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Overview

• questions about the magnetic field

• reference frames

• a “preferred frame” for the laws of EM?

• special relativity and frames

• field transformations

• recovering the Biot-Savart law



Magnetic Force

Why is the magnetic force on a particle at right angles to the
B-field?

Why does the force depend on the velocity?

Why is there no magnetic force on a charged particle at rest?

Why does a moving charge create a magnetic field, but a
stationary one does not?



Magnetic Field

Why does the magnetic field curl around a current, while the
electric field points out from charges?

Why does the Biot-Savart law look so similar to the expression for
electric field from Coulomb’s law?

B =
µ0

4π

qv × r̂

r2
E =

1

4πε0

q

r2
r̂

Why are electricity and magnetism covered in the same course?
How are they related?



Frames of Reference

A Principle: The laws of physics should be the same in all inertial
frames.

This was true of Newton’s Laws, and is an attractive idea, because
otherwise we must identify a “preferred frame” in which the laws
hold.

It would seem this should be true for the laws of electricity and
magnetism (Maxwell’s laws) also.



Frames of Reference

How do we relate coordinates in different frames of reference?

Two frames S and S ′

1194 Chapter 39 Relativity

constant velocity with respect to the ground. If a passenger in the truck throws a 
ball straight up and if air resistance is neglected, the passenger observes that the 
ball moves in a vertical path. The motion of the ball appears to be precisely the 
same as if the ball were thrown by a person at rest on the Earth. The law of univer-
sal gravitation and the equations of motion under constant acceleration are obeyed 
whether the truck is at rest or in uniform motion.
 Consider also an observer on the ground as in Figure 39.1b. Both observers agree 
on the laws of physics: the observer in the truck throws a ball straight up, and it 
rises and falls back into his hand according to the particle under constant accelera-
tion model. Do the observers agree on the path of the ball thrown by the observer 
in the truck? The observer on the ground sees the path of the ball as a parabola as 
illustrated in Figure 39.1b, whereas, as mentioned earlier, the observer in the truck 
sees the ball move in a vertical path. Furthermore, according to the observer on the 
ground, the ball has a horizontal component of velocity equal to the velocity of the 
truck, and the horizontal motion of the ball is described by the particle under con-
stant velocity model. Although the two observers disagree on certain aspects of the 
situation, they agree on the validity of Newton’s laws and on the results of applying 
appropriate analysis models that we have learned. This agreement implies that no 
mechanical experiment can detect any difference between the two inertial frames. 
The only thing that can be detected is the relative motion of one frame with respect 
to the other.

Q uick Quiz 39.1  Which observer in Figure 39.1 sees the ball’s correct path? (a) the 
observer in the truck  (b) the observer on the ground  (c) both observers
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Figure 39.2  An event occurs at 
a point P. The event is seen by two 
observers in inertial frames S and 
S9, where S9 moves with a velocity 
vS relative to S.

 Suppose some physical phenomenon, which we call an event, occurs and is 
observed by an observer at rest in an inertial reference frame. The wording “in a 
frame” means that the observer is at rest with respect to the origin of that frame. 
The event’s location and time of occurrence can be specified by the four coordi-
nates (x, y, z, t). We would like to be able to transform these coordinates from those 
of an observer in one inertial frame to those of another observer in a frame moving 
with uniform relative velocity compared with the first frame.
 Consider two inertial frames S and S9 (Fig. 39.2). The S9 frame moves with a con-
stant velocity vS along the common x and x 9 axes, where vS is measured relative to S. 
We assume the origins of S and S9 coincide at t 5 0 and an event occurs at point P in 
space at some instant of time. For simplicity, we show the observer O in the S frame 
and the observer O 9 in the S9 frame as blue dots at the origins of their coordinate 
frames in Figure 39.2, but that is not necessary: either observer could be at any 
fixed location in his or her frame. Observer O describes the event with space–time 
coordinates (x, y, z, t), whereas observer O 9 in S9 uses the coordinates (x 9, y 9, z 9, 
t9) to describe the same event. Model the origin of S9 as a particle under constant 
velocity relative to the origin of S. As we see from the geometry in Figure 39.2, the 
relationships among these various coordinates can be written

 x 9 5 x 2 vt   y 9 5 y   z 9 5 z   t 9 5 t (39.1)

These equations are the Galilean space–time transformation equations. Note that 
time is assumed to be the same in both inertial frames. That is, within the frame-
work of classical mechanics, all clocks run at the same rate, regardless of their 
velocity, so the time at which an event occurs for an observer in S is the same as the 
time for the same event in S9. Consequently, the time interval between two succes-
sive events should be the same for both observers. Although this assumption may 
seem obvious, it turns out to be incorrect in situations where v is comparable to the 
speed of light.
 Now suppose a particle moves through a displacement of magnitude dx along 
the x axis in a time interval dt as measured by an observer in S. It follows from Equa-
tions 39.1 that the corresponding displacement dx 9 measured by an observer in S9 is 

Galilean transformation X
 equations

Galilean transformations:

x ′ = x − vt, y ′ = y , z ′ = z , t ′ = t



EM and Frames: Illustrative Example

Lorentz force:
F = q (E + v × B)

Imagine a charged particle moving at velocity v = v i in a uniform
magnetic field B = B j of infinite extent.

The force on the particle: F = qv × B = qvB k

Suppose we move to the frame where the particle is at rest. How
does the B-field appear in this frame?

→ Naively, it still would look the same (uniform and infinite).

Then in the new frame: F ′ = 0

Is there a force on the particle or not?
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Maxwell’s Laws in Different Frames

The laws of electromagnetism (Maxwell’s laws) are not constant in
different coordinate systems related by Galilean transformations.

By 1890 it was assumed that there was a “preferred frame” in
which Maxwell’s laws hold: the ether frame.

Einstein had a radical suggestion: Maxwell’s laws DO hold in all
inertial frames, but inertial frames are not related by Galilean
transformations.

Instead the speed of light c is constant in all frames:

c2∆t2 − ∆x2 − ∆y2 − ∆z2 = const.
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Relativistic (Lorentz) Transformations

If c is constant in all frames, position and time coordinates become
‘mixed’.

x ′ = γ (x − v t)

y ′ = y

z ′ = z

t ′ = γ
(
t −

v

c2
x
)

where

γ =
1√

1 − v2/c2

(Note: for v = 0, γ = 1, and as v → c , γ→∞.)



Relativistic Transformations: Time Dilation
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realizes that the signals traveled at the same speed over equal distances and so con-
cludes that the events at A and B occurred simultaneously. Now consider the same 
events as viewed by observer O 9. By the time the signals have reached observer O, 
observer O 9 has moved as indicated in Figure 39.5b. Therefore, the signal from 
B 9 has already swept past O 9, but the signal from A9 has not yet reached O 9. In 
other words, O 9 sees the signal from B 9 before seeing the signal from A9. Accord-
ing to Einstein, the two observers must find that light travels at the same speed. Therefore, 
observer O 9 concludes that one lightning bolt strikes the front of the boxcar before 
the other one strikes the back.
 This thought experiment clearly demonstrates that the two events that appear 
to be simultaneous to observer O do not appear to be simultaneous to observer O 9. 
Simultaneity is not an absolute concept but rather one that depends on the state 
of motion of the observer. Einstein’s thought experiment demonstrates that two 
observers can disagree on the simultaneity of two events. This disagreement, how-
ever, depends on the transit time of light to the observers and therefore does not 
demonstrate the deeper meaning of relativity. In relativistic analyses of high-speed 
situations, simultaneity is relative even when the transit time is subtracted out. In 
fact, in all the relativistic effects we discuss, we ignore differences caused by the 
transit time of light to the observers.

Time Dilation
To illustrate that observers in different inertial frames can measure different time 
intervals between a pair of events, consider a vehicle moving to the right with a 
speed v such as the boxcar shown in Figure 39.6a. A mirror is fixed to the ceiling 
of the vehicle, and observer O 9 at rest in the frame attached to the vehicle holds a 
flashlight a distance d below the mirror. At some instant, the flashlight emits a pulse 
of light directed toward the mirror (event 1), and at some later time after reflecting 
from the mirror, the pulse arrives back at the flashlight (event 2). Observer O 9 car-
ries a clock and uses it to measure the time interval Dtp between these two events. 
(The subscript p stands for proper, as we shall see in a moment.) We model the pulse 
of light as a particle under constant speed. Because the light pulse has a speed c, 
the time interval required for the pulse to travel from O 9 to the mirror and back is

 Dtp 5
distance traveled

speed
5

2d
c  (39.5)

a

Observer O ! 
sees the light 
pulse move up 
and down 
vertically a total 
distance of 2d.

vS

d d

Observer O  sees the light pulse move 
on a diagonal path and measures a 
distance of travel greater than 2d.

vS

O

v ∆t

c

v "t
2

b

c "t
2
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Mirror

Figure 39.6 (a) A mirror is fixed to a moving vehicle, and a light pulse is sent out by observer O9 at 
rest in the vehicle. (b) Relative to a stationary observer O standing alongside the vehicle, the mirror 
and O9 move with a speed v. (c) The right triangle for calculating the relationship between Dt and Dtp.

Pitfall Prevention 39.2
Who’s Right? You might wonder 
which observer in Figure 39.5 
is correct concerning the two 
lightning strikes. Both are correct 
because the principle of relativ-
ity states that there is no preferred 
inertial frame of reference. Although 
the two observers reach differ-
ent conclusions, both are correct 
in their own reference frame 
because the concept of simultane-
ity is not absolute. That, in fact, 
is the central point of relativity: 
any uniformly moving frame of 
reference can be used to describe 
events and do physics.

The observer in O ′ sees a light pulse going from the floor to the
ceiling of the car as taking time:

∆t ′ =
2d

c

Because it travels a distance:

2d = c∆t ′



Relativistic Transformations: Time Dilation

1200 Chapter 39 Relativity

realizes that the signals traveled at the same speed over equal distances and so con-
cludes that the events at A and B occurred simultaneously. Now consider the same 
events as viewed by observer O 9. By the time the signals have reached observer O, 
observer O 9 has moved as indicated in Figure 39.5b. Therefore, the signal from 
B 9 has already swept past O 9, but the signal from A9 has not yet reached O 9. In 
other words, O 9 sees the signal from B 9 before seeing the signal from A9. Accord-
ing to Einstein, the two observers must find that light travels at the same speed. Therefore, 
observer O 9 concludes that one lightning bolt strikes the front of the boxcar before 
the other one strikes the back.
 This thought experiment clearly demonstrates that the two events that appear 
to be simultaneous to observer O do not appear to be simultaneous to observer O 9. 
Simultaneity is not an absolute concept but rather one that depends on the state 
of motion of the observer. Einstein’s thought experiment demonstrates that two 
observers can disagree on the simultaneity of two events. This disagreement, how-
ever, depends on the transit time of light to the observers and therefore does not 
demonstrate the deeper meaning of relativity. In relativistic analyses of high-speed 
situations, simultaneity is relative even when the transit time is subtracted out. In 
fact, in all the relativistic effects we discuss, we ignore differences caused by the 
transit time of light to the observers.

Time Dilation
To illustrate that observers in different inertial frames can measure different time 
intervals between a pair of events, consider a vehicle moving to the right with a 
speed v such as the boxcar shown in Figure 39.6a. A mirror is fixed to the ceiling 
of the vehicle, and observer O 9 at rest in the frame attached to the vehicle holds a 
flashlight a distance d below the mirror. At some instant, the flashlight emits a pulse 
of light directed toward the mirror (event 1), and at some later time after reflecting 
from the mirror, the pulse arrives back at the flashlight (event 2). Observer O 9 car-
ries a clock and uses it to measure the time interval Dtp between these two events. 
(The subscript p stands for proper, as we shall see in a moment.) We model the pulse 
of light as a particle under constant speed. Because the light pulse has a speed c, 
the time interval required for the pulse to travel from O 9 to the mirror and back is

 Dtp 5
distance traveled

speed
5

2d
c  (39.5)

a

Observer O ! 
sees the light 
pulse move up 
and down 
vertically a total 
distance of 2d.

vS

d d

Observer O  sees the light pulse move 
on a diagonal path and measures a 
distance of travel greater than 2d.

vS

O

v ∆t

c

v "t
2

b

c "t
2

O ! O ! O ! O !

x !

y !

Mirror

Figure 39.6 (a) A mirror is fixed to a moving vehicle, and a light pulse is sent out by observer O9 at 
rest in the vehicle. (b) Relative to a stationary observer O standing alongside the vehicle, the mirror 
and O9 move with a speed v. (c) The right triangle for calculating the relationship between Dt and Dtp.

Pitfall Prevention 39.2
Who’s Right? You might wonder 
which observer in Figure 39.5 
is correct concerning the two 
lightning strikes. Both are correct 
because the principle of relativ-
ity states that there is no preferred 
inertial frame of reference. Although 
the two observers reach differ-
ent conclusions, both are correct 
in their own reference frame 
because the concept of simultane-
ity is not absolute. That, in fact, 
is the central point of relativity: 
any uniformly moving frame of 
reference can be used to describe 
events and do physics.

The observe in O sees a pulse going from the floor to the ceiling of
the car as taking time:

∆t =
2
√

d2 + (v∆t/2)2

c

∆t =
1√

1 − v2/c2
∆t ′ = γ∆t ′

So ∆t > ∆t ′! (“Time dilation”)



Relativistic Transformations: Length Contraction

How long does the rail car appear to observer O?

vS vS

A! B!

OA B

O!
A! B!

OA B

O!

Observer in O sees both ends of the car pass posts separated by a
distance ∆x at the same time.

The car length is therefore ∆x .

An observer in O ′ sees the front end of the car pass the first post
before the back end of the car passes the second post.

Meaning: ∆x < ∆x ′! (“Length contraction”)



Relativistic (Lorentz) Transformations

Again, generally:

x ′ = γ (x − v t)

y ′ = y

z ′ = z

t ′ = γ
(
t −

v

c2
x
)

where

γ =
1√

1 − v2/c2



Relativistic Transformations

γ =
1√

1 − v2/c2

For everything in this course, you can assume γ ≈ 1.

 39.4 Consequences of the Special Theory of Relativity 1201

 Now consider the same pair of events as viewed by observer O in a second frame at 
rest with respect to the ground as shown in Figure 39.6b. According to this observer, 
the mirror and the flashlight are moving to the right with a speed v, and as a result, 
the sequence of events appears entirely different. By the time the light from the 
flashlight reaches the mirror, the mirror has moved to the right a distance v Dt/2, 
where Dt is the time interval required for the light to travel from O9 to the mirror 
and back to O9 as measured by O. Observer O concludes that because of the motion 
of the vehicle, if the light is to hit the mirror, it must leave the flashlight at an angle 
with respect to the vertical direction. Comparing Figure 39.6a with Figure 39.6b, we 
see that the light must travel farther in part (b) than in part (a). (Notice that neither 
observer “knows” that he or she is moving. Each is at rest in his or her own inertial 
frame.)
 According to the second postulate of the special theory of relativity, both observ-
ers must measure c for the speed of light. Because the light travels farther accord-
ing to O, the time interval Dt measured by O is longer than the time interval Dtp 
measured by O 9. To obtain a relationship between these two time intervals, let’s use 
the right triangle shown in Figure 39.6c. The Pythagorean theorem givesac Dt

2
b2

5 av Dt
2

b2

1 d2

Solving for Dt gives

 Dt 5
2d"c 2 2 v2

5
2d

c Å1 2
v2

c2

 (39.6)

Because Dtp 5 2d/c, we can express this result as

 Dt 5
DtpÅ1 2

v2

c 2

5 g Dtp  (39.7)

where

 g 5
1Å1 2

v2

c 2

 (39.8)

Because g is always greater than unity, Equation 39.7 shows that the time interval 
Dt measured by an observer moving with respect to a clock is longer than the time 
interval Dtp measured by an observer at rest with respect to the clock. This effect is 
known as time dilation.
 Time dilation is not observed in our everyday lives, which can be understood by 
considering the factor g. This factor deviates significantly from a value of 1 only for 
very high speeds as shown in Figure 39.7 and Table 39.1. For example, for a speed 
of 0.1c, the value of g is 1.005. Therefore, there is a time dilation of only 0.5% at  

�W Time dilation
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Figure 39.7  Graph of g versus 
v. As the speed approaches that of 
light, g increases rapidly.

Table 39.1 Approximate 
Values for g at Various 
Speeds
v/c g

0 1
0.001 0 1.000 000 5
0.010 1.000 05
0.10 1.005
0.20 1.021
0.30 1.048
0.40 1.091
0.50 1.155
0.60 1.250
0.70 1.400
0.80 1.667
0.90 2.294
0.92 2.552
0.94 2.931
0.96 3.571
0.98 5.025
0.99 7.089
0.995 10.01
0.999 22.37

1Graph from Serway & Jewett, page 1201.



Approximate Transformations

For γ ≈ 1:

x ′ ≈ (x − v t)

y ′ = y

z ′ = z

t ′ ≈
(
t −

v

c2
x
)



Field Transformations

E ′
x = Ex

E ′
y = γ (Ey + v Bz)

E ′
z = γ (Ez + v By )

B ′
x = Bx

B ′
y = γ

(
By −

v

c2
Ez

)
B ′
z = γ

(
Bz −

v

c2
Ey

)

The electric and magnetic fields become mixed!



Field Transformations

E ′
x = Ex

E ′
y = (Ey + v Bz)

E ′
z = (Ez + v By )

B ′
x = Bx

B ′
y =

(
By −

v

c2
Ez

)
B ′
z =

(
Bz −

v

c2
Ey

)

for γ ≈ 1, ie. v << c .



What does it mean?

Different observers moving with different velocities do not
agree about what kind of EM-field they are seeing.

A field that looks like a pure magnetic field in one frame looks like
a mixture of E- and B-fields in other frames.

A field that looks like a pure electric field in one frame looks like a
mixture of E- and B-fields in other frames.



Previous Example

Lorentz force:
F = q (E + v × B)

Imagine a charged particle moving at velocity v = v i in a uniform
magnetic field B = B j of infinite extent.

The force on the particle: F = qvB k



Previous Example

The force on the particle: F = qvB k

Suppose we move to the frame where the particle is at rest. How
does the B-field appear in this frame?

It is not a pure magnetic field in this frame. It has an electric-field
component!

E ′
z = γvBy ≈ vB.

Therefore: F ′ = q(E ′ + 0× B ′) = qE ′ = qvB k.

The force is the same in both frames!



Maxwell’s Laws in Different Frames

• Maxwell’s laws do not change under Lorentz (Relativistic)
transformations.

• Relativity is now a well-tested theory, with Lorentz transforms
giving the relation between different inertial frames.

• The laws of EM hold in all inertial frames.

• A field that looks like a pure B-field (or pure E-field) in one
frame looks like a mixture of E- and B-fields in other frames.



Implications

Every charge has a surrounding electric field.

In a frame where the charge is moving, the charge must appear to
have a magnetic field as well.

→ the Biot-Savart law.



Biot-Savart law

Charge q sits at the origin of frame S .

At a point, P, on the y -axis at y = −r , the field is pure electric:

Ey = −
1

4πε0

q

r2

All other components are zero: Ex = Ez = Bx = By = Bz = 0



Biot-Savart law
Consider a frame S ′ moving in the positive x-direction of frame S .

At a point, P ′ on the y -axis y = −r , the field is mixed:

E ′
y = −

1

4πε0

q

r2

B ′
z = Bz −

v

c2
Ey

= 0 −
v

c2

(
−

1

4πε0

q

r2

)
=

1

4πε0c2
q v

r2

Doesn’t look like the Biot-Savart Law yet... What is (ε0µ0)
−1/2 ?

c =
1

√
ε0µ0
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Biot-Savart law

B ′
z = 1

4πε0c2
q v
r2

, c = 1√
ε0µ0

So,

B ′
z =

µ0

4π

q v

r2

This is at right angles to v = −v i ′ of the particle according to S ′,
and at right angles to r.

In general:

B ′ =
µ0

4π

q v × r̂

r2



Another example

Consider a charge moving parallel to a current carrying wire.
Assume the wire is neutrally charged overall.

Does it experience a force?

Lab Frame

Electron Rest Frame

v

F

F

B

E

Yes, the wire has a magnetic field, and the charge is moving in the
field.
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Another example

To make the situation concrete: let the charge be an electron,
moving alongside the wire with a velocity equal to the drift velocity
of the electrons making up the wire’s current.

In that case, the force on the electron will be towards the wire.

Lab Frame

Electron Rest Frame

v

F

F

B

E



Another example

What would this look like in the frame of the electron?

Lab Frame

Electron Rest Frame

v

F

F

B

E



Another example

What would this look like in the frame of the electron?

The electron would “see” an electric field radiating out from the
wire that would attract it to the wire. Why?

In the rest frame of the wire, the conduction electrons in the wire
are also stationary, but the ions making up the rest of the wire are
moving at the drift velocity.

This moving wire of ions is just slightly length-contracted. It’s
apparent charge density increases.

The wire appears to have a net positive charge in the electron’s
rest frame. The electron is attracted to it.
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Another example

We can either understand the electron’s attraction to the wire as a
magnetic or an electrostatic interaction depending on the frame!



Summary

• transformations between frames

• Maxwell’s laws transform according to relativistic
transformations.

Homework Serway & Jewett:

• read chapter 32


