Electricity and Magnetism Electric Field

Lana Sheridan
De Anza College

Jan 11, 2018

Last time

- Coulomb's Law
- force from many charges

Warm Up Question

10 In Fig. 21-20, a central particle of charge $-2 q$ is surrounded by a square array of charged particles, separated by either distance d or $d / 2$ along the perimeter of the square. What are the magnitude and direction of the net electrostatic force on the central particle due to the other particles? (Hint: Consideration of symmetry can greatly reduce the amount of work required here.)

Fig. 21-20 Question 10.

Overview

- forces at a fundamental level
- electric field
- field from many charges
- electric field lines
- net electric field

Forces at a Fundamental Level

Often people think about two kinds of forces: contact forces and field forces (ie. forces that act at a distance).

In mechanics problems, all forces except gravity are from direct contact.

Gravity is a field force.

The electric and magnetic forces are also field forces.

Forces at a Fundamental Level

Often people think about two kinds of forces: contact forces and field forces (ie. forces that act at a distance).

In mechanics problems, all forces except gravity are from direct contact.

Gravity is a field force.

The electric and magnetic forces are also field forces.

And actually, at a fundamental level, all forces that we know of are field forces.

Forces at a Fundamental Level

Contact forces are a result of electrostatic repulsion at very small scales.

Forces at a Fundamental Level

Contact forces are a result of electrostatic repulsion at very small scales.

Fundamental forces:

Force	\sim Rel. strength	Range (m)	Attract/Repel	Carrier
Gravitational	10^{-38}	∞	attractive	graviton
Electromagnetic	10^{-2}	∞	attr. \& rep.	photon
Weak Nuclear	10^{-13}	$<10^{-18}$	attr. \& rep.	W^{+}, W^{-}, Z^{0}
Strong Nuclear	1	$<10^{-15}$	attr. \& rep.	gluons

Forces at a Fundamental Level

Contact forces are a result of electrostatic repulsion at very small scales.

Fundamental forces:

Force	\sim Rel. strength	Range (m)	Attract/Repel	Carrier
Gravitational	10^{-38}	∞	attractive	graviton
Electromagnetic	10^{-2}	∞	attr. \& rep.	photon
Weak Nuclear	10^{-13}	$<10^{-18}$	attr. \& rep.	W^{+}, W^{-}, Z^{0}
Strong Nuclear	1	$<10^{-15}$	attr. \& rep.	gluons

Forces at a Fundamental Level

Contact forces are a result of electrostatic repulsion at very small scales.

Fundamental forces:

Force	\sim Rel. strength	Range (m)	Attract/Repel	Carrier
Gravitational	10^{-38}	∞	attractive	graviton
Electromagnetic	10^{-2}	∞	attr. \& rep.	photon
Weak Nuclear	10^{-13}	$<10^{-18}$	attr. \& rep.	W^{+}, W^{-}, Z^{0}
Strong Nuclear	1	$<10^{-15}$	attr. \& rep.	gluons

Gravity is actually quite a weak force, but it is the only one that (typically) matters on large scales - charges cancel out!

Fields

field (physics)

A field is any kind of physical quantity that has values specified at every point in space and time.

Vector Fields

In EM we have vector fields. The electrostatic force is mediated by a vector field.
vector field (physics)
any kind of physical quantity that has values specified as vectors at every point in space and time.

vector field (math, 3 dimensions)

A vector field is a vector-valued function \mathbf{F} that takes a point (x, y, z) and maps it to a vector $\mathbf{F}(x, y, z)$.

Fields

Fields were first introduced as a calculation tool.

A force-field can be used to identify the force a particular particle will feel at a certain point in space and time without needing a detailed description of the other objects in its environment that it will interact with.

Fields

Fields were first introduced as a calculation tool.

A force-field can be used to identify the force a particular particle will feel at a certain point in space and time without needing a detailed description of the other objects in its environment that it will interact with.

Imagine a charge q_{0}. We want to know the force it would feel if we put it at a specific location.

Fields

Imagine a charge q_{0}. We want to know the force it would feel if we put it at a specific location.

The electric field \mathbf{E} at that point will tell us that!

$$
\mathbf{F}=q_{0} \mathbf{E}
$$

Fields

The source of the field could be another charge or charges, but we do not need a description of the sources of the field to describe what their effect is on our particle. All we need to know is the field!
(This is also true for gravity. We do not need the mass of the Earth to know something's weight: $\mathbf{F}_{G}=m_{0} \mathbf{g}$.)

Vector Fields

2 - dimensional examples

Irrotational (curl-free) field.

Vector Fields

2 - dimensional examples

Solenoidal (divergence-free) field.

Force from an Electic Field

$$
\mathbf{F}=q_{0} \mathbf{E}
$$

but also:

$$
\mathbf{E}=\frac{\mathbf{F}}{q_{0}}
$$

${ }^{1}$ Figure from Halliday, Resnick, Walker.

E-Field from a Point Charge

We want an expression for the electric field from a point charge, q.
Using Coulomb's Law the force on the test particle is $\mathbf{F}_{\rightarrow 0}=\frac{k q q_{0}}{r^{2}} \hat{\mathbf{r}}$.

$$
\mathbf{E}=\frac{\mathbf{F}}{q_{0}}=\left(\frac{1}{\not \sigma 0}\right) \frac{k q \not q \sigma}{r^{2}} \hat{\mathbf{r}}
$$

The field at a displacement \mathbf{r} from a charge q is:

$$
\mathbf{E}=\frac{k q}{r^{2}} \hat{\mathbf{r}}
$$

Field from a Point Charge

The field at a displacement \mathbf{r} from a charge q is:

$$
\mathbf{E}=\frac{k q}{r^{2}} \hat{\mathbf{r}}
$$

This is a vector field:

Field Lines

Fields are drawn with lines showing the direction of force that a test particle will feel at that point. The density of the lines at that point in the diagram indicates the approximate magnitude of the force at that point.

Field from many charges

The field is just the force divide by the charge.

So, what is the force from many charges?

Field from many charges

The field is just the force divide by the charge.
So, what is the force from many charges? $\mathbf{F}_{\text {net }}$!

$$
\mathbf{F}_{\text {net }, 0}=\mathbf{F}_{1 \rightarrow 0}+\mathbf{F}_{2 \rightarrow 0}+\ldots+\mathbf{F}_{n \rightarrow 0}
$$

Field from many charges

The field is just the force divide by the charge.
So, what is the force from many charges? $\mathbf{F}_{\text {net }}$!

$$
\mathbf{F}_{\text {net }, 0}=\mathbf{F}_{1 \rightarrow 0}+\mathbf{F}_{2 \rightarrow 0}+\ldots+\mathbf{F}_{n \rightarrow 0}
$$

$$
\mathbf{E}_{\text {net }}=\frac{\mathbf{F}_{\text {net }}}{q_{0}}
$$

Total electric field:

$$
\mathbf{E}_{\text {net }}=\mathbf{E}_{1}+\mathbf{E}_{2}+\ldots+\mathbf{E}_{n}
$$

Question about field from point charges

Consider a proton p and an electron e on an x axis.

What is the direction of the electric field due to the electron only at point S and point R ?
(A) leftward at S, leftward at R
(B) leftward at S, rightward at R
(C) rightward at S, leftward at R
(D) rightward at S, rightward at R
${ }^{1}$ Figure from Halliday, Resnick, Walker, page 583.

Question about field from point charges

Consider a proton p and an electron e on an x axis.

What is the direction of the electric field due to the electron only at point S and point R ?
(A) leftward at S, leftward at R
(B) leftward at S, rightward at R
(C) rightward at S, leftward at $R \leftarrow$
(D) rightward at S, rightward at R
${ }^{1}$ Figure from Halliday, Resnick, Walker, page 583.

Question about field from point charges

Consider a proton p and an electron e on an x axis.

What is the direction of the net electric field at point S and point R ?
(A) leftward at S, leftward at R
(B) leftward at S, rightward at R
(C) rightward at S, leftward at R
(D) rightward at S, rightward at R
${ }^{1}$ Figure from Halliday, Resnick, Walker, page 583.

Question about field from point charges

Consider a proton p and an electron e on an x axis.

What is the direction of the net electric field at point S and point R ?
(A) leftward at S, leftward at R
(B) leftward at S, rightward at R
(C) rightward at S, leftward at $R \leftarrow$
(D) rightward at S, rightward at R
${ }^{1}$ Figure from Halliday, Resnick, Walker, page 583.

Field Lines

The electrostatic field caused by an electric dipole system looks something like:

Notice that the lines point outward from a positive charge and inward toward a negative charge.
${ }^{1}$ Figure from Serway \& Jewett

Summary

- vector fields
- electric field
- field of a point charge
- net field

Homework

- Collected homework 1, posted online, due on Monday, Jan 22.

Serway \& Jewett:

- Read Ch 23
- Ch 23, onward from page 716. Section Qs: 23, 33, 47, 49

