
Electricity and Magnetism
Inductance

Lana Sheridan

De Anza College

Mar 13, 2018



Last time

• relativity and fields



Overview

• inductors and inductance

• resistor-inductor circuits



Inductors
A capacitor is a device that stores an electric field as a component
of a circuit.

inductor

a device that stores a magnetic field in a circuit

It is typically a coil of wire.



Circuit component symbols

battery V
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26.3 Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.
 In studying electric circuits, we use a simplified pictorial representation called a 
circuit diagram. Such a diagram uses circuit symbols to represent various circuit 
elements. The circuit symbols are connected by straight lines that represent the 
wires between the circuit elements. The circuit symbols for capacitors, batteries, 
and switches as well as the color codes used for them in this text are given in Fig-
ure 26.6. The symbol for the capacitor reflects the geometry of the most common 
model for a capacitor, a pair of parallel plates. The positive terminal of the battery 
is at the higher potential and is represented in the circuit symbol by the longer line.

Parallel Combination
Two capacitors connected as shown in Figure 26.7a are known as a parallel combi-
nation of capacitors. Figure 26.7b shows a circuit diagram for this combination of 
capacitors. The left plates of the capacitors are connected to the positive terminal of 
the battery by a conducting wire and are therefore both at the same electric potential 

Substitute the absolute value of DV into Equation 26.1: C 5
Q

DV
5
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Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E

S
 is parallel to d sS along a radial line:
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Write an expression for the potential difference between 
the two conductors from Equation 25.3:

Vb 2 Va 5 2 3
b

a
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? d sS

Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:

C 5 lim
b S `

  ab
ke 1b 2 a 2 5
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ke 1b 2 5

a
ke

5 4pP0a

Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.

WHAT IF ?
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Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.

 

▸ 26.2 c o n t i n u e d

Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).
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Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.

capacitor C
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 Today, thousands of superconductors are known, and as Table 27.3 illustrates, 
the critical temperatures of recently discovered superconductors are substantially 
higher than initially thought possible. Two kinds of superconductors are recog-
nized. The more recently identified ones are essentially ceramics with high criti-
cal temperatures, whereas superconducting materials such as those observed by 
Kamerlingh-Onnes are metals. If a room-temperature superconductor is ever iden-
tified, its effect on technology could be tremendous.
 The value of Tc is sensitive to chemical composition, pressure, and molecular 
structure. Copper, silver, and gold, which are excellent conductors, do not exhibit 
superconductivity.
 One truly remarkable feature of superconductors is that once a current is set up 
in them, it persists without any applied potential difference (because R 5 0). Steady cur-
rents have been observed to persist in superconducting loops for several years with 
no apparent decay!
 An important and useful application of superconductivity is in the development 
of superconducting magnets, in which the magnitudes of the magnetic field are 
approximately ten times greater than those produced by the best normal elec-
tromagnets. Such superconducting magnets are being considered as a means of 
storing energy. Superconducting magnets are currently used in medical magnetic 
resonance imaging, or MRI, units, which produce high-quality images of internal 
organs without the need for excessive exposure of patients to x-rays or other harm-
ful radiation.

27.6 Electrical Power
In typical electric circuits, energy TET is transferred by electrical transmission from 
a source such as a battery to some device such as a lightbulb or a radio receiver. 
Let’s determine an expression that will allow us to calculate the rate of this energy 
transfer. First, consider the simple circuit in Figure 27.11, where energy is delivered 
to a resistor. (Resistors are designated by the circuit symbol .) Because the 
connecting wires also have resistance, some energy is delivered to the wires and 
some to the resistor. Unless noted otherwise, we shall assume the resistance of the 
wires is small compared with the resistance of the circuit element so that the energy 
delivered to the wires is negligible.
 Imagine following a positive quantity of charge Q moving clockwise around the 
circuit in Figure 27.11 from point a through the battery and resistor back to point a. 
We identify the entire circuit as our system. As the charge moves from a to b through 
the battery, the electric potential energy of the system increases by an amount Q DV 

Table 27.3 Critical Temperatures 
for Various Superconductors
Material Tc  (K)

HgBa2Ca2Cu3O8 134
Tl—Ba—Ca—Cu—O 125
Bi—Sr—Ca—Cu—O 105
YBa2Cu3O7 92
Nb3Ge 23.2
Nb3Sn 18.05
Nb 9.46
Pb 7.18
Hg 4.15
Sn 3.72
Al 1.19
Zn 0.88

A small permanent magnet levi-
tated above a disk of the super-
conductor YBa2Cu3O7, which is in 
liquid nitrogen at 77 K.

Co
ur

te
sy

 o
f I

BM
 R

es
ea

rc
h 

La
bo

ra
to

ry

!

b

a

c

d

R

I

V
"

#

The direction of the 
effective flow of positive 
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Figure 27.11 A circuit consist-
ing of a resistor of resistance R 
and a battery having a potential 
difference DV across its terminals.
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32.5 Oscillations in an LC Circuit
When a capacitor is connected to an inductor as illustrated in Figure 32.10, the 
combination is an LC circuit. If the capacitor is initially charged and the switch is 
then closed, both the current in the circuit and the charge on the capacitor oscil-
late between maximum positive and negative values. If the resistance of the cir-
cuit is zero, no energy is transformed to internal energy. In the following analysis, 
the resistance in the circuit is neglected. We also assume an idealized situation in 
which energy is not radiated away from the circuit. This radiation mechanism is 
discussed in Chapter 34.
 Assume the capacitor has an initial charge Q max (the maximum charge) and 
the switch is open for t , 0 and then closed at t 5 0. Let’s investigate what happens 
from an energy viewpoint.
 When the capacitor is fully charged, the energy U in the circuit is stored in 
the capacitor’s electric field and is equal to Q 2

max/2C (Eq. 26.11). At this time, the 
current in the circuit is zero; therefore, no energy is stored in the inductor. After 
the switch is closed, the rate at which charges leave or enter the capacitor plates 
(which is also the rate at which the charge on the capacitor changes) is equal to 
the current in the circuit. After the switch is closed and the capacitor begins to 
discharge, the energy stored in its electric field decreases. The capacitor’s dis-
charge represents a current in the circuit, and some energy is now stored in the 
magnetic field of the inductor. Therefore, energy is transferred from the electric 
field of the capacitor to the magnetic field of the inductor. When the capacitor 
is fully discharged, it stores no energy. At this time, the current reaches its maxi-
mum value and all the energy in the circuit is stored in the inductor. The cur-
rent continues in the same direction, decreasing in magnitude, with the capacitor 
eventually becoming fully charged again but with the polarity of its plates now 
opposite the initial polarity. This process is followed by another discharge until 
the circuit returns to its original state of maximum charge Q max and the plate 
polarity shown in Figure 32.10. The energy continues to oscillate between induc-
tor and capacitor.
 The oscillations of the LC circuit are an electromagnetic analog to the mechani-
cal oscillations of the particle in simple harmonic motion studied in Chapter 15. 
Much of what was discussed there is applicable to LC oscillations. For example, we 
investigated the effect of driving a mechanical oscillator with an external force, 

S

LC
Q max

!

"

Figure 32.10  A simple LC cir-
cuit. The capacitor has an initial 
charge Q max, and the switch is 
open for t , 0 and then closed at 
t 5 0.

Find the mutual inductance, noting that the magnetic 
flux FBH through the handle’s coil caused by the mag-
netic field of the base coil is BA:

M 5
NHFBH

i
5

NH BA
i

5 m0 
NBNH

,
 A

Use Equation 30.17 to express the magnetic field in the 
interior of the base solenoid:

B 5 m0 
NB

,
 i

Wireless charging is used in a number of other “cordless” devices. One significant example is the inductive charging 
used by some manufacturers of electric cars that avoids direct metal-to-metal contact between the car and the charg-
ing apparatus.

Conceptualize  Be sure you can identify the two coils in the situation and understand that a changing current in one 
coil induces a current in the second coil.

Categorize  We will determine the result using concepts discussed in this section, so we categorize this example as a 
substitution problem.

S O L U T I O N

 

▸ 32.5 c o n t i n u e d



Inductance

Just like capacitors have a capacitance that depends on the
geometry of the capacitor, inductors have an inductance that
depends on their geometry.

Capacitance is defined as being the constant of proportionality
relating the charge on the plates to the potential difference across
the plates

Q = C (∆V ) .

Inductance is defined in a similar way.



Inductance

The magnetic flux linkage is NΦB .

Inductance, L

the constant of proportionality relating the magnetic flux linkage
(NΦB) to the current, I:

NΦB = L I ; L =
NΦB

I

ΦB is the magnetic flux through the coil, and I is the current in
the coil.

Units: henries, H.

1 henry = 1 H = 1 T m2 / A



Inductance

Just like capacitors have a capacitance that depends on the
geometry of the capacitor, inductors have an inductance that
depends on their structure.

For a solenoid inductor:

L = µ0n
2A`

where n is the number of turns per unit length, A is the cross
sectional area, and ` is the length of the inductor.

(Doesn’t depend on current or flux, only geometry of device.)



Value of µ0: New units

The magnetic permeability of free space µ0 is a constant.

µ0 = 4π× 10−7 T m / A

It can also be written in terms of henries:

µ0 = 4π× 10−7 H / m

(Remember, 1 H = 1 T m2 / A)



Inductance of Solenoid Inductors

Suppose now that the only source of magnetic flux in the solenoid
is the flux produced by a current in the wire.

Then the field produced within the solenoid is:

B = µ0In

where n is the number of turns per unit length.

That means the flux will be:

ΦB = BA cos(0◦) = BA = µ0InA

where A is the cross sectional area of the solenoid.



Inductance of Solenoid Inductors

L =
NΦB

I

Replacing N = n`, ΦB = µ0InA:

L =
n`(µ0In)A

I

So we confirm our expression for a solenoid inductor:

L = µ0n
2A`



Induction from an external flux vs Self-Induction

Previously, we considered the effect of a changing magnetic field
from some external source causing and emf and current flow in a
wire loop.

However, a changing current in the solenoid itself can be causing
the changing field that affects the flow of the current.

This inductance1, L, is the self-inductance of the coil.

NΦB = L I

We are assuming the flux ΦB is entirely due to the B-field
resulting from the current in the solenoid and there is no external
source of magnetic field adding to the flux.

1In this textbook, and most sources, L is the self-inductance.
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Self-Induction

When the current in the solenoid circuit is changing there is a
(self-) induced emf in the coil.

From Faraday’s Law, we have

E = −
d(NΦB)

dt

Since L is a constant for a particular inductor and Li = NΦB ,

EL = −L
di

dt

EL is the self-induced emf.

The emf opposes the change in current.



Inductors vs. Resistors

Inductors are a bit similar to resistors.

Resistors resist the flow of current.

Inductors resist any change in current.

If the current is high and lowered, the emf acts to keep the current
flowing. If the current is low and increased, the emf acts to resist
the increase.



Self-Induction

 32.1 Self-Induction and Inductance 971

 Consider a circuit consisting of a switch, a resistor, and a source of emf as shown 
in Figure 32.1. The circuit diagram is represented in perspective to show the orien-
tations of some of the magnetic field lines due to the current in the circuit. When 
the switch is thrown to its closed position, the current does not immediately jump 
from zero to its maximum value e/R. Faraday’s law of electromagnetic induction 
(Eq. 31.1) can be used to describe this effect as follows. As the current increases 
with time, the magnetic field lines surrounding the wires pass through the loop 
represented by the circuit itself. This magnetic field passing through the loop 
causes a magnetic flux through the loop. This increasing flux creates an induced 
emf in the circuit. The direction of the induced emf is such that it would cause an 
induced current in the loop (if the loop did not already carry a current), which 
would establish a magnetic field opposing the change in the original magnetic 
field. Therefore, the direction of the induced emf is opposite the direction of the 
emf of the battery, which results in a gradual rather than instantaneous increase in 
the current to its final equilibrium value. Because of the direction of the induced 
emf, it is also called a back emf, similar to that in a motor as discussed in Chapter 31. 
This effect is called self-induction because the changing flux through the circuit 
and the resultant induced emf arise from the circuit itself. The emf eL set up in this 
case is called a self-induced emf.
 To obtain a quantitative description of self-induction, recall from Faraday’s law 
that the induced emf is equal to the negative of the time rate of change of the mag-
netic flux. The magnetic flux is proportional to the magnetic field, which in turn 
is proportional to the current in the circuit. Therefore, a self-induced emf is always 
proportional to the time rate of change of the current. For any loop of wire, we can 
write this proportionality as

 eL 5 2L 
di
dt

 (32.1)

where L is a proportionality constant—called the inductance of the loop—that 
depends on the geometry of the loop and other physical characteristics. If we  
consider a closely spaced coil of N turns (a toroid or an ideal solenoid) carrying a 
current i and containing N turns, Faraday’s law tells us that eL 5 2N dFB /dt. Com-
bining this expression with Equation 32.1 gives

 L 5
NFB

i
 (32.2)

where it is assumed the same magnetic flux passes through each turn and L is the 
inductance of the entire coil.
 From Equation 32.1, we can also write the inductance as the ratio

 L 5 2
eL

di/dt
 (32.3)

Recall that resistance is a measure of the opposition to current as given by Equa-
tion 27.7, R 5 DV/I ; in comparison, Equation 32.3, being of the same mathematical 
form as Equation 27.7, shows us that inductance is a measure of the opposition to a 
change in current.
 The SI unit of inductance is the henry (H), which as we can see from Equation 
32.3 is 1 volt-second per ampere: 1 H 5 1 V ? s/A.
 As shown in Example 32.1, the inductance of a coil depends on its geometry. This 
dependence is analogous to the capacitance of a capacitor depending on the geome-
try of its plates as we found in Equation 26.3 and the resistance of a resistor depend-
ing on the length and area of the conducting material in Equation 27.10. Inductance 
calculations can be quite difficult to perform for complicated geometries, but the 
examples below involve simple situations for which inductances are easily evaluated.

�W Inductance of an N-turn coil

Joseph Henry
American Physicist (1797–1878)
Henry became the first director of 
the Smithsonian Institution and first 
president of the Academy of Natural 
Science. He improved the design of the 
electromagnet and constructed one of 
the first motors. He also discovered the 
phenomenon of self-induction, but he 
failed to publish his findings. The unit 
of inductance, the henry, is named in 
his honor.
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After the switch is closed, the 
current produces a magnetic flux 
through the area enclosed by the 
loop. As the current increases 
toward its equilibrium value, this 
magnetic flux changes in time
and induces an emf in the loop.
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Figure 32.1  Self-induction in a 
simple circuit.



Self-Induction
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PART 3

This means that when a self-induced emf is produced in the inductor of Fig. 30-13,
we cannot define an electric potential within the inductor itself, where the flux
is changing. However, potentials can still be defined at points of the circuit that
are not within the inductor—points where the electric fields are due to charge
distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference VL across an
inductor (between its terminals, which we assume to be outside the region of
changing flux). For an ideal inductor (its wire has negligible resistance), the mag-
nitude of VL is equal to the magnitude of the self-induced emf !L.

If, instead, the wire in the inductor has resistance r, we mentally separate the
inductor into a resistance r (which we take to be outside the region of changing
flux) and an ideal inductor of self-induced emf !L. As with a real battery of emf
! and internal resistance r, the potential difference across the terminals of a real
inductor then differs from the emf. Unless otherwise indicated, we assume here
that inductors are ideal.

Fig. 30-14 (a) The current i is increasing,
and the self-induced emf !L appears along
the coil in a direction such that it opposes
the increase.The arrow representing !L can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced emf
appears in a direction such that it opposes
the decrease.

CHECKPOINT 5

The figure shows an emf !L induced in a coil. Which of 
the following can describe the current through the coil: (a)
constant and rightward, (b) constant and leftward, (c) in-
creasing and rightward, (d) decreasing and rightward,
(e) increasing and leftward, (f) decreasing and leftward?

 L

30-9 RL Circuits
In Section 27-9 we saw that if we suddenly introduce an emf ! into a single-loop
circuit containing a resistor R and a capacitor C, the charge on the capacitor does
not build up immediately to its final equilibrium value C! but approaches it in an
exponential fashion:

(30-36)

The rate at which the charge builds up is determined by the capacitive time
constant tC, defined in Eq. 27-36 as

tC ! RC. (30-37)

If we suddenly remove the emf from this same circuit, the charge does not
immediately fall to zero but approaches zero in an exponential fashion:

(30-38)

The time constant tC describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we introduce

an emf ! into (or remove it from) a single-loop circuit containing a resistor R and
an inductor L. When the switch S in Fig. 30-15 is closed on a, for example, the cur-
rent in the resistor starts to rise. If the inductor were not present, the current
would rise rapidly to a steady value !/R. Because of the inductor, however, a self-
induced emf !L appears in the circuit; from Lenz’s law, this emf opposes the rise of
the current, which means that it opposes the battery emf ! in polarity. Thus, the
current in the resistor responds to the difference between two emfs, a constant !
due to the battery and a variable !L (! "L di/dt) due to self-induction.As long as
!L is present, the current will be less than !/R.

As time goes on, the rate at which the current increases becomes less rapid
and the magnitude of the self-induced emf, which is proportional to di/dt,
becomes smaller. Thus, the current in the circuit approaches !/R asymptotically.

q ! q0e"t/#C.

q ! C!(1 " e"t/#C).

i (increasing) 

(a) 

i (decreasing) 

(b) 
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The changing 
current changes 
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that opposes 
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Fig. 30-15 An RL circuit.When switch
S is closed on a, the current rises and ap-
proaches a limiting value !/R.
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This means that when a self-induced emf is produced in the inductor of Fig. 30-13,
we cannot define an electric potential within the inductor itself, where the flux
is changing. However, potentials can still be defined at points of the circuit that
are not within the inductor—points where the electric fields are due to charge
distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference VL across an
inductor (between its terminals, which we assume to be outside the region of
changing flux). For an ideal inductor (its wire has negligible resistance), the mag-
nitude of VL is equal to the magnitude of the self-induced emf !L.

If, instead, the wire in the inductor has resistance r, we mentally separate the
inductor into a resistance r (which we take to be outside the region of changing
flux) and an ideal inductor of self-induced emf !L. As with a real battery of emf
! and internal resistance r, the potential difference across the terminals of a real
inductor then differs from the emf. Unless otherwise indicated, we assume here
that inductors are ideal.

Fig. 30-14 (a) The current i is increasing,
and the self-induced emf !L appears along
the coil in a direction such that it opposes
the increase.The arrow representing !L can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced emf
appears in a direction such that it opposes
the decrease.

CHECKPOINT 5

The figure shows an emf !L induced in a coil. Which of 
the following can describe the current through the coil: (a)
constant and rightward, (b) constant and leftward, (c) in-
creasing and rightward, (d) decreasing and rightward,
(e) increasing and leftward, (f) decreasing and leftward?

 L

30-9 RL Circuits
In Section 27-9 we saw that if we suddenly introduce an emf ! into a single-loop
circuit containing a resistor R and a capacitor C, the charge on the capacitor does
not build up immediately to its final equilibrium value C! but approaches it in an
exponential fashion:

(30-36)

The rate at which the charge builds up is determined by the capacitive time
constant tC, defined in Eq. 27-36 as

tC ! RC. (30-37)

If we suddenly remove the emf from this same circuit, the charge does not
immediately fall to zero but approaches zero in an exponential fashion:

(30-38)

The time constant tC describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we introduce

an emf ! into (or remove it from) a single-loop circuit containing a resistor R and
an inductor L. When the switch S in Fig. 30-15 is closed on a, for example, the cur-
rent in the resistor starts to rise. If the inductor were not present, the current
would rise rapidly to a steady value !/R. Because of the inductor, however, a self-
induced emf !L appears in the circuit; from Lenz’s law, this emf opposes the rise of
the current, which means that it opposes the battery emf ! in polarity. Thus, the
current in the resistor responds to the difference between two emfs, a constant !
due to the battery and a variable !L (! "L di/dt) due to self-induction.As long as
!L is present, the current will be less than !/R.

As time goes on, the rate at which the current increases becomes less rapid
and the magnitude of the self-induced emf, which is proportional to di/dt,
becomes smaller. Thus, the current in the circuit approaches !/R asymptotically.

q ! q0e"t/#C.

q ! C!(1 " e"t/#C).

i (increasing) 

(a) 

i (decreasing) 

(b) 
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The changing 
current changes 
the flux, which
creates an emf 
that opposes 
the change.

Fig. 30-15 An RL circuit.When switch
S is closed on a, the current rises and ap-
proaches a limiting value !/R.
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Self-inductance question

The figure shows an emf EL induced in a coil.
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This means that when a self-induced emf is produced in the inductor of Fig. 30-13,
we cannot define an electric potential within the inductor itself, where the flux
is changing. However, potentials can still be defined at points of the circuit that
are not within the inductor—points where the electric fields are due to charge
distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference VL across an
inductor (between its terminals, which we assume to be outside the region of
changing flux). For an ideal inductor (its wire has negligible resistance), the mag-
nitude of VL is equal to the magnitude of the self-induced emf !L.

If, instead, the wire in the inductor has resistance r, we mentally separate the
inductor into a resistance r (which we take to be outside the region of changing
flux) and an ideal inductor of self-induced emf !L. As with a real battery of emf
! and internal resistance r, the potential difference across the terminals of a real
inductor then differs from the emf. Unless otherwise indicated, we assume here
that inductors are ideal.

Fig. 30-14 (a) The current i is increasing,
and the self-induced emf !L appears along
the coil in a direction such that it opposes
the increase.The arrow representing !L can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced emf
appears in a direction such that it opposes
the decrease.

CHECKPOINT 5

The figure shows an emf !L induced in a coil. Which of 
the following can describe the current through the coil: (a)
constant and rightward, (b) constant and leftward, (c) in-
creasing and rightward, (d) decreasing and rightward,
(e) increasing and leftward, (f) decreasing and leftward?

 L

30-9 RL Circuits
In Section 27-9 we saw that if we suddenly introduce an emf ! into a single-loop
circuit containing a resistor R and a capacitor C, the charge on the capacitor does
not build up immediately to its final equilibrium value C! but approaches it in an
exponential fashion:

(30-36)

The rate at which the charge builds up is determined by the capacitive time
constant tC, defined in Eq. 27-36 as

tC ! RC. (30-37)

If we suddenly remove the emf from this same circuit, the charge does not
immediately fall to zero but approaches zero in an exponential fashion:

(30-38)

The time constant tC describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we introduce

an emf ! into (or remove it from) a single-loop circuit containing a resistor R and
an inductor L. When the switch S in Fig. 30-15 is closed on a, for example, the cur-
rent in the resistor starts to rise. If the inductor were not present, the current
would rise rapidly to a steady value !/R. Because of the inductor, however, a self-
induced emf !L appears in the circuit; from Lenz’s law, this emf opposes the rise of
the current, which means that it opposes the battery emf ! in polarity. Thus, the
current in the resistor responds to the difference between two emfs, a constant !
due to the battery and a variable !L (! "L di/dt) due to self-induction.As long as
!L is present, the current will be less than !/R.

As time goes on, the rate at which the current increases becomes less rapid
and the magnitude of the self-induced emf, which is proportional to di/dt,
becomes smaller. Thus, the current in the circuit approaches !/R asymptotically.

q ! q0e"t/#C.

q ! C!(1 " e"t/#C).

i (increasing) 

(a) 

i (decreasing) 

(b) 
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The changing 
current changes 
the flux, which
creates an emf 
that opposes 
the change.

Fig. 30-15 An RL circuit.When switch
S is closed on a, the current rises and ap-
proaches a limiting value !/R.
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Which of the following can describe the current through the coil:

(A) constant and rightward

(B) increasing and rightward

(C) decreasing and rightward

(D) decreasing and leftward



Self-inductance question

The figure shows an emf EL induced in a coil.
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This means that when a self-induced emf is produced in the inductor of Fig. 30-13,
we cannot define an electric potential within the inductor itself, where the flux
is changing. However, potentials can still be defined at points of the circuit that
are not within the inductor—points where the electric fields are due to charge
distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference VL across an
inductor (between its terminals, which we assume to be outside the region of
changing flux). For an ideal inductor (its wire has negligible resistance), the mag-
nitude of VL is equal to the magnitude of the self-induced emf !L.

If, instead, the wire in the inductor has resistance r, we mentally separate the
inductor into a resistance r (which we take to be outside the region of changing
flux) and an ideal inductor of self-induced emf !L. As with a real battery of emf
! and internal resistance r, the potential difference across the terminals of a real
inductor then differs from the emf. Unless otherwise indicated, we assume here
that inductors are ideal.

Fig. 30-14 (a) The current i is increasing,
and the self-induced emf !L appears along
the coil in a direction such that it opposes
the increase.The arrow representing !L can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced emf
appears in a direction such that it opposes
the decrease.

CHECKPOINT 5

The figure shows an emf !L induced in a coil. Which of 
the following can describe the current through the coil: (a)
constant and rightward, (b) constant and leftward, (c) in-
creasing and rightward, (d) decreasing and rightward,
(e) increasing and leftward, (f) decreasing and leftward?

 L

30-9 RL Circuits
In Section 27-9 we saw that if we suddenly introduce an emf ! into a single-loop
circuit containing a resistor R and a capacitor C, the charge on the capacitor does
not build up immediately to its final equilibrium value C! but approaches it in an
exponential fashion:

(30-36)

The rate at which the charge builds up is determined by the capacitive time
constant tC, defined in Eq. 27-36 as

tC ! RC. (30-37)

If we suddenly remove the emf from this same circuit, the charge does not
immediately fall to zero but approaches zero in an exponential fashion:

(30-38)

The time constant tC describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we introduce

an emf ! into (or remove it from) a single-loop circuit containing a resistor R and
an inductor L. When the switch S in Fig. 30-15 is closed on a, for example, the cur-
rent in the resistor starts to rise. If the inductor were not present, the current
would rise rapidly to a steady value !/R. Because of the inductor, however, a self-
induced emf !L appears in the circuit; from Lenz’s law, this emf opposes the rise of
the current, which means that it opposes the battery emf ! in polarity. Thus, the
current in the resistor responds to the difference between two emfs, a constant !
due to the battery and a variable !L (! "L di/dt) due to self-induction.As long as
!L is present, the current will be less than !/R.

As time goes on, the rate at which the current increases becomes less rapid
and the magnitude of the self-induced emf, which is proportional to di/dt,
becomes smaller. Thus, the current in the circuit approaches !/R asymptotically.

q ! q0e"t/#C.

q ! C!(1 " e"t/#C).

i (increasing) 

(a) 

i (decreasing) 

(b) 
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The changing 
current changes 
the flux, which
creates an emf 
that opposes 
the change.

Fig. 30-15 An RL circuit.When switch
S is closed on a, the current rises and ap-
proaches a limiting value !/R.
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Which of the following can describe the current through the coil:

(A) constant and rightward

(B) increasing and rightward

(C) decreasing and rightward←
(D) decreasing and leftward



RL Circuits

Just like circuits with capacitors and resistor, circuits with
inductors and resistors have time-dependent behavior.
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This means that when a self-induced emf is produced in the inductor of Fig. 30-13,
we cannot define an electric potential within the inductor itself, where the flux
is changing. However, potentials can still be defined at points of the circuit that
are not within the inductor—points where the electric fields are due to charge
distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference VL across an
inductor (between its terminals, which we assume to be outside the region of
changing flux). For an ideal inductor (its wire has negligible resistance), the mag-
nitude of VL is equal to the magnitude of the self-induced emf !L.

If, instead, the wire in the inductor has resistance r, we mentally separate the
inductor into a resistance r (which we take to be outside the region of changing
flux) and an ideal inductor of self-induced emf !L. As with a real battery of emf
! and internal resistance r, the potential difference across the terminals of a real
inductor then differs from the emf. Unless otherwise indicated, we assume here
that inductors are ideal.

Fig. 30-14 (a) The current i is increasing,
and the self-induced emf !L appears along
the coil in a direction such that it opposes
the increase.The arrow representing !L can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced emf
appears in a direction such that it opposes
the decrease.

CHECKPOINT 5

The figure shows an emf !L induced in a coil. Which of 
the following can describe the current through the coil: (a)
constant and rightward, (b) constant and leftward, (c) in-
creasing and rightward, (d) decreasing and rightward,
(e) increasing and leftward, (f) decreasing and leftward?

 L

30-9 RL Circuits
In Section 27-9 we saw that if we suddenly introduce an emf ! into a single-loop
circuit containing a resistor R and a capacitor C, the charge on the capacitor does
not build up immediately to its final equilibrium value C! but approaches it in an
exponential fashion:

(30-36)

The rate at which the charge builds up is determined by the capacitive time
constant tC, defined in Eq. 27-36 as

tC ! RC. (30-37)

If we suddenly remove the emf from this same circuit, the charge does not
immediately fall to zero but approaches zero in an exponential fashion:

(30-38)

The time constant tC describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we introduce

an emf ! into (or remove it from) a single-loop circuit containing a resistor R and
an inductor L. When the switch S in Fig. 30-15 is closed on a, for example, the cur-
rent in the resistor starts to rise. If the inductor were not present, the current
would rise rapidly to a steady value !/R. Because of the inductor, however, a self-
induced emf !L appears in the circuit; from Lenz’s law, this emf opposes the rise of
the current, which means that it opposes the battery emf ! in polarity. Thus, the
current in the resistor responds to the difference between two emfs, a constant !
due to the battery and a variable !L (! "L di/dt) due to self-induction.As long as
!L is present, the current will be less than !/R.

As time goes on, the rate at which the current increases becomes less rapid
and the magnitude of the self-induced emf, which is proportional to di/dt,
becomes smaller. Thus, the current in the circuit approaches !/R asymptotically.

q ! q0e"t/#C.

q ! C!(1 " e"t/#C).

i (increasing) 

(a) 

i (decreasing) 

(b) 
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The changing 
current changes 
the flux, which
creates an emf 
that opposes 
the change.

Fig. 30-15 An RL circuit.When switch
S is closed on a, the current rises and ap-
proaches a limiting value !/R.
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Initially, an inductor acts to oppose changes in the current through
it.

A long time later, the current stabilizes and it acts like ordinary
connecting wire.



RL Circuits Question

 32.2 RL Circuits 973

element that has a large inductance is called an inductor and has the circuit symbol 
. We always assume the inductance of the remainder of a circuit is negligi-

ble compared with that of the inductor. Keep in mind, however, that even a circuit 
without a coil has some inductance that can affect the circuit’s behavior.
 Because the inductance of an inductor results in a back emf, an inductor in a cir-
cuit opposes changes in the current in that circuit. The inductor attempts to keep 
the current the same as it was before the change occurred. If the battery voltage in 
the circuit is increased so that the current rises, the inductor opposes this change 
and the rise is not instantaneous. If the battery voltage is decreased, the inductor 
causes a slow drop in the current rather than an immediate drop. Therefore, the 
inductor causes the circuit to be “sluggish” as it reacts to changes in the voltage.
 Consider the circuit shown in Figure 32.2, which contains a battery of negligible 
internal resistance. This circuit is an RL circuit because the elements connected to 
the battery are a resistor and an inductor. The curved lines on switch S2 suggest this 
switch can never be open; it is always set to either a or b. (If the switch is connected 
to neither a nor b, any current in the circuit suddenly stops.) Suppose S2 is set to a 
and switch S1 is open for t , 0 and then thrown closed at t 5 0. The current in the 
circuit begins to increase, and a back emf (Eq. 32.1) that opposes the increasing 
current is induced in the inductor.
 With this point in mind, let’s apply Kirchhoff’s loop rule to this circuit, travers-
ing the circuit in the clockwise direction:

 e 2 iR 2 L 
di
dt

5 0 (32.6)

where iR is the voltage drop across the resistor. (Kirchhoff’s rules were developed 
for circuits with steady currents, but they can also be applied to a circuit in which 
the current is changing if we imagine them to represent the circuit at one instant of 
time.) Now let’s find a solution to this differential equation, which is similar to that 
for the RC circuit (see Section 28.4).
 A mathematical solution of Equation 32.6 represents the current in the circuit as 
a function of time. To find this solution, we change variables for convenience, let-
ting x 5 (e/R) 2 i, so dx 5 2di. With these substitutions, Equation 32.6 becomes

x 1
L
R

  
dx
dt

5 0

Rearranging and integrating this last expression gives

3
x

x0

 
dx
x 5 2

R
L

 3
t

0
 dt 

 ln 
x
x0

5 2
R
L

 t

where x0 is the value of x at time t 5 0. Taking the antilogarithm of this result gives

x 5 x0e2Rt/L

Because i 5 0 at t 5 0, note from the definition of x that x0 5 e/R. Hence, this last 
expression is equivalent to

 
e
R

2 i 5
e
R

 e2Rt/L

 i 5
e
R
11 2 e2Rt/L 2

This expression shows how the inductor affects the current. The current does not 
increase instantly to its final equilibrium value when the switch is closed, but instead 
increases according to an exponential function. If the inductance is removed from 
the circuit, which corresponds to letting L approach zero, the exponential term 

S1

S2

L

Ra

b

!

"
e

When the switch S2 is thrown 
to position b, the battery is no
longer part of the circuit and
the current decreases.

When switch S1 is thrown
closed, the current increases
and an emf that opposes the 
increasing current is induced
in the inductor.

Figure 32.2 An RL circuit. 
When switch S2 is in position a, 
the battery is in the circuit.

Consider the circuit shown with S1 open and S2 at position a.
Switch S1 is now thrown closed.

At the instant it is closed, across which circuit element is the
voltage equal to the emf of the battery?

(A) the resistor

(B) the inductor

(C) both each of the inductor and the resistor

(D) neither
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 32.2 RL Circuits 973

element that has a large inductance is called an inductor and has the circuit symbol 
. We always assume the inductance of the remainder of a circuit is negligi-

ble compared with that of the inductor. Keep in mind, however, that even a circuit 
without a coil has some inductance that can affect the circuit’s behavior.
 Because the inductance of an inductor results in a back emf, an inductor in a cir-
cuit opposes changes in the current in that circuit. The inductor attempts to keep 
the current the same as it was before the change occurred. If the battery voltage in 
the circuit is increased so that the current rises, the inductor opposes this change 
and the rise is not instantaneous. If the battery voltage is decreased, the inductor 
causes a slow drop in the current rather than an immediate drop. Therefore, the 
inductor causes the circuit to be “sluggish” as it reacts to changes in the voltage.
 Consider the circuit shown in Figure 32.2, which contains a battery of negligible 
internal resistance. This circuit is an RL circuit because the elements connected to 
the battery are a resistor and an inductor. The curved lines on switch S2 suggest this 
switch can never be open; it is always set to either a or b. (If the switch is connected 
to neither a nor b, any current in the circuit suddenly stops.) Suppose S2 is set to a 
and switch S1 is open for t , 0 and then thrown closed at t 5 0. The current in the 
circuit begins to increase, and a back emf (Eq. 32.1) that opposes the increasing 
current is induced in the inductor.
 With this point in mind, let’s apply Kirchhoff’s loop rule to this circuit, travers-
ing the circuit in the clockwise direction:

 e 2 iR 2 L 
di
dt

5 0 (32.6)

where iR is the voltage drop across the resistor. (Kirchhoff’s rules were developed 
for circuits with steady currents, but they can also be applied to a circuit in which 
the current is changing if we imagine them to represent the circuit at one instant of 
time.) Now let’s find a solution to this differential equation, which is similar to that 
for the RC circuit (see Section 28.4).
 A mathematical solution of Equation 32.6 represents the current in the circuit as 
a function of time. To find this solution, we change variables for convenience, let-
ting x 5 (e/R) 2 i, so dx 5 2di. With these substitutions, Equation 32.6 becomes

x 1
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dt

5 0

Rearranging and integrating this last expression gives

3
x

x0

 
dx
x 5 2

R
L

 3
t

0
 dt 

 ln 
x
x0

5 2
R
L

 t

where x0 is the value of x at time t 5 0. Taking the antilogarithm of this result gives

x 5 x0e2Rt/L

Because i 5 0 at t 5 0, note from the definition of x that x0 5 e/R. Hence, this last 
expression is equivalent to
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This expression shows how the inductor affects the current. The current does not 
increase instantly to its final equilibrium value when the switch is closed, but instead 
increases according to an exponential function. If the inductance is removed from 
the circuit, which corresponds to letting L approach zero, the exponential term 
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When the switch S2 is thrown 
to position b, the battery is no
longer part of the circuit and
the current decreases.

When switch S1 is thrown
closed, the current increases
and an emf that opposes the 
increasing current is induced
in the inductor.

Figure 32.2 An RL circuit. 
When switch S2 is in position a, 
the battery is in the circuit.

Consider the circuit shown with S1 open and S2 at position a.
Switch S1 is now thrown closed.

At the instant it is closed, across which circuit element is the
voltage equal to the emf of the battery?

(A) the resistor

(B) the inductor←
(C) both each of the inductor and the resistor

(D) neither
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element that has a large inductance is called an inductor and has the circuit symbol 
. We always assume the inductance of the remainder of a circuit is negligi-

ble compared with that of the inductor. Keep in mind, however, that even a circuit 
without a coil has some inductance that can affect the circuit’s behavior.
 Because the inductance of an inductor results in a back emf, an inductor in a cir-
cuit opposes changes in the current in that circuit. The inductor attempts to keep 
the current the same as it was before the change occurred. If the battery voltage in 
the circuit is increased so that the current rises, the inductor opposes this change 
and the rise is not instantaneous. If the battery voltage is decreased, the inductor 
causes a slow drop in the current rather than an immediate drop. Therefore, the 
inductor causes the circuit to be “sluggish” as it reacts to changes in the voltage.
 Consider the circuit shown in Figure 32.2, which contains a battery of negligible 
internal resistance. This circuit is an RL circuit because the elements connected to 
the battery are a resistor and an inductor. The curved lines on switch S2 suggest this 
switch can never be open; it is always set to either a or b. (If the switch is connected 
to neither a nor b, any current in the circuit suddenly stops.) Suppose S2 is set to a 
and switch S1 is open for t , 0 and then thrown closed at t 5 0. The current in the 
circuit begins to increase, and a back emf (Eq. 32.1) that opposes the increasing 
current is induced in the inductor.
 With this point in mind, let’s apply Kirchhoff’s loop rule to this circuit, travers-
ing the circuit in the clockwise direction:

 e 2 iR 2 L 
di
dt

5 0 (32.6)

where iR is the voltage drop across the resistor. (Kirchhoff’s rules were developed 
for circuits with steady currents, but they can also be applied to a circuit in which 
the current is changing if we imagine them to represent the circuit at one instant of 
time.) Now let’s find a solution to this differential equation, which is similar to that 
for the RC circuit (see Section 28.4).
 A mathematical solution of Equation 32.6 represents the current in the circuit as 
a function of time. To find this solution, we change variables for convenience, let-
ting x 5 (e/R) 2 i, so dx 5 2di. With these substitutions, Equation 32.6 becomes
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where x0 is the value of x at time t 5 0. Taking the antilogarithm of this result gives

x 5 x0e2Rt/L

Because i 5 0 at t 5 0, note from the definition of x that x0 5 e/R. Hence, this last 
expression is equivalent to
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This expression shows how the inductor affects the current. The current does not 
increase instantly to its final equilibrium value when the switch is closed, but instead 
increases according to an exponential function. If the inductance is removed from 
the circuit, which corresponds to letting L approach zero, the exponential term 
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When the switch S2 is thrown 
to position b, the battery is no
longer part of the circuit and
the current decreases.

When switch S1 is thrown
closed, the current increases
and an emf that opposes the 
increasing current is induced
in the inductor.

Figure 32.2 An RL circuit. 
When switch S2 is in position a, 
the battery is in the circuit.

Consider the circuit shown with S1 open and S2 at position a.
Switch S1 is now thrown closed.

After a very long time, across which circuit element is the voltage
equal to the emf of the battery?

(A) the resistor

(B) the inductor

(C) both each of the inductor and the resistor

(D) neither
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element that has a large inductance is called an inductor and has the circuit symbol 
. We always assume the inductance of the remainder of a circuit is negligi-

ble compared with that of the inductor. Keep in mind, however, that even a circuit 
without a coil has some inductance that can affect the circuit’s behavior.
 Because the inductance of an inductor results in a back emf, an inductor in a cir-
cuit opposes changes in the current in that circuit. The inductor attempts to keep 
the current the same as it was before the change occurred. If the battery voltage in 
the circuit is increased so that the current rises, the inductor opposes this change 
and the rise is not instantaneous. If the battery voltage is decreased, the inductor 
causes a slow drop in the current rather than an immediate drop. Therefore, the 
inductor causes the circuit to be “sluggish” as it reacts to changes in the voltage.
 Consider the circuit shown in Figure 32.2, which contains a battery of negligible 
internal resistance. This circuit is an RL circuit because the elements connected to 
the battery are a resistor and an inductor. The curved lines on switch S2 suggest this 
switch can never be open; it is always set to either a or b. (If the switch is connected 
to neither a nor b, any current in the circuit suddenly stops.) Suppose S2 is set to a 
and switch S1 is open for t , 0 and then thrown closed at t 5 0. The current in the 
circuit begins to increase, and a back emf (Eq. 32.1) that opposes the increasing 
current is induced in the inductor.
 With this point in mind, let’s apply Kirchhoff’s loop rule to this circuit, travers-
ing the circuit in the clockwise direction:

 e 2 iR 2 L 
di
dt

5 0 (32.6)

where iR is the voltage drop across the resistor. (Kirchhoff’s rules were developed 
for circuits with steady currents, but they can also be applied to a circuit in which 
the current is changing if we imagine them to represent the circuit at one instant of 
time.) Now let’s find a solution to this differential equation, which is similar to that 
for the RC circuit (see Section 28.4).
 A mathematical solution of Equation 32.6 represents the current in the circuit as 
a function of time. To find this solution, we change variables for convenience, let-
ting x 5 (e/R) 2 i, so dx 5 2di. With these substitutions, Equation 32.6 becomes

x 1
L
R

  
dx
dt

5 0

Rearranging and integrating this last expression gives

3
x

x0

 
dx
x 5 2

R
L

 3
t

0
 dt 

 ln 
x
x0

5 2
R
L

 t

where x0 is the value of x at time t 5 0. Taking the antilogarithm of this result gives

x 5 x0e2Rt/L

Because i 5 0 at t 5 0, note from the definition of x that x0 5 e/R. Hence, this last 
expression is equivalent to

 
e
R

2 i 5
e
R

 e2Rt/L

 i 5
e
R
11 2 e2Rt/L 2

This expression shows how the inductor affects the current. The current does not 
increase instantly to its final equilibrium value when the switch is closed, but instead 
increases according to an exponential function. If the inductance is removed from 
the circuit, which corresponds to letting L approach zero, the exponential term 
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increasing current is induced
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Figure 32.2 An RL circuit. 
When switch S2 is in position a, 
the battery is in the circuit.

Consider the circuit shown with S1 open and S2 at position a.
Switch S1 is now thrown closed.

After a very long time, across which circuit element is the voltage
equal to the emf of the battery?

(A) the resistor←
(B) the inductor

(C) both each of the inductor and the resistor

(D) neither
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We can generalize these results as follows:

Initially, an inductor acts to oppose changes in the current through it.A long time
later, it acts like ordinary connecting wire.

Now let us analyze the situation quantitatively.With the switch S in Fig. 30-15
thrown to a, the circuit is equivalent to that of Fig. 30-16. Let us apply the loop
rule, starting at point x in this figure and moving clockwise around the loop along
with current i.

1. Resistor. Because we move through the resistor in the direction of current i,
the electric potential decreases by iR. Thus, as we move from point x to
point y, we encounter a potential change of !iR.

2. Inductor. Because current i is changing, there is a self-induced emf !L in the
inductor.The magnitude of !L is given by Eq. 30-35 as L di/dt.The direction of
!L is upward in Fig. 30-16 because current i is downward through the inductor
and increasing. Thus, as we move from point y to point z, opposite the direc-
tion of !L, we encounter a potential change of !L di/dt.

3. Battery. As we move from point z back to starting point x, we encounter a
potential change of "! due to the battery’s emf.

Thus, the loop rule gives us

or (RL circuit). (30-39)

Equation 30-39 is a differential equation involving the variable i and its first
derivative di/dt. To solve it, we seek the function i(t) such that when i(t) and its
first derivative are substituted in Eq. 30-39, the equation is satisfied and the initial
condition i(0) # 0 is satisfied.

Equation 30-39 and its initial condition are of exactly the form of Eq. 27-32
for an RC circuit, with i replacing q, L replacing R, and R replacing 1/C.The solu-
tion of Eq. 30-39 must then be of exactly the form of Eq. 27-33 with the same
replacements.That solution is

(30-40)

which we can rewrite as

(rise of current). (30-41)

Here tL, the inductive time constant, is given by

(time constant). (30-42)

Let’s examine Eq. 30-41 for just after the switch is closed (at time t # 0)
and for a time long after the switch is closed . If we substitute t # 0 into
Eq. 30-41, the exponential becomes e!0 # 1. Thus, Eq. 30-41 tells us that the cur-
rent is initially i # 0, as we expected. Next, if we let t go to $, then the exponen-
tial goes to e!$ # 0. Thus, Eq. 30-41 tells us that the current goes to its equilib-
rium value of !/R.

We can also examine the potential differences in the circuit. For example, Fig.
30-17 shows how the potential differences VR (# iR) across the resistor and 

(t : $)

%L #
L
R

i #
!

R
 (1 ! e!t/%L)

i #
!

R
 (1 ! e!Rt/L),

L 
di
dt

" Ri # !

!iR ! L 
di
dt

" ! # 0

Fig. 30-16 The circuit of Fig. 30-15
with the switch closed on a.We apply
the loop rule for the circuit clockwise,
starting at x.

R 

L – 
+ 

i 
y x 

z 

 L 
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Loop rule:
E− EL − iR = 0

E− L
di

dt
−iR = 0

This is a differential equation. Solution:

i =
E

R
(1 − e−t/τL) ; τL =

L

R



Current varies with time

E− L
di

dt
−iR = 0

Rearranging:

di

dt
=

E

L
− i

R

L

di

dt
=

R

L

(
E

R
− i

)
∫

1

E/R − i
di =

∫
R

L
dt

The limits of our integral will be determined by the initial
conditions for the situation we are considering.
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When charging an initially uncharged capacitor: i = 0 at t = 0

∫ i
0

1

E/R − i ′
di’ =

∫ t
0

R

L
dt’

− ln(E/R − i) + ln(E/R − 0) =
R

L
t

ln

(
E/R

E/R − i

)
=

Rt

L

E/R

E/R − i
= eRt/L

The solution is:

i(t) =
E

R

(
1 − e−Rt/L

)
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Current in loop:
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After switch S1 is thrown closed 
at t ! 0,  the current increases 
toward its maximum value 
e/R.

    t !
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Figure 32.3 Plot of the current 
versus time for the RL circuit 
shown in Figure 32.2. The time 
constant t is the time interval 
required for i to reach 63.2% of its 
maximum value.

becomes zero and there is no time dependence of the current in this case; the cur-
rent increases instantaneously to its final equilibrium value in the absence of the 
inductance.
 We can also write this expression as

 i 5
e
R
11 2 e2t/t 2  (32.7)

where the constant t is the time constant of the RL circuit:

 t 5
L
R

 (32.8)

Physically, t is the time interval required for the current in the circuit to reach  
(1 2 e21) 5 0.632 5 63.2% of its final value e/R. The time constant is a useful 
parameter for comparing the time responses of various circuits.
 Figure 32.3 shows a graph of the current versus time in the RL circuit. Notice 
that the equilibrium value of the current, which occurs as t approaches infinity, is 
e/R. That can be seen by setting di/dt equal to zero in Equation 32.6 and solving 
for the current i. (At equilibrium, the change in the current is zero.) Therefore, the 
current initially increases very rapidly and then gradually approaches the equilib-
rium value e/R as t approaches infinity.
 Let’s also investigate the time rate of change of the current. Taking the first time 
derivative of Equation 32.7 gives

 
di
dt

5
e
L

 e2 t/t (32.9)

This result shows that the time rate of change of the current is a maximum (equal to 
e/L) at t 5 0 and falls off exponentially to zero as t approaches infinity (Fig. 32.4).
 Now consider the RL circuit in Figure 32.2 again. Suppose switch S2 has been 
set at position a long enough (and switch S1 remains closed) to allow the current 
to reach its equilibrium value e/R. In this situation, the circuit is described by the 
outer loop in Figure 32.2. If S2 is thrown from a to b, the circuit is now described by 
only the right-hand loop in Figure 32.2. Therefore, the battery has been eliminated 
from the circuit. Setting e 5 0 in Equation 32.6 gives

iR 1 L 
di
dt

5 0

The time rate of change of 
current is a maximum at t ! 0, 
which is the instant at which  
switch S1 is thrown closed.

di
dt

t

L
e

Figure 32.4  Plot of di/dt versus 
time for the RL circuit shown in Fig-
ure 32.2. The rate decreases exponen-
tially with time as i increases toward 
its maximum value.

i(t) =
E

R

(
1 − e−Rt/L

)

Derivative of current:
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Figure 32.3 Plot of the current 
versus time for the RL circuit 
shown in Figure 32.2. The time 
constant t is the time interval 
required for i to reach 63.2% of its 
maximum value.

becomes zero and there is no time dependence of the current in this case; the cur-
rent increases instantaneously to its final equilibrium value in the absence of the 
inductance.
 We can also write this expression as

 i 5
e
R
11 2 e2t/t 2  (32.7)

where the constant t is the time constant of the RL circuit:

 t 5
L
R

 (32.8)

Physically, t is the time interval required for the current in the circuit to reach  
(1 2 e21) 5 0.632 5 63.2% of its final value e/R. The time constant is a useful 
parameter for comparing the time responses of various circuits.
 Figure 32.3 shows a graph of the current versus time in the RL circuit. Notice 
that the equilibrium value of the current, which occurs as t approaches infinity, is 
e/R. That can be seen by setting di/dt equal to zero in Equation 32.6 and solving 
for the current i. (At equilibrium, the change in the current is zero.) Therefore, the 
current initially increases very rapidly and then gradually approaches the equilib-
rium value e/R as t approaches infinity.
 Let’s also investigate the time rate of change of the current. Taking the first time 
derivative of Equation 32.7 gives
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This result shows that the time rate of change of the current is a maximum (equal to 
e/L) at t 5 0 and falls off exponentially to zero as t approaches infinity (Fig. 32.4).
 Now consider the RL circuit in Figure 32.2 again. Suppose switch S2 has been 
set at position a long enough (and switch S1 remains closed) to allow the current 
to reach its equilibrium value e/R. In this situation, the circuit is described by the 
outer loop in Figure 32.2. If S2 is thrown from a to b, the circuit is now described by 
only the right-hand loop in Figure 32.2. Therefore, the battery has been eliminated 
from the circuit. Setting e 5 0 in Equation 32.6 gives
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di

dt
=

E

L
e−Rt/L
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Potential drop across resistor:
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VL (! L di/dt) across the inductor vary with time for particular values of !, L,
and R. Compare this figure carefully with the corresponding figure for an RC
circuit  (Fig. 27-16).

To show that the quantity tL (! L/R) has the dimension of time, we convert
from henries per ohm as follows:

The first quantity in parentheses is a conversion factor based on Eq. 30-35, and
the second one is a conversion factor based on the relation V ! iR.

The physical significance of the time constant follows from Eq. 30-41. If we
put t ! tL ! L/R in this equation, it reduces to

(30-43)

Thus, the time constant tL is the time it takes the current in the circuit to reach
about 63% of its final equilibrium value !/R. Since the potential difference VR

across the resistor is proportional to the current i, a graph of the increasing
current versus time has the same shape as that of VR in Fig. 30-17a.

If the switch S in Fig. 30-15 is closed on a long enough for the equilibrium
current !/R to be established and then is thrown to b, the effect will be to remove
the battery from the circuit. (The connection to b must actually be made an
instant before the connection to a is broken. A switch that does this is called a
make-before-break switch.) With the battery gone, the current through the resis-
tor will decrease. However, it cannot drop immediately to zero but must decay to
zero over time. The differential equation that governs the decay can be found by
putting ! ! 0 in Eq. 30-39:

(30-44)

By analogy with Eqs. 27-38 and 27-39, the solution of this differential equation
that satisfies the initial condition i(0) ! i0 ! !/R is

(decay of current). (30-45)

We see that both current rise (Eq. 30-41) and current decay (Eq. 30-45) in an RL
circuit are governed by the same inductive time constant, tL.

We have used i0 in Eq. 30-45 to represent the current at time t ! 0. In our
case that happened to be !/R, but it could be any other initial value.

i !
!

R
 e"t/#L ! i0e"t/#L

L 
di
dt

$ iR ! 0.

i !
!

R
 (1 " e"1) ! 0.63 

!

R
.

1 
H
%

! 1 
H
%

 ! 1 V & s
1 H &A " ! 1 %&A

1 V " ! 1 s.

Fig. 30-17 The variation with time of
(a) VR, the potential difference across the
resistor in the circuit of Fig. 30-16, and (b)
VL, the potential difference across the in-
ductor in that circuit.The small triangles
represent successive intervals of one induc-
tive time constant tL ! L/R.The figure is
plotted for R ! 2000 %, L ! 4.0 H, and 
! ! 10 V.
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The resistor's potential
difference turns on.
The inductor's potential
difference turns off.

CHECKPOINT 6

The figure shows three circuits with identical batteries, inductors, and resistors. Rank
the circuits according to the current through the battery (a) just after the switch is
closed and (b) a long time later, greatest first. (If you have trouble here, work through
the next sample problem and then try again.)

(1) (2) (3) 
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VR = iR

emf across inductor:
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VL (! L di/dt) across the inductor vary with time for particular values of !, L,
and R. Compare this figure carefully with the corresponding figure for an RC
circuit  (Fig. 27-16).

To show that the quantity tL (! L/R) has the dimension of time, we convert
from henries per ohm as follows:

The first quantity in parentheses is a conversion factor based on Eq. 30-35, and
the second one is a conversion factor based on the relation V ! iR.

The physical significance of the time constant follows from Eq. 30-41. If we
put t ! tL ! L/R in this equation, it reduces to

(30-43)

Thus, the time constant tL is the time it takes the current in the circuit to reach
about 63% of its final equilibrium value !/R. Since the potential difference VR

across the resistor is proportional to the current i, a graph of the increasing
current versus time has the same shape as that of VR in Fig. 30-17a.

If the switch S in Fig. 30-15 is closed on a long enough for the equilibrium
current !/R to be established and then is thrown to b, the effect will be to remove
the battery from the circuit. (The connection to b must actually be made an
instant before the connection to a is broken. A switch that does this is called a
make-before-break switch.) With the battery gone, the current through the resis-
tor will decrease. However, it cannot drop immediately to zero but must decay to
zero over time. The differential equation that governs the decay can be found by
putting ! ! 0 in Eq. 30-39:

(30-44)

By analogy with Eqs. 27-38 and 27-39, the solution of this differential equation
that satisfies the initial condition i(0) ! i0 ! !/R is

(decay of current). (30-45)

We see that both current rise (Eq. 30-41) and current decay (Eq. 30-45) in an RL
circuit are governed by the same inductive time constant, tL.

We have used i0 in Eq. 30-45 to represent the current at time t ! 0. In our
case that happened to be !/R, but it could be any other initial value.
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Fig. 30-17 The variation with time of
(a) VR, the potential difference across the
resistor in the circuit of Fig. 30-16, and (b)
VL, the potential difference across the in-
ductor in that circuit.The small triangles
represent successive intervals of one induc-
tive time constant tL ! L/R.The figure is
plotted for R ! 2000 %, L ! 4.0 H, and 
! ! 10 V.
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CHECKPOINT 6

The figure shows three circuits with identical batteries, inductors, and resistors. Rank
the circuits according to the current through the battery (a) just after the switch is
closed and (b) a long time later, greatest first. (If you have trouble here, work through
the next sample problem and then try again.)

(1) (2) (3) 
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|EL(t)| = L
di

dt



RL Circuits: Time Constant

τL = L/R

τL is called the time constant of the circuit.

(Notice that it is defined differently for RL circuits as opposed to
RC circuits.)

This gives the time for the current to reach (1 − e−1) = 63.2% of
its final value.

Alternatively, it is the time for the potential drop across the
inductor to fall to 1/e of its initial value.

It is useful for comparing the “relaxation time” of different
RL-circuits.
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This means that when a self-induced emf is produced in the inductor of Fig. 30-13,
we cannot define an electric potential within the inductor itself, where the flux
is changing. However, potentials can still be defined at points of the circuit that
are not within the inductor—points where the electric fields are due to charge
distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference VL across an
inductor (between its terminals, which we assume to be outside the region of
changing flux). For an ideal inductor (its wire has negligible resistance), the mag-
nitude of VL is equal to the magnitude of the self-induced emf !L.

If, instead, the wire in the inductor has resistance r, we mentally separate the
inductor into a resistance r (which we take to be outside the region of changing
flux) and an ideal inductor of self-induced emf !L. As with a real battery of emf
! and internal resistance r, the potential difference across the terminals of a real
inductor then differs from the emf. Unless otherwise indicated, we assume here
that inductors are ideal.

Fig. 30-14 (a) The current i is increasing,
and the self-induced emf !L appears along
the coil in a direction such that it opposes
the increase.The arrow representing !L can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced emf
appears in a direction such that it opposes
the decrease.

CHECKPOINT 5

The figure shows an emf !L induced in a coil. Which of 
the following can describe the current through the coil: (a)
constant and rightward, (b) constant and leftward, (c) in-
creasing and rightward, (d) decreasing and rightward,
(e) increasing and leftward, (f) decreasing and leftward?

 L

30-9 RL Circuits
In Section 27-9 we saw that if we suddenly introduce an emf ! into a single-loop
circuit containing a resistor R and a capacitor C, the charge on the capacitor does
not build up immediately to its final equilibrium value C! but approaches it in an
exponential fashion:

(30-36)

The rate at which the charge builds up is determined by the capacitive time
constant tC, defined in Eq. 27-36 as

tC ! RC. (30-37)

If we suddenly remove the emf from this same circuit, the charge does not
immediately fall to zero but approaches zero in an exponential fashion:

(30-38)

The time constant tC describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we introduce

an emf ! into (or remove it from) a single-loop circuit containing a resistor R and
an inductor L. When the switch S in Fig. 30-15 is closed on a, for example, the cur-
rent in the resistor starts to rise. If the inductor were not present, the current
would rise rapidly to a steady value !/R. Because of the inductor, however, a self-
induced emf !L appears in the circuit; from Lenz’s law, this emf opposes the rise of
the current, which means that it opposes the battery emf ! in polarity. Thus, the
current in the resistor responds to the difference between two emfs, a constant !
due to the battery and a variable !L (! "L di/dt) due to self-induction.As long as
!L is present, the current will be less than !/R.

As time goes on, the rate at which the current increases becomes less rapid
and the magnitude of the self-induced emf, which is proportional to di/dt,
becomes smaller. Thus, the current in the circuit approaches !/R asymptotically.

q ! q0e"t/#C.

q ! C!(1 " e"t/#C).

i (increasing) 

(a) 

i (decreasing) 

(b) 

 L 

 L 

 L 

 L 

The changing 
current changes 
the flux, which
creates an emf 
that opposes 
the change.

Fig. 30-15 An RL circuit.When switch
S is closed on a, the current rises and ap-
proaches a limiting value !/R.

Sa

b R

L–
+
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Battery switched out - switch to b.
Loop rule:

EL − iR = 0

−L
di

dt
−iR = 0

Solution:

i =
E

R
e−t/τL ; τL =

L

R
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 32.2 RL Circuits 975

Example 32.2   Time Constant of an RL Circuit

Consider the circuit in Figure 32.2 again. Suppose the circuit elements have the following values: e 5 12.0 V, R 5  
6.00 V, and L 5 30.0 mH.

(A)  Find the time constant of the circuit.

Conceptualize  You should understand the operation and behavior of the circuit in Figure 32.2 from the discussion in 
this section.

Categorize  We evaluate the results using equations developed in this section, so this example is a substitution problem.

S O L U T I O N

Evaluate the time constant from Equation 32.8: t 5
L
R

5
30.0 3 1023 H

6.00 V
5 5.00 ms

(B)  Switch S2 is at position a, and switch S1 is thrown closed at t 5 0. Calculate the current in the circuit at t 5 2.00 ms.

S O L U T I O N

Evaluate the current at t 5 2.00 ms from 
Equation 32.7:

i 5
e
R

 11 2 e2t/t 2 5
12.0 V
6.00 V

11 2 e22.00 ms/5.00 ms 2 5 2.00 A 11 2 e20.400 2
5 0.659 A

(C)  Compare the potential difference across the resistor with that across the inductor.

At the instant the switch is closed, there is no current and therefore no potential difference across the resistor. At this 
instant, the battery voltage appears entirely across the inductor in the form of a back emf of 12.0 V as the inductor tries 
to maintain the zero-current condition. (The top end of the inductor in Fig. 32.2 is at a higher electric potential than 
the bottom end.) As time passes, the emf across the inductor decreases and the current in the resistor (and hence the 
voltage across it) increases as shown in Figure 32.6 (page 976). The sum of the two voltages at all times is 12.0 V.

 In Figure 32.6, the voltages across the resistor and inductor are equal at 3.4 ms. What if you wanted to 
delay the condition in which the voltages are equal to some later instant, such as t 5 10.0 ms? Which parameter, L or R, 
would require the least adjustment, in terms of a percentage change, to achieve that?

S O L U T I O N

WHAT IF ?

At t ! 0, the switch is thrown to 
position b and the current has 
its maximum value e/R.

i

t

R
e

Figure 32.5 Current versus 
time for the right-hand loop of  
the circuit shown in Figure 32.2. 
For t , 0, switch S2 is at position a.

It is left as a problem (Problem 22) to show that the solution of this differential 
equation is

 i 5
e
R

 e2t/t 5 Ii e2t/t (32.10)

where e is the emf of the battery and Ii 5 e/R is the initial current at the instant 
the switch is thrown to b.
 If the circuit did not contain an inductor, the current would immediately 
decrease to zero when the battery is removed. When the inductor is present, it 
opposes the decrease in the current and causes the current to decrease exponen-
tially. A graph of the current in the circuit versus time (Fig. 32.5) shows that the 
current is continuously decreasing with time.

Q uick Quiz 32.2  Consider the circuit in Figure 32.2 with S1 open and S2 at posi-
tion a. Switch S1 is now thrown closed. (i) At the instant it is closed, across which 
circuit element is the voltage equal to the emf of the battery? (a) the resistor  
(b) the inductor (c) both the inductor and resistor (ii) After a very long time, 
across which circuit element is the voltage equal to the emf of the battery? 
Choose from among the same answers.

continued

i =
E

R
e−t/τL ; τL =

L

R



Summary

• inductance

• RL circuits

Homework
Serway & Jewett:

• Ch 32, onward from page 988. Obj. Qs: 3, 5; Conc. Qs.: 5;
Probs: 1, 3, 9


