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Last time

• relativity and electromagnetic fields



Overview

• motional emf

• induction

• Faraday’s law

• Lenz’s law



Magnetic Moment of Atoms

In atoms with many electrons, the electrons tend to cancel out
each other’s magnetic moments, but outer-shell, unpaired electrons
can contribute a significant magnetic moment.

The particles in the nucleus also have magnetic moments, but they
are much smaller.

Most of an atom’s magnetic moment comes from unpaired
electons.

These tiny magnetic moments add up to big effects in bulk
materials.



Three Types of Bulk Magnetism

• ferromagnetism

• paramagnetism

• diamagnetism



Ferromagnetism

Atoms of ferromagnetic materials have non-zero magnetic
moments.

Interactions between outer electrons in different atoms causes
alignment of each atom’s magnetic moment.

Magnetic moments reenforce each other and will tend to
spontaneously align within domains.

Examples of ferromagnetic materials:

• iron

• nickel

• cobalt

• gadolinium

• dysprosium
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Ferromagnetism

No external B-field

 30.6 Magnetism in Matter 921

oriented so that the net magnetic moment is zero as in Figure 30.26a. When the sam-
ple is placed in an external magnetic field B

S
,  the size of those domains with mag-

netic moments aligned with the field grows, which results in a magnetized sample as 
in Figure 30.26b. As the external field becomes very strong as in Figure 30.26c, the 
domains in which the magnetic moments are not aligned with the field become very 
small. When the external field is removed, the sample may retain a net magnetiza-
tion in the direction of the original field. At ordinary temperatures, thermal agita-
tion is not sufficient to disrupt this preferred orientation of magnetic moments.
 When the temperature of a ferromagnetic substance reaches or exceeds a critical 
temperature called the Curie temperature, the substance loses its residual magne-
tization. Below the Curie temperature, the magnetic moments are aligned and the 
substance is ferromagnetic. Above the Curie temperature, the thermal agitation 
is great enough to cause a random orientation of the moments and the substance 
becomes paramagnetic. Curie temperatures for several ferromagnetic substances 
are given in Table 30.2.

Paramagnetism
Paramagnetic substances have a weak magnetism resulting from the presence of 
atoms (or ions) that have permanent magnetic moments. These moments inter-
act only weakly with one another and are randomly oriented in the absence of an 
external magnetic field. When a paramagnetic substance is placed in an external 
magnetic field, its atomic moments tend to line up with the field. This alignment 
process, however, must compete with thermal motion, which tends to randomize 
the magnetic moment orientations.

Diamagnetism
When an external magnetic field is applied to a diamagnetic substance, a weak 
magnetic moment is induced in the direction opposite the applied field, causing 
diamagnetic substances to be weakly repelled by a magnet. Although diamagne-
tism is present in all matter, its effects are much smaller than those of paramagnet-
ism or ferromagnetism and are evident only when those other effects do not exist.
 We can attain some understanding of diamagnetism by considering a classical 
model of two atomic electrons orbiting the nucleus in opposite directions but with 
the same speed. The electrons remain in their circular orbits because of the attractive 
electrostatic force exerted by the positively charged nucleus. Because the magnetic  
moments of the two electrons are equal in magnitude and opposite in direction, 
they cancel each other and the magnetic moment of the atom is zero. When an 
external magnetic field is applied, the electrons experience an additional mag-
netic force q vS 3 B

S
. This added magnetic force combines with the electrostatic  

force to increase the orbital speed of the electron whose magnetic moment is anti-
parallel to the field and to decrease the speed of the electron whose magnetic 
moment is parallel to the field. As a result, the two magnetic moments of the elec-
trons no longer cancel and the substance acquires a net magnetic moment that is 
opposite the applied field.
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In an unmagnetized substance, 
the atomic magnetic dipoles are 
randomly oriented. 

B
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When an external field     is 
applied, the domains with 
components of magnetic moment 
in the same direction as     grow 
larger, giving the sample a net 
magnetization.

B
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B
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As the field is made even stronger, 
the domains with magnetic 
moment vectors not aligned with 
the external field become very 
small.

Figure 30.26  Orientation of 
magnetic dipoles before and after 
a magnetic field is applied to a fer-
romagnetic substance.

Table 30.2 Curie Temperatures 
for Several Ferromagnetic Substances
Substance TCurie (K)

Iron 1 043
Cobalt 1 394
Nickel 631
Gadolinium 317
Fe2O3 893
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tism is present in all matter, its effects are much smaller than those of paramagnet-
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model of two atomic electrons orbiting the nucleus in opposite directions but with 
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moments of the two electrons are equal in magnitude and opposite in direction, 
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trons no longer cancel and the substance acquires a net magnetic moment that is 
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oriented so that the net magnetic moment is zero as in Figure 30.26a. When the sam-
ple is placed in an external magnetic field B

S
,  the size of those domains with mag-

netic moments aligned with the field grows, which results in a magnetized sample as 
in Figure 30.26b. As the external field becomes very strong as in Figure 30.26c, the 
domains in which the magnetic moments are not aligned with the field become very 
small. When the external field is removed, the sample may retain a net magnetiza-
tion in the direction of the original field. At ordinary temperatures, thermal agita-
tion is not sufficient to disrupt this preferred orientation of magnetic moments.
 When the temperature of a ferromagnetic substance reaches or exceeds a critical 
temperature called the Curie temperature, the substance loses its residual magne-
tization. Below the Curie temperature, the magnetic moments are aligned and the 
substance is ferromagnetic. Above the Curie temperature, the thermal agitation 
is great enough to cause a random orientation of the moments and the substance 
becomes paramagnetic. Curie temperatures for several ferromagnetic substances 
are given in Table 30.2.
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Paramagnetic substances have a weak magnetism resulting from the presence of 
atoms (or ions) that have permanent magnetic moments. These moments inter-
act only weakly with one another and are randomly oriented in the absence of an 
external magnetic field. When a paramagnetic substance is placed in an external 
magnetic field, its atomic moments tend to line up with the field. This alignment 
process, however, must compete with thermal motion, which tends to randomize 
the magnetic moment orientations.

Diamagnetism
When an external magnetic field is applied to a diamagnetic substance, a weak 
magnetic moment is induced in the direction opposite the applied field, causing 
diamagnetic substances to be weakly repelled by a magnet. Although diamagne-
tism is present in all matter, its effects are much smaller than those of paramagnet-
ism or ferromagnetism and are evident only when those other effects do not exist.
 We can attain some understanding of diamagnetism by considering a classical 
model of two atomic electrons orbiting the nucleus in opposite directions but with 
the same speed. The electrons remain in their circular orbits because of the attractive 
electrostatic force exerted by the positively charged nucleus. Because the magnetic  
moments of the two electrons are equal in magnitude and opposite in direction, 
they cancel each other and the magnetic moment of the atom is zero. When an 
external magnetic field is applied, the electrons experience an additional mag-
netic force q vS 3 B
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. This added magnetic force combines with the electrostatic  

force to increase the orbital speed of the electron whose magnetic moment is anti-
parallel to the field and to decrease the speed of the electron whose magnetic 
moment is parallel to the field. As a result, the two magnetic moments of the elec-
trons no longer cancel and the substance acquires a net magnetic moment that is 
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Paramagnetism

Atoms of paramagnetic materials have non-zero dipole moments,
but electrons of different atoms do not interact with each other.

They can interact with a strong magnetic field, and will align with
the field.

Paramagnetic effects tend to be much smaller than ferromagnetic
ones.

Examples of paramagnetic materials:

• Tungsten

• Cesium

• Aluminium

• Lithium

• Magnesium

• Sodium
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Paramagnetism

Liquid oxygen
stream deflected
in a strong
magnetic field.
The stream
collects in the
field.

1Image created by Pieter Kuiper.



Diamagnetism
Diamagnetism occurs in all materials, but is a weak effect, so it is
“drowned out” if a material is ferro- or paramagnetic.

It is the dominant (but weak) effect when the net magnetic
moment of a material’s atoms is zero.

The field magnetizes the atoms and the resulting magnetic
moments oppose the external magnetic field.

Examples of diamagnetic materials:

• Pyrolytic carbon

• Bismuth

• Mercury

• Silver

• diamond (form of Carbon)

• water

Also superconductors can be said to exhibit extreme diamagnetism.
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Diamagnetism

1Levitating pyrolytic carbon on neodymium magnets. Image by Splarka.



Diamagnetism

1Magnet photo by Mai-Linh Doan, Wikipedia; Frog photo by Lijnis
Nelemans/High Field Magnet Laboratory/Radboud University Nijmeg.



Motional EMF
If a conductor moves through a magnetic field at an angle to the
field, an emf is induced across the conductor.

940 Chapter 31 Faraday’s Law

 The straight conductor of length , shown in Figure 31.7 is moving through a uni-
form magnetic field directed into the page. For simplicity, let’s assume the conductor 
is moving in a direction perpendicular to the field with constant velocity under the 
influence of some external agent. From the magnetic version of the particle in a field 
model, the electrons in the conductor experience a force F

S
B 5 q vS 3 B

S
 (Eq. 29.1)  

that is directed along the length ,, perpendicular to both vS and B
S

. Under the  
influence of this force, the electrons move to the lower end of the conductor and 
accumulate there, leaving a net positive charge at the upper end. As a result of this 
charge separation, an electric field E

S
 is produced inside the conductor. Therefore, 

the electrons are also described by the electric version of the particle in a field 
model. The charges accumulate at both ends until the downward magnetic force qvB 
on charges remaining in the conductor is balanced by the upward electric force qE.  
The electrons are then described by the particle in equilibrium model. The condi-
tion for equilibrium requires that the forces on the electrons balance:

 qE 5 qvB    or    E 5 vB 

The magnitude of the electric field produced in the conductor is related to the 
potential difference across the ends of the conductor according to the relationship 
DV 5 E, (Eq. 25.6). Therefore, for the equilibrium condition,

 DV 5 E, 5 B,v (31.4)

where the upper end of the conductor in Figure 31.7 is at a higher electric potential 
than the lower end. Therefore, a potential difference is maintained between the 
ends of the conductor as long as the conductor continues to move through the uni-
form magnetic field. If the direction of the motion is reversed, the polarity of the 
potential difference is also reversed.
 A more interesting situation occurs when the moving conductor is part of a closed 
conducting path. This situation is particularly useful for illustrating how a changing 
magnetic flux causes an induced current in a closed circuit. Consider a circuit con-
sisting of a conducting bar of length , sliding along two fixed, parallel conducting 
rails as shown in Figure 31.8a. For simplicity, let’s assume the bar has zero resistance 
and the stationary part of the circuit has a resistance R. A uniform and constant 
magnetic field B

S
 is applied perpendicular to the plane of the circuit. As the bar is 

pulled to the right with a velocity vS under the influence of an applied force F
S

app, 
free charges in the bar are moving particles in a magnetic field that experience a 
magnetic force directed along the length of the bar. This force sets up an induced 
current because the charges are free to move in the closed conducting path. In this 
case, the rate of change of magnetic flux through the circuit and the corresponding 
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Due to the magnetic force on 
electrons, the ends of the 
conductor become oppositely 
charged, which establishes an 
electric field in the conductor.

In steady state, the electric and 
magnetic forces on an electron 
in the conductor are balanced.

"

Figure 31.7  A straight electrical 
conductor of length , moving with 
a velocity vS through a uniform 
magnetic field B

S
 directed perpen-

dicular to vS.
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A counterclockwise current I is 
induced in the loop. The magnetic 
force       on the bar carrying this 
current opposes the motion.
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Figure 31.8 (a) A conducting 
bar sliding with a velocity vS along 
two conducting rails under the 
action of an applied force F

S
app.  

(b) The equivalent circuit dia-
gram for the setup shown in (a).

There are two ways to see this:

1 force on conduction charges F = q v × B

2 (relativity: in the rest frame of the conductor there is also an
electric field as soon as the conductor moves)
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 The straight conductor of length , shown in Figure 31.7 is moving through a uni-
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magnetic flux causes an induced current in a closed circuit. Consider a circuit con-
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rails as shown in Figure 31.8a. For simplicity, let’s assume the bar has zero resistance 
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Once the charge distribution reaches
equilibrium, the net force on each
charge:

Fnet = q(E + v × B) = 0

E = vB (v ⊥ B)

E

`
= vB

E = vB`



Motional emf in rotating bar (Ex 31.4)

A conducting bar of length `, rotates with a constant angular
speed ω about a pivot at one end. A uniform magnetic field B is
directed perpendicular to the plane of rotation. Find the motional
emf induced between the ends of the bar.

 31.2 Motional emf 943

Answer  Increasing vi would make the bar move farther. Increasing R would decrease the current and therefore the 
magnetic force, making the bar move farther. Decreasing B would decrease the magnetic force and make the bar move 
farther. Which method is most effective, though?

Rearrange terms:
dv
v

5 2aB 2, 2

mR
b dt

Finalize  This result is the same expression to be integrated that we found in part (A).

 Suppose you wished to increase the distance through which the bar moves between the time it is initially 
projected and the time it essentially comes to rest. You can do so by changing one of three variables—vi , R, or B—by 
a factor of 2 or 12 . Which variable should you change to maximize the distance, and would you double it or halve it?

WHAT IF ?

Use Equation (1) to find the distance the bar moves by 
integration:

v 5
dx
dt

5 vi e2t/t

 x 5 3
`

0
vi e2t/t dt 5 2vi te2t/t ` `

0

5 2vi t 10 2 1 2 5 vi t 5 vi a mR
B 2,2b

This expression shows that doubling vi or R will double the distance. Changing B by a factor of 1
2, however, causes the 

distance to be four times as great!

Example 31.4   Motional emf Induced in a Rotating Bar

A conducting bar of length , rotates with a con-
stant angular speed v about a pivot at one end. A 
uniform magnetic field B

S
 is directed perpendic-

ular to the plane of rotation as shown in Figure 
31.10. Find the motional emf induced between the 
ends of the bar.

Conceptualize  The rotating bar is different in 
nature from the sliding bar in Figure 31.8. Con-
sider a small segment of the bar, however. It is a 
short length of conductor moving in a magnetic 
field and has an emf generated in it like the sliding bar. By thinking of each small segment as a source of emf, we see 
that all segments are in series and the emfs add.

Categorize  Based on the conceptualization of the problem, we approach this example as we did in the discussion lead-
ing to Equation 31.5, with the added feature that the short segments of the bar are traveling in circular paths.

S O L U T I O N
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dr
r
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vS

Figure 31.10  (Example 31.4)  
A conducting bar rotating 
around a pivot at one end in 
a uniform magnetic field that 
is perpendicular to the plane 
of rotation. A motional emf is 
induced between the ends of 
the bar.

continued

Analyze  Evaluate the magnitude of the emf induced in a 
segment of the bar of length dr having a velocity vS from 
Equation 31.5:

de 5 Bv dr

 

▸ 31.3 c o n t i n u e d

Find the total emf between the ends of the bar by adding 
the emfs induced across all segments:

e 5 3Bv dr

The tangential speed v of an element is related to the 
angular speed v through the relationship v 5 rv (Eq. 
10.10); use that fact and integrate:

e 5 B 3v dr 5 Bv3
,

0
 r dr 5 1

2 Bv,2



Motional emf in rotating bar (Ex 31.4)
Each infinitesimal slice of the bar, dr, is moving at a different
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field and has an emf generated in it like the sliding bar. By thinking of each small segment as a source of emf, we see 
that all segments are in series and the emfs add.
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A conducting bar rotating 
around a pivot at one end in 
a uniform magnetic field that 
is perpendicular to the plane 
of rotation. A motional emf is 
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the bar.

continued

Analyze  Evaluate the magnitude of the emf induced in a 
segment of the bar of length dr having a velocity vS from 
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de 5 Bv dr

 

▸ 31.3 c o n t i n u e d

Find the total emf between the ends of the bar by adding 
the emfs induced across all segments:

e 5 3Bv dr

The tangential speed v of an element is related to the 
angular speed v through the relationship v 5 rv (Eq. 
10.10); use that fact and integrate:

e 5 B 3v dr 5 Bv3
,

0
 r dr 5 1

2 Bv,2

Using our previous result:

dE = vB dr

E =

∫ `
0
ωrB dr

=
1

2
Bω`2



Motional emf and loops

Imagine a loop of wire that moves in a uniform magnetic field,
B, directed into the page.

vS

a b

Imagine the loop is composed of a pair of curved rods cut along
the lines shown.

Which way (left or right) is the emf directed in the top half? In
the bottom? How do the magnitudes compare?



Motional emf and loops

Imagine a loop of wire that moves in a uniform magnetic field,
B, directed into the page.

vS

a b

In this case, part of the loop near a develops a negative charge and
the part near b a positive charge, but overall no steady current
flows around the loop.



Motional emf and loops

Now imagine a loop of wire that moves in a non-uniform
magnetic field falling towards a wire.

I

vS

a b

How do the magnitudes of the emfs in the top and bottom
compare?

They are not the same! A current can flow.
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Motional emf and loops
Now imagine a loop of wire that moves in a non-uniform
magnetic field falling towards a wire. (Quiz 31.3)

I

vS

a b

What is the direction of the induced current in the loop of wire?

(A) clockwise

(B) counterclockwise

(C) zero

(D) impossible to determine
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Now imagine a loop of wire that moves in a non-uniform
magnetic field falling towards a wire. (Quiz 31.3)
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What is the direction of the induced current in the loop of wire?

(A) clockwise

(B) counterclockwise←
(C) zero

(D) impossible to determine



Motional emf and loops

What was different in the two cases (uniform vs. non-uniform
field)?

→ The field at different parts of the loop was different.

→ The magnetic flux through the loop was changing.

When we have a loop with a changing magnetic flux through it, we
can predict the EMF around the loop (Faraday’s Law).
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Reminder: Magnetic Flux

 30.5 Gauss’s Law in Magnetism 917

arbitrarily shaped surface as shown in Figure 30.19. If the magnetic field at this 
element is B

S
,  the magnetic flux through the element is B

S
? d A

S
, where d A

S
 is a vec-

tor that is perpendicular to the surface and has a magnitude equal to the area dA. 
Therefore, the total magnetic flux FB through the surface is

 FB ; 3  B
S

? d A
S

 (30.18)

 Consider the special case of a plane of area A in a uniform field B
S

 that makes an 
angle u with d A

S
. The magnetic flux through the plane in this case is

 FB 5 BA cos u  (30.19)

If the magnetic field is parallel to the plane as in Figure 30.20a, then u 5 908 and the 
flux through the plane is zero. If the field is perpendicular to the plane as in Figure 
30.20b, then u 5 0 and the flux through the plane is BA (the maximum value).
 The unit of magnetic flux is T ? m2, which is defined as a weber (Wb); 1 Wb 5  
1 T ? m2.

�W Definition of magnetic flux

Figure 30.20 Magnetic flux 
through a plane lying in a mag-
netic field.a

d

The flux through the plane is 
zero when the magnetic field is 
parallel to the plane surface.

A
S

B
S

b

dA
S

B
S

The flux through the plane is a 
maximum when the magnetic 
field is perpendicular to the plane.

Example 30.7   Magnetic Flux Through a Rectangular Loop

A rectangular loop of width a and length b is located near a long wire carrying a 
current I (Fig. 30.21). The distance between the wire and the closest side of the 
loop is c. The wire is parallel to the long side of the loop. Find the total magnetic 
flux through the loop due to the current in the wire.

Conceptualize  As we saw in Section 30.3, the magnetic field lines due to the wire 
will be circles, many of which will pass through the rectangular loop. We know that 
the magnetic field is a function of distance r from a long 
wire. Therefore, the magnetic field varies over the area of 
the rectangular loop.

Categorize  Because the magnetic field varies over the 
area of the loop, we must integrate over this area to find 
the total flux. That identifies this as an analysis problem.

S O L U T I O N

continued

b
r

I

c a

dr

Figure 30.21  (Example 
30.7) The magnetic field 
due to the wire carrying 
a current I is not uniform 
over the rectangular loop.

Analyze  Noting that B
S

 is parallel to d A
S

 at any point 
within the loop, find the magnetic flux through the rect-
angular area using Equation 30.18 and incorporate Equa-
tion 30.14 for the magnetic field:

FB 5 3 B
S

? d A
S

5 3 B dA 5  3 
m0I
2pr

 dA

B
S

 
u

d A 
S

Figure 30.19  The magnetic  
flux through an area element dA  
is B

S
? d A

S
5 B dA cos u, where  

d A
S

 is a vector perpendicular to 
the surface.

Magnetic flux

The magnetic flux of a magnetic field through a surface A is

ΦB =

∫
B · dA

Units: Tm2

If the surface is a flat plane and B is uniform, that just reduces to:

ΦB = B · A



Changing flux and emf

When a magnet is at rest near a loop of wire there is no potential
difference across the ends of the wire.

936 Chapter 31 Faraday’s Law

is moved either toward or away from it, the reading changes from zero. From these 
observations, we conclude that the loop detects that the magnet is moving relative to 
it and we relate this detection to a change in magnetic field. Therefore, it seems that 
a relationship exists between a current and a changing magnetic field.
 These results are quite remarkable because a current is set up even though no 
batteries are present in the circuit! We call such a current an induced current and say 
that it is produced by an induced emf.
 Now let’s describe an experiment conducted by Faraday and illustrated in Figure 
31.2. A primary coil is wrapped around an iron ring and connected to a switch and 
a battery. A current in the coil produces a magnetic field when the switch is closed. 
A secondary coil also is wrapped around the ring and is connected to a sensitive 
ammeter. No battery is present in the secondary circuit, and the secondary coil is 
not electrically connected to the primary coil. Any current detected in the second-
ary circuit must be induced by some external agent.
 Initially, you might guess that no current is ever detected in the secondary cir-
cuit. Something quite amazing happens when the switch in the primary circuit is 
either opened or thrown closed, however. At the instant the switch is closed, the 
ammeter reading changes from zero momentarily and then returns to zero. At the 
instant the switch is opened, the ammeter changes to a reading with the opposite 
sign and again returns to zero. Finally, the ammeter reads zero when there is either 
a steady current or no current in the primary circuit. To understand what happens 
in this experiment, note that when the switch is closed, the current in the primary 
circuit produces a magnetic field that penetrates the secondary circuit. Further-
more, when the switch is thrown closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time, 
and this changing field induces a current in the secondary circuit. Notice that no 
current is induced in the secondary coil even when a steady current exists in the 
primary coil. It is a change in the current in the primary coil that induces a current 
in the secondary coil, not just the existence of a current.
 As a result of these observations, Faraday concluded that an electric current can 
be induced in a loop by a changing magnetic field. The induced current exists 
only while the magnetic field through the loop is changing. Once the magnetic 
field reaches a steady value, the current in the loop disappears. In effect, the loop 
behaves as though a source of emf were connected to it for a short time. It is cus-
tomary to say that an induced emf is produced in the loop by the changing mag-
netic field.

Michael Faraday
British Physicist and Chemist 
(1791–1867)
Faraday is often regarded as the great-
est experimental scientist of the 1800s. 
His many contributions to the study of 
electricity include the invention of the 
electric motor, electric generator, and 
transformer as well as the discovery 
of electromagnetic induction and the 
laws of electrolysis. Greatly influenced 
by religion, he refused to work on the 
development of poison gas for the Brit-
ish military.
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When a magnet is moved 
toward a loop of wire 
connected to a sensitive 
ammeter, the ammeter 
shows that a current is 
induced in the loop.

N S

When the magnet is held 
stationary, there is no 
induced current in the 
loop, even when the 
magnet is inside the loop.
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N S

c

When the magnet is 
moved away from the 
loop, the ammeter shows 
that the induced current 
is opposite that shown in 
part      .a

Figure 31.1 A simple experiment 
showing that a current is induced 
in a loop when a magnet is moved 
toward or away from the loop.



Changing flux and emf
When the north pole of the magnet is moved towards the loop, the
magnetic flux increases.

936 Chapter 31 Faraday’s Law

is moved either toward or away from it, the reading changes from zero. From these 
observations, we conclude that the loop detects that the magnet is moving relative to 
it and we relate this detection to a change in magnetic field. Therefore, it seems that 
a relationship exists between a current and a changing magnetic field.
 These results are quite remarkable because a current is set up even though no 
batteries are present in the circuit! We call such a current an induced current and say 
that it is produced by an induced emf.
 Now let’s describe an experiment conducted by Faraday and illustrated in Figure 
31.2. A primary coil is wrapped around an iron ring and connected to a switch and 
a battery. A current in the coil produces a magnetic field when the switch is closed. 
A secondary coil also is wrapped around the ring and is connected to a sensitive 
ammeter. No battery is present in the secondary circuit, and the secondary coil is 
not electrically connected to the primary coil. Any current detected in the second-
ary circuit must be induced by some external agent.
 Initially, you might guess that no current is ever detected in the secondary cir-
cuit. Something quite amazing happens when the switch in the primary circuit is 
either opened or thrown closed, however. At the instant the switch is closed, the 
ammeter reading changes from zero momentarily and then returns to zero. At the 
instant the switch is opened, the ammeter changes to a reading with the opposite 
sign and again returns to zero. Finally, the ammeter reads zero when there is either 
a steady current or no current in the primary circuit. To understand what happens 
in this experiment, note that when the switch is closed, the current in the primary 
circuit produces a magnetic field that penetrates the secondary circuit. Further-
more, when the switch is thrown closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time, 
and this changing field induces a current in the secondary circuit. Notice that no 
current is induced in the secondary coil even when a steady current exists in the 
primary coil. It is a change in the current in the primary coil that induces a current 
in the secondary coil, not just the existence of a current.
 As a result of these observations, Faraday concluded that an electric current can 
be induced in a loop by a changing magnetic field. The induced current exists 
only while the magnetic field through the loop is changing. Once the magnetic 
field reaches a steady value, the current in the loop disappears. In effect, the loop 
behaves as though a source of emf were connected to it for a short time. It is cus-
tomary to say that an induced emf is produced in the loop by the changing mag-
netic field.

Michael Faraday
British Physicist and Chemist 
(1791–1867)
Faraday is often regarded as the great-
est experimental scientist of the 1800s. 
His many contributions to the study of 
electricity include the invention of the 
electric motor, electric generator, and 
transformer as well as the discovery 
of electromagnetic induction and the 
laws of electrolysis. Greatly influenced 
by religion, he refused to work on the 
development of poison gas for the Brit-
ish military.
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showing that a current is induced 
in a loop when a magnet is moved 
toward or away from the loop.

A current flows clockwise in the loop.
(Magnetic moment of current loop point to the right.)



Changing flux and emf
When the north pole of the magnet is moved away from the loop,
the magnetic flux decreases.

936 Chapter 31 Faraday’s Law

is moved either toward or away from it, the reading changes from zero. From these 
observations, we conclude that the loop detects that the magnet is moving relative to 
it and we relate this detection to a change in magnetic field. Therefore, it seems that 
a relationship exists between a current and a changing magnetic field.
 These results are quite remarkable because a current is set up even though no 
batteries are present in the circuit! We call such a current an induced current and say 
that it is produced by an induced emf.
 Now let’s describe an experiment conducted by Faraday and illustrated in Figure 
31.2. A primary coil is wrapped around an iron ring and connected to a switch and 
a battery. A current in the coil produces a magnetic field when the switch is closed. 
A secondary coil also is wrapped around the ring and is connected to a sensitive 
ammeter. No battery is present in the secondary circuit, and the secondary coil is 
not electrically connected to the primary coil. Any current detected in the second-
ary circuit must be induced by some external agent.
 Initially, you might guess that no current is ever detected in the secondary cir-
cuit. Something quite amazing happens when the switch in the primary circuit is 
either opened or thrown closed, however. At the instant the switch is closed, the 
ammeter reading changes from zero momentarily and then returns to zero. At the 
instant the switch is opened, the ammeter changes to a reading with the opposite 
sign and again returns to zero. Finally, the ammeter reads zero when there is either 
a steady current or no current in the primary circuit. To understand what happens 
in this experiment, note that when the switch is closed, the current in the primary 
circuit produces a magnetic field that penetrates the secondary circuit. Further-
more, when the switch is thrown closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time, 
and this changing field induces a current in the secondary circuit. Notice that no 
current is induced in the secondary coil even when a steady current exists in the 
primary coil. It is a change in the current in the primary coil that induces a current 
in the secondary coil, not just the existence of a current.
 As a result of these observations, Faraday concluded that an electric current can 
be induced in a loop by a changing magnetic field. The induced current exists 
only while the magnetic field through the loop is changing. Once the magnetic 
field reaches a steady value, the current in the loop disappears. In effect, the loop 
behaves as though a source of emf were connected to it for a short time. It is cus-
tomary to say that an induced emf is produced in the loop by the changing mag-
netic field.

Michael Faraday
British Physicist and Chemist 
(1791–1867)
Faraday is often regarded as the great-
est experimental scientist of the 1800s. 
His many contributions to the study of 
electricity include the invention of the 
electric motor, electric generator, and 
transformer as well as the discovery 
of electromagnetic induction and the 
laws of electrolysis. Greatly influenced 
by religion, he refused to work on the 
development of poison gas for the Brit-
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Figure 31.1 A simple experiment 
showing that a current is induced 
in a loop when a magnet is moved 
toward or away from the loop.

A current flows counterclockwise in the loop.
(Magnetic moment of current loop point to the left.)



Faraday’s Law

Faraday’s Law

If a conducting loop experiences a changing magnetic flux through
the area of the loop, an emf EF is induced in the loop that is
directly proportional to the rate of change of the flux, ΦB with
time.

Faraday’s Law for a conducting loop:

EF = −
dΦB

dt

Note: If there is a changing flux, there will be an induced emf,
however, if dΦB

dt = 0 there could still be emf in a wire from other
effects. (Enet = EF + Eother)
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Faraday’s Law

Faraday’s Law for a coil of N turns:

EF = −N
dΦB

dt

if ΦB is the flux through a single loop.



Changing Magnetic Flux

The magnetic flux might change for any of several reasons:

• the magnitude of B can change with time,

• the area A enclosed by the loop can change with time, or

• the angle θ between the field and the normal to the loop can
change with time.



Lenz’s Law
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30-4 Lenz’s Law
Soon after Faraday proposed his law of induction, Heinrich Friedrich Lenz
devised a rule for determining the direction of an induced current in a loop:

Additional examples, video, and practice available at WileyPLUS

Fig. 30-3 A coil C is located inside a solenoid S, which 
carries current i.

Axis

i

i

C

S

An induced current has a direction such that the magnetic field due to the current
opposes the change in the magnetic flux that induces the current.

Fig. 30-4 Lenz’s law at work.As the
magnet is moved toward the loop, a current
is induced in the loop.The current produces
its own magnetic field, with magnetic di-
pole moment oriented so as to oppose
the motion of the magnet.Thus, the in-
duced current must be counterclockwise 
as shown.

!:

N 

S 

i 

N 

S 

µ µ 

The magnet's motion
creates a magnetic
dipole that opposes
the motion.

Furthermore, the direction of an induced emf is that of the induced current. To get
a feel for Lenz’s law, let us apply it in two different but equivalent ways to Fig. 30-4,
where the north pole of a magnet is being moved toward a conducting loop.

1. Opposition to Pole Movement. The approach of the magnet’s north pole in
Fig. 30-4 increases the magnetic flux through the loop and thereby induces a
current in the loop. From Fig. 29-21, we know that the loop then acts as a mag-
netic dipole with a south pole and a north pole, and that its magnetic dipole
moment is directed from south to north. To oppose the magnetic flux
increase being caused by the approaching magnet, the loop’s north pole (and
thus ) must face toward the approaching north pole so as to repel it (Fig.
30-4). Then the curled–straight right-hand rule for (Fig. 29-21) tells us that
the current induced in the loop must be counterclockwise in Fig. 30-4.

If we next pull the magnet away from the loop, a current will again be
induced in the loop. Now, however, the loop will have a south pole facing
the retreating north pole of the magnet, so as to oppose the retreat. Thus, the
induced current will be clockwise.

2. Opposition to Flux Change. In Fig. 30-4, with the magnet initially distant, no
magnetic flux passes through the loop. As the north pole of the magnet then

!:
!:

!:

because the final current in the solenoid is zero. To find the
initial flux "B,i, we note that area A is pd2 (# 3.464 $ 10%41

4

4. The flux through each turn of coil C depends on the area
A and orientation of that turn in the solenoid’s magnetic
field . Because is uniform and directed perpendicular
to area A, the flux is given by Eq. 30-2 ("B # BA).

5. The magnitude B of the magnetic field in the interior of a so-
lenoid depends on the solenoid’s current i and its number n
of turns per unit length,according to Eq.29-23 (B # m0in).

Calculations: Because coil C consists of more than one
turn, we apply Faraday’s law in the form of Eq. 30-5
(! # %N d"B/dt), where the number of turns N is 130 and
d"B/dt is the rate at which the flux changes.

Because the current in the solenoid decreases at a
steady rate, flux "B also decreases at a steady rate, and so we
can write d"B/dt as &"B/&t. Then, to evaluate &"B, we need
the final and initial flux values. The final flux "B, f is zero 

B
:B

:

m2) and the number n is 220 turns/cm, or 22 000 turns/m.
Substituting Eq. 29-23 into Eq. 30-2 then leads to

Now we can write

We are interested only in magnitudes; so we ignore the mi-
nus signs here and in Eq. 30-5, writing

(Answer)# 7.5 $ 10 %2 V # 75 mV.

 ! # N 
d"B

dt
# (130 turns)(5.76 $ 10 %4 V)

 # %5.76 $ 10 %4 Wb/s # %5.76 $ 10 %4 V.

 #
(0 % 1.44 $ 10 %5 Wb)

25 $ 10 %3 s

 
d"B

dt
#

&"B

&t
 #

"B, f % "B,i

&t

 #  1.44 $ 10 %5 Wb.
  $ (3.464 $ 10 %4 m2)

 # (4' $ 10 %7 T (m/A)(1.5 A)(22 000 turns/m)

"B, i # BA # (!0 in)A

halliday_c30_791-825hr.qxd  11-12-2009  12:19  Page 794

Lenz’s Law

An induced current has a direction such that the
magnetic field due to the current opposes the
change in the magnetic flux that induces the
current.

Basically, Lenz’s law let’s us interpret the minus
sign in the equation we write to represent
Faraday’s Law.

E = −−−
dΦB

dt

1Figure from Halliday, Resnick, Walker, 9th ed.



Faraday’s and Lenz’s Laws

What about this case? We found the current should flow
counterclockwise.

 31.3 Lenz’s Law 945

produce a field directed out of the page. Hence, the induced current must be 
directed counterclockwise when the bar moves to the right. (Use the right-hand 
rule to verify this direction.) If the bar is moving to the left as in Figure 31.11b, the 
external magnetic flux through the area enclosed by the loop decreases with time. 
Because the field is directed into the page, the direction of the induced current 
must be clockwise if it is to produce a field that also is directed into the page. In 
either case, the induced current attempts to maintain the original flux through the 
area enclosed by the current loop.
 Let’s examine this situation using energy considerations. Suppose the bar is 
given a slight push to the right. In the preceding analysis, we found that this motion 
sets up a counterclockwise current in the loop. What happens if we assume the cur-
rent is clockwise such that the direction of the magnetic force exerted on the bar is 
to the right? This force would accelerate the rod and increase its velocity, which in 
turn would cause the area enclosed by the loop to increase more rapidly. The result 
would be an increase in the induced current, which would cause an increase in the 
force, which would produce an increase in the current, and so on. In effect, the sys-
tem would acquire energy with no input of energy. This behavior is clearly inconsis-
tent with all experience and violates the law of conservation of energy. Therefore, 
the current must be counterclockwise.

Q uick Quiz 31.3  Figure 31.12 shows a circular loop of wire falling toward a wire 
carrying a current to the left. What is the direction of the induced current in 
the loop of wire? (a) clockwise (b) counterclockwise (c) zero (d) impossible to 
determine

Bin
S

vS
I

R

a b

I
R

vS

As the conducting bar slides to the 
right, the magnetic flux due to the 
external magnetic field into the 
page through the area enclosed by 
the loop increases in time.

Bin
S

By Lenz’s law, the 
induced current 
must be 
counterclockwise 
to produce a 
counteracting 
magnetic field 
directed out of 
the page.

Figure 31.11  (a) Lenz’s law  
can be used to determine the 
direction of the induced current.  
(b) When the bar moves to the 
left, the induced current must  
be clockwise. Why?

I

vS

Figure 31.12  (Quick Quiz 31.3)

Conceptual Example 31.5   Application of Lenz’s Law

A magnet is placed near a metal loop as shown in Figure 31.13a (page 946).

(A)  Find the direction of the induced current in the loop when the magnet is pushed toward the loop.

As the magnet moves to the right toward the loop, the external magnetic flux through the loop increases with time. 
To counteract this increase in flux due to a field toward the right, the induced current produces its own magnetic 
field to the left as illustrated in Figure 31.13b; hence, the induced current is in the direction shown. Knowing that like  

S O L U T I O N

continued

The flux from the wire is into the page and increasing.

The field from the current in the loop is out of the page.

There is an upward resistive force on the ring. (cf. HW3, #3.)
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field to the left as illustrated in Figure 31.13b; hence, the induced current is in the direction shown. Knowing that like  

S O L U T I O N

continued

The flux from the wire is into the page and increasing.

The field from the current in the loop is out of the page.

There is an upward resistive force on the ring. (cf. HW3, #3.)



Loops in B-Fields Question

The figure shows four wire loops, with edge lengths of either L or
2L. All four loops will move through a region of uniform magnetic
field B (directed out of the page) at the same constant velocity.

Rank the four loops according to the maximum magnitude of the
emf induced as they move into the field, greatest first.
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Eddy Currents
Suppose we replace the conducting loop of Fig. 30-8 with a solid conducting plate.
If we then move the plate out of the magnetic field as we did the loop (Fig. 30-10a),
the relative motion of the field and the conductor again induces a current in the
conductor. Thus, we again encounter an opposing force and must do work because
of the induced current. With the plate, however, the conduction electrons making
up the induced current do not follow one path as they do with the loop. Instead, the
electrons swirl about within the plate as if they were caught in an eddy (whirlpool)
of water. Such a current is called an eddy current and can be represented, as it is in
Fig. 30-10a, as if it followed a single path.

As with the conducting loop of Fig. 30-8, the current induced in the plate
results in mechanical energy being dissipated as thermal energy. The dissipation
is more apparent in the arrangement of Fig. 30-10b; a conducting plate, free to
rotate about a pivot, is allowed to swing down through a magnetic field like
a pendulum. Each time the plate enters and leaves the field, a portion of its
mechanical energy is transferred to its thermal energy. After several swings, no
mechanical energy remains and the warmed-up plate just hangs from its pivot.

CHECKPOINT 3

The figure shows four wire loops, with edge lengths of either L or 2L. All four loops
will move through a region of uniform magnetic field (directed out of the page) at
the same constant velocity. Rank the four loops according to the maximum magnitude
of the emf induced as they move through the field, greatest first.
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30-6 Induced Electric Fields
Let us place a copper ring of radius r in a uniform external magnetic field, as in
Fig. 30-11a.The field—neglecting fringing—fills a cylindrical volume of radius R.
Suppose that we increase the strength of this field at a steady rate, perhaps by
increasing—in an appropriate way—the current in the windings of the electro-
magnet that produces the field. The magnetic flux through the ring will then
change at a steady rate and—by Faraday’s law—an induced emf and thus an
induced current will appear in the ring. From Lenz’s law we can deduce that the
direction of the induced current is counterclockwise in Fig. 30-11a.

If there is a current in the copper ring, an electric field must be present along the
ring because an electric field is needed to do the work of moving the conduction
electrons. Moreover, the electric field must have been produced by the changing

Fig. 30-10 (a) As you pull a solid con-
ducting plate out of a magnetic field, eddy
currents are induced in the plate.A typical
loop of eddy current is shown. (b) A con-
ducting plate is allowed to swing like a pen-
dulum about a pivot and into a region of
magnetic field.As it enters and leaves the
field, eddy currents are induced in the
plate.
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A a, b, c, d

B (b and c), (a and d)

C (c and d), (a and b)

D (a and b), (c and d)
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Summary

• motional emf

• Faraday’s law

• Lenz’s law

• applications

Next Test this Friday, Mar 9.

Homework
Serway & Jewett:

• NEW: Ch 31, Obj. Qs: 1, 3, 5, 7; Conc. Qs: 3, 5; Problems:
1, 5, 9, 13, 21, 27, 31, 33 (hint: use the Lorentz force on the
electrons in the spinning disk)


