

b

In an unmagnetized substance, 
the atomic magnetic dipoles are 
randomly oriented. 

B
S

B
S

dA
S

B
S

When an external field     is 
applied, the domains with 
components of magnetic moment 
in the same direction as     grow 
larger, giving the sample a net 
magnetization.

B
S

B
S

As the field is made even stronger, 
the domains with magnetic 
moment vectors not aligned with 
the external field become very 
small.

Figure 30.26  Orientation of 
magnetic dipoles before and after 
a magnetic field is applied to a fer-
romagnetic substance.

Table 30.2 Curie Temperatures 
for Several Ferromagnetic Substances
Substance TCurie (K)

Iron 1 043
Cobalt 1 394
Nickel 631
Gadolinium 317
Fe2O3 893



Ferromagnetism
Applied external B-field
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oriented so that the net magnetic moment is zero as in Figure 30.26a. When the sam-
ple is placed in an external magnetic field B

S
,  the size of those domains with mag-

netic moments aligned with the field grows, which results in a magnetized sample as 
in Figure 30.26b. As the external field becomes very strong as in Figure 30.26c, the 
domains in which the magnetic moments are not aligned with the field become very 
small. When the external field is removed, the sample may retain a net magnetiza-
tion in the direction of the original field. At ordinary temperatures, thermal agita-
tion is not sufficient to disrupt this preferred orientation of magnetic moments.
 When the temperature of a ferromagnetic substance reaches or exceeds a critical 
temperature called the Curie temperature, the substance loses its residual magne-
tization. Below the Curie temperature, the magnetic moments are aligned and the 
substance is ferromagnetic. Above the Curie temperature, the thermal agitation 
is great enough to cause a random orientation of the moments and the substance 
becomes paramagnetic. Curie temperatures for several ferromagnetic substances 
are given in Table 30.2.

Paramagnetism
Paramagnetic substances have a weak magnetism resulting from the presence of 
atoms (or ions) that have permanent magnetic moments. These moments inter-
act only weakly with one another and are randomly oriented in the absence of an 
external magnetic field. When a paramagnetic substance is placed in an external 
magnetic field, its atomic moments tend to line up with the field. This alignment 
process, however, must compete with thermal motion, which tends to randomize 
the magnetic moment orientations.

Diamagnetism
When an external magnetic field is applied to a diamagnetic substance, a weak 
magnetic moment is induced in the direction opposite the applied field, causing 
diamagnetic substances to be weakly repelled by a magnet. Although diamagne-
tism is present in all matter, its effects are much smaller than those of paramagnet-
ism or ferromagnetism and are evident only when those other effects do not exist.
 We can attain some understanding of diamagnetism by considering a classical 
model of two atomic electrons orbiting the nucleus in opposite directions but with 
the same speed. The electrons remain in their circular orbits because of the attractive 
electrostatic force exerted by the positively charged nucleus. Because the magnetic  
moments of the two electrons are equal in magnitude and opposite in direction, 
they cancel each other and the magnetic moment of the atom is zero. When an 
external magnetic field is applied, the electrons experience an additional mag-
netic force q vS 3 B

S
. This added magnetic force combines with the electrostatic  

force to increase the orbital speed of the electron whose magnetic moment is anti-
parallel to the field and to decrease the speed of the electron whose magnetic 
moment is parallel to the field. As a result, the two magnetic moments of the elec-
trons no longer cancel and the substance acquires a net magnetic moment that is 
opposite the applied field.
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In an unmagnetized substance, 
the atomic magnetic dipoles are 
randomly oriented. 
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applied, the domains with 
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the domains with magnetic 
moment vectors not aligned with 
the external field become very 
small.

Figure 30.26  Orientation of 
magnetic dipoles before and after 
a magnetic field is applied to a fer-
romagnetic substance.

Table 30.2 Curie Temperatures 
for Several Ferromagnetic Substances
Substance TCurie (K)

Iron 1 043
Cobalt 1 394
Nickel 631
Gadolinium 317
Fe2O3 893



Ferromagnetism

Strong external B-field
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oriented so that the net magnetic moment is zero as in Figure 30.26a. When the sam-
ple is placed in an external magnetic field B

S
,  the size of those domains with mag-

netic moments aligned with the field grows, which results in a magnetized sample as 
in Figure 30.26b. As the external field becomes very strong as in Figure 30.26c, the 
domains in which the magnetic moments are not aligned with the field become very 
small. When the external field is removed, the sample may retain a net magnetiza-
tion in the direction of the original field. At ordinary temperatures, thermal agita-
tion is not sufficient to disrupt this preferred orientation of magnetic moments.
 When the temperature of a ferromagnetic substance reaches or exceeds a critical 
temperature called the Curie temperature, the substance loses its residual magne-
tization. Below the Curie temperature, the magnetic moments are aligned and the 
substance is ferromagnetic. Above the Curie temperature, the thermal agitation 
is great enough to cause a random orientation of the moments and the substance 
becomes paramagnetic. Curie temperatures for several ferromagnetic substances 
are given in Table 30.2.

Paramagnetism
Paramagnetic substances have a weak magnetism resulting from the presence of 
atoms (or ions) that have permanent magnetic moments. These moments inter-
act only weakly with one another and are randomly oriented in the absence of an 
external magnetic field. When a paramagnetic substance is placed in an external 
magnetic field, its atomic moments tend to line up with the field. This alignment 
process, however, must compete with thermal motion, which tends to randomize 
the magnetic moment orientations.

Diamagnetism
When an external magnetic field is applied to a diamagnetic substance, a weak 
magnetic moment is induced in the direction opposite the applied field, causing 
diamagnetic substances to be weakly repelled by a magnet. Although diamagne-
tism is present in all matter, its effects are much smaller than those of paramagnet-
ism or ferromagnetism and are evident only when those other effects do not exist.
 We can attain some understanding of diamagnetism by considering a classical 
model of two atomic electrons orbiting the nucleus in opposite directions but with 
the same speed. The electrons remain in their circular orbits because of the attractive 
electrostatic force exerted by the positively charged nucleus. Because the magnetic  
moments of the two electrons are equal in magnitude and opposite in direction, 
they cancel each other and the magnetic moment of the atom is zero. When an 
external magnetic field is applied, the electrons experience an additional mag-
netic force q vS 3 B

S
. This added magnetic force combines with the electrostatic  

force to increase the orbital speed of the electron whose magnetic moment is anti-
parallel to the field and to decrease the speed of the electron whose magnetic 
moment is parallel to the field. As a result, the two magnetic moments of the elec-
trons no longer cancel and the substance acquires a net magnetic moment that is 
opposite the applied field.
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the atomic magnetic dipoles are 
randomly oriented. 
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the domains with magnetic 
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Figure 30.26  Orientation of 
magnetic dipoles before and after 
a magnetic field is applied to a fer-
romagnetic substance.

Table 30.2 Curie Temperatures 
for Several Ferromagnetic Substances
Substance TCurie (K)

Iron 1 043
Cobalt 1 394
Nickel 631
Gadolinium 317
Fe2O3 893



Paramagnetism

Atoms of paramagnetic materials have non-zero dipole moments,
but electrons of different atoms do not interact with each other.

They can interact with a strong magnetic field, and will align with
the field.

Paramagnetic effects tend to be much smaller than ferromagnetic
ones.

Examples of paramagnetic materials:

• Tungsten

• Cesium

• Aluminium

• Lithium

• Magnesium

• Sodium
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Paramagnetism

Liquid oxygen
stream deflected
in a strong
magnetic field.
The stream
collects in the
field.

1Image created by Pieter Kuiper.



Diamagnetism
Diamagnetism occurs in all materials, but is a weak effect, so it is
“drowned out” if a material is ferro- or paramagnetic.

It is the dominant (but weak) effect when the net magnetic
moment of a material’s atoms is zero.

The field magnetizes the atoms and the resulting magnetic
moments oppose the external magnetic field.

Examples of diamagnetic materials:

• Pyrolytic carbon

• Bismuth

• Mercury

• Silver

• diamond (form of Carbon)

• water

Also superconductors can be said to exhibit extreme diamagnetism.
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Diamagnetism

1Levitating pyrolytic carbon on neodymium magnets. Image by Splarka.



Diamagnetism

1Magnet photo by Mai-Linh Doan, Wikipedia; Frog photo by Lijnis
Nelemans/High Field Magnet Laboratory/Radboud University Nijmeg.



Summary

• B-field near a current loop

• more about magnetic dipoles

• magnetism of matter

3rd Test Friday, March 9.

Homework Serway & Jewett:

• PREVIOUS: Ch 29, Problems: 47, 53 (dipole energy)

• NEW: Ch 30, Problems: 7, 49


