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Last time

• energy stored in an inductor

• coaxial inductor

• mutual inductance



Overview

• mutual inductance applications

• LC circuits

• RLC circuits



Mutual Inductance

An inductor can have an induced emf from its own changing
magnetic field.

It also can have an emf from an external changing field.

That external changing field could be another inductor.

For self-inductance on a coil labeled 1:

N1ΦB,1 = L1i1

For mutual inductance:

N1ΦB,2→1 = M21i2

The flux is in coil 1, but the current that causes the flux is in coil 2.
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Mutual Inductance
For mutual inductance:

N1ΦB,2→1 = M21i2

The flux is in coil 1, but the current that causes the flux is in coil 2.

which has the same form as Eq. 30-28,

L ! N"/i, (30-58)

the definition of inductance.We can recast Eq. 30-57 as

M21i1 ! N2"21. (30-59)

If we cause i1 to vary with time by varying R, we have

(30-60)

The right side of this equation is, according to Faraday’s law, just the magnitude
of the emf !2 appearing in coil 2 due to the changing current in coil 1.Thus, with a
minus sign to indicate direction,

(30-61)

which you should compare with Eq. 30-35 for self-induction (! ! #L di/dt).
Let us now interchange the roles of coils 1 and 2,as in Fig.30-19b; that is,we set up a

current i2 in coil 2 by means of a battery,and this produces a magnetic flux "12 that links
coil 1.If we change i2 with time by varying R,we then have,by the argument given above,

(30-62)

Thus, we see that the emf induced in either coil is proportional to the rate of
change of current in the other coil.The proportionality constants M21 and M12 seem to
be different. We assert, without proof, that they are in fact the same so that no sub-
scripts are needed.(This conclusion is true but is in no way obvious.) Thus,we have

M21 ! M12 ! M, (30-63)

and we can rewrite Eqs. 30-61 and 30-62 as

(30-64)

and (30-65)!1 ! #M 
di2

dt
.

!2 ! #M 
di1

dt

!1 ! #M12 
di2

dt
.

!2 ! #M21 
di1

dt
,

M21 
di1

dt
! N2 

d"21

dt
.
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Fig. 30-19 Mutual induction. (a) The
magnetic field produced by current i1 in
coil 1 extends through coil 2. If i1 is varied
(by varying resistance R), an emf is induced
in coil 2 and current registers on the meter
connected to coil 2. (b) The roles of the
coils interchanged.
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Mutual Inductance

N1ΦB,2→1 = M21i2

Considering the rate of change of both sides with time, and using
Faraday’s Law E = − dΦB

dt ,

E1 = −M
di2
dt

and

E2 = −M
di1
dt

A change of current in one coil causes a magnetic flux in the other.



Mutual Inductance
Imagine the two coils are moved closer together, with the
orientation of both coils remaining fixed.
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magnetic field produced by current i1 in
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connected to coil 2. (b) The roles of the
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Because of this movement, the mutual induction of the two coils

(A) increases
(B) decreases
(C) is unaffected
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Fig. 30-19 Mutual induction. (a) The
magnetic field produced by current i1 in
coil 1 extends through coil 2. If i1 is varied
(by varying resistance R), an emf is induced
in coil 2 and current registers on the meter
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Because of this movement, the mutual induction of the two coils

(A) increases←
(B) decreases
(C) is unaffected



Mutual Inductance Applications

If there is a changing current in one coil, an emf can be induced in
the other coil.

The current can be transferred to a whole different circuit that is
no directly connected.

This can be used for wireless charging.

It is also used in transformers: devices that change the voltage
and current of a power supply.

Other applications include sensors, particularly traffic light sensors
and pulse induction metal detectors.

For any of these applications to work, there must be a constantly
changing current.
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Mutual Inductance Applications: Wireless Charger
(Ex 32.5)

Electric toothbrush: Model the base of the charger as a solenoid of
length `, with NB turns, carrying a current i , and having a
cross-sectional area A. The handle coil contains NH turns and
completely surrounds the base coil. Find the mutual inductance of
the system.

 32.4 Mutual Inductance 979

emf through a process known as mutual induction, so named because it depends on 
the interaction of two circuits.
 Consider the two closely wound coils of wire shown in cross-sectional view in 
Figure 32.8. The current i1 in coil 1, which has N1 turns, creates a magnetic field. 
Some of the magnetic field lines pass through coil 2, which has N 2 turns. The mag-
netic flux caused by the current in coil 1 and passing through coil 2 is represented 
by F12. In analogy to Equation 32.2, we can identify the mutual inductance M12 of 
coil 2 with respect to coil 1:

 M12 5
N2F12

i 1
 (32.15)

 Mutual inductance depends on the geometry of both circuits and on their orien-
tation with respect to each other. As the circuit separation distance increases, the 
mutual inductance decreases because the flux linking the circuits decreases.
 If the current i1 varies with time, we see from Faraday’s law and Equation 32.15 
that the emf induced by coil 1 in coil 2 is

 e2 5 2N2 
dF12

dt
5 2N2 

d
dt

aM12i1

N2
b 5 2M12 

di1

dt
 (32.16)

 In the preceding discussion, it was assumed the current is in coil 1. Let’s also 
imagine a current i 2 in coil 2. The preceding discussion can be repeated to show 
that there is a mutual inductance M 21. If the current i 2 varies with time, the emf 
induced by coil 2 in coil 1 is

 e1 5 2M 21 
di 2

dt
 (32.17)

In mutual induction, the emf induced in one coil is always proportional to the rate 
at which the current in the other coil is changing. Although the proportionality 
constants M12 and M21 have been treated separately, it can be shown that they are 
equal. Therefore, with M12 5 M21 5 M, Equations 32.16 and 32.17 become

e2 5 2M 
di1

dt
 and e1 5 2M 

di 2

dt

These two equations are similar in form to Equation 32.1 for the self-induced emf 
e 5 2L (di/dt). The unit of mutual inductance is the henry.

Q uick Quiz 32.4  In Figure 32.8, coil 1 is moved closer to coil 2, with the orienta-
tion of both coils remaining fixed. Because of this movement, the mutual induc-
tion of the two coils (a) increases, (b) decreases, or (c) is unaffected.

 Example 32.5   “Wireless” Battery Charger

An electric toothbrush has a base designed to hold the 
toothbrush handle when not in use. As shown in Figure 
32.9a, the handle has a cylindrical hole that fits loosely over 
a matching cylinder on the base. When the handle is placed 
on the base, a changing current in a solenoid inside the 
base cylinder induces a current in a coil inside the handle. 
This induced current charges the battery in the handle.
 We can model the base as a solenoid of length , with  
NB turns (Fig. 32.9b), carrying a current i, and having a 
cross-sectional area A. The handle coil contains NH turns 
and completely surrounds the base coil. Find the mutual 
inductance of the system.
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Figure 32.9  (Example 32.5) (a) This electric toothbrush 
uses the mutual induction of solenoids as part of its battery- 
charging system. (b) A coil of NH turns wrapped around the 
center of a solenoid of NB turns.

A current in coil 1 sets up a 
magnetic field, and some of 
the magnetic field lines pass 
through coil 2.

Coil 1 Coil 2

N1 i1

N2 i2

Figure 32.8  A cross-sectional 
view of two adjacent coils.

continued
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Figure 32.9  (Example 32.5) (a) This electric toothbrush 
uses the mutual induction of solenoids as part of its battery- 
charging system. (b) A coil of NH turns wrapped around the 
center of a solenoid of NB turns.

A current in coil 1 sets up a 
magnetic field, and some of 
the magnetic field lines pass 
through coil 2.
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Figure 32.8  A cross-sectional 
view of two adjacent coils.

continued

M =
NHΦB,H

iB

Must find an expression for
ΦB,H .

ΦB,H = ΦB,B

= B · A

= µ0ib
NB

`
A

So,

M =
µ0NHNBA

`
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continued

M =
NHΦB,H

iB

Must find an expression for
ΦB,H .

ΦB,H = ΦB,B

= B · A

= µ0ib
NB

`
A

So,

M =
µ0NHNBA

`
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Interesting time-dependent behavior of charge and current also
occurs in circuits with inductors and capacitors.

980 Chapter 32 Inductance

32.5 Oscillations in an LC Circuit
When a capacitor is connected to an inductor as illustrated in Figure 32.10, the 
combination is an LC circuit. If the capacitor is initially charged and the switch is 
then closed, both the current in the circuit and the charge on the capacitor oscil-
late between maximum positive and negative values. If the resistance of the cir-
cuit is zero, no energy is transformed to internal energy. In the following analysis, 
the resistance in the circuit is neglected. We also assume an idealized situation in 
which energy is not radiated away from the circuit. This radiation mechanism is 
discussed in Chapter 34.
 Assume the capacitor has an initial charge Q max (the maximum charge) and 
the switch is open for t , 0 and then closed at t 5 0. Let’s investigate what happens 
from an energy viewpoint.
 When the capacitor is fully charged, the energy U in the circuit is stored in 
the capacitor’s electric field and is equal to Q 2

max/2C (Eq. 26.11). At this time, the 
current in the circuit is zero; therefore, no energy is stored in the inductor. After 
the switch is closed, the rate at which charges leave or enter the capacitor plates 
(which is also the rate at which the charge on the capacitor changes) is equal to 
the current in the circuit. After the switch is closed and the capacitor begins to 
discharge, the energy stored in its electric field decreases. The capacitor’s dis-
charge represents a current in the circuit, and some energy is now stored in the 
magnetic field of the inductor. Therefore, energy is transferred from the electric 
field of the capacitor to the magnetic field of the inductor. When the capacitor 
is fully discharged, it stores no energy. At this time, the current reaches its maxi-
mum value and all the energy in the circuit is stored in the inductor. The cur-
rent continues in the same direction, decreasing in magnitude, with the capacitor 
eventually becoming fully charged again but with the polarity of its plates now 
opposite the initial polarity. This process is followed by another discharge until 
the circuit returns to its original state of maximum charge Q max and the plate 
polarity shown in Figure 32.10. The energy continues to oscillate between induc-
tor and capacitor.
 The oscillations of the LC circuit are an electromagnetic analog to the mechani-
cal oscillations of the particle in simple harmonic motion studied in Chapter 15. 
Much of what was discussed there is applicable to LC oscillations. For example, we 
investigated the effect of driving a mechanical oscillator with an external force, 

S

LC
Q max

!

"

Figure 32.10  A simple LC cir-
cuit. The capacitor has an initial 
charge Q max, and the switch is 
open for t , 0 and then closed at 
t 5 0.

Find the mutual inductance, noting that the magnetic 
flux FBH through the handle’s coil caused by the mag-
netic field of the base coil is BA:

M 5
NHFBH

i
5

NH BA
i

5 m0 
NBNH

,
 A

Use Equation 30.17 to express the magnetic field in the 
interior of the base solenoid:

B 5 m0 
NB

,
 i

Wireless charging is used in a number of other “cordless” devices. One significant example is the inductive charging 
used by some manufacturers of electric cars that avoids direct metal-to-metal contact between the car and the charg-
ing apparatus.

Conceptualize  Be sure you can identify the two coils in the situation and understand that a changing current in one 
coil induces a current in the second coil.

Categorize  We will determine the result using concepts discussed in this section, so we categorize this example as a 
substitution problem.

S O L U T I O N

 

▸ 32.5 c o n t i n u e d

The capacitor is first charged, then put into a circuit with the
inductor.
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▸ 32.5 c o n t i n u e d

Assume the resistance of the wires is zero, then electromagntic
energy is conserved in the circuit.

The energy is stored either in the E-field in the capacitor or the
B-field in the inductor.

Utot =
q2

2C
+

Li2

2
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Energy is conserved ⇒ dUtot
dt = 0.

q

C

dq

dt
+Li

di

dt
= 0

Remembering that i = dq
dt :

q

C �
��

dq

dt
+ L

�
��

dq

dt

d2q

dt2 = 0

This is a second order differential equation in q.

d2q

dt2 = −
1

LC
q

This is the equation for simple harmonic motion.
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This is the equation for simple harmonic motion.
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d2q

dt2 = −
1

LC
q

The solutions are oscillations in time:

q(t) = Qmax cos(ωt + φ)

where

ω =
1√
LC
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The charge q and the current i 
are 90! out of phase with each 
other.

q

Imax

Q max

i

t

t

0 T 2TT
2

3T
2

Figure 32.12 Graphs of charge 
versus time and current versus 
time for a resistanceless, nonradi-
ating LC circuit.

 To determine the value of the phase angle f, let’s examine the initial conditions, 
which in our situation require that at t 5 0, i 5 0, and q 5 Q max. Setting i 5 0 at  
t 5 0 in Equation 32.23 gives

0 5 2vQ max sin f

which shows that f 5 0. This value for f also is consistent with Equation 32.21 and 
the condition that q 5 Q max at t 5 0. Therefore, in our case, the expressions for q 
and i are
 q 5 Q max cos vt (32.24)

 i 5 2vQ max sin vt 5 2Imax sin vt (32.25)

 Graphs of q versus t and i versus t are shown in Figure 32.12. The charge on the 
capacitor oscillates between the extreme values Q max and 2Q max, and the current 
oscillates between Imax and 2Imax. Furthermore, the current is 908 out of phase 
with the charge. That is, when the charge is a maximum, the current is zero, and 
when the charge is zero, the current has its maximum value.
 Let’s return to the energy discussion of the LC circuit. Substituting Equations 
32.24 and 32.25 in Equation 32.18, we find that the total energy is

 U 5 UE 1 UB 5
Q 2

max

2C
  cos2 vt 1 1

2LI 2
max sin2 vt  (32.26)

This expression contains all the features described qualitatively at the beginning of 
this section. It shows that the energy of the LC circuit continuously oscillates between 
energy stored in the capacitor’s electric field and energy stored in the inductor’s 
magnetic field. When the energy stored in the capacitor has its maximum value 
Q 2

max/2C, the energy stored in the inductor is zero. When the energy stored in the 
inductor has its maximum value 12 LI 2

max, the energy stored in the capacitor is zero.
 Plots of the time variations of UE and UB are shown in Figure 32.13. The sum  
UE 1 UB is a constant and is equal to the total energy Q 2

max/2C, or 12LI 2
max. Analytical 

verification is straightforward. The amplitudes of the two graphs in Figure 32.13 
must be equal because the maximum energy stored in the capacitor (when I 5 0) 
must equal the maximum energy stored in the inductor (when q 5 0). This equality 
is expressed mathematically as

Q 2
max

2C
5

LI 2
max

2

The sum of the two curves is a 
constant and is equal to the total 
energy stored in the circuit.

t

t
T
2

T 3T
2

2T

UB

UE

Q 
2
max

2C

LI 2
max

2

0

0

Figure 32.13  Plots of UE versus t 
and UB versus t for a resistanceless, 
nonradiating LC circuit.
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which leads to the phenomenon of resonance. The same phenomenon is observed in 
the LC circuit. (See Section 33.7.)
 A representation of the energy transfer in an LC circuit is shown in Figure 
32.11. As mentioned, the behavior of the circuit is analogous to that of the par-
ticle in simple harmonic motion studied in Chapter 15. For example, consider 
the block–spring system shown in Figure 15.10. The oscillations of this system 
are shown at the right of Figure 32.11. The potential energy 1

2kx2 stored in the 
stretched spring is analogous to the potential energy Q 2

max/2C stored in the capaci-
tor in Figure 32.11. The kinetic energy 1

2mv2 of the moving block is analogous to  
the magnetic energy 1

2Li 2 stored in the inductor, which requires the presence of 
moving charges. In Figure 32.11a, all the energy is stored as electric potential energy 
in the capacitor at t 5 0 (because i 5 0), just as all the energy in a block–spring sys-
tem is initially stored as potential energy in the spring if it is stretched and released 
at t 5 0. In Figure 32.11b, all the energy is stored as magnetic energy 1

2LI 2
max in the 

inductor, where Imax is the maximum current. Figures 32.11c and 32.11d show sub-
sequent quarter-cycle situations in which the energy is all electric or all magnetic. 
At intermediate points, part of the energy is electric and part is magnetic.
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Figure 32.11 Energy transfer in a resistanceless, nonradiating LC circuit. The capacitor has a 
charge Q max at t 5 0, the instant at which the switch in Figure 32.10 is closed. The mechanical analog 
of this circuit is the particle in simple harmonic motion, represented by the block–spring system at 
the right of the figure. (a)–(d)  At these special instants, all of the energy in the circuit resides in one 
of the circuit elements. (e) At an arbitrary instant, the energy is split between the capacitor and the 
inductor.
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Figure 32.11 Energy transfer in a resistanceless, nonradiating LC circuit. The capacitor has a 
charge Q max at t 5 0, the instant at which the switch in Figure 32.10 is closed. The mechanical analog 
of this circuit is the particle in simple harmonic motion, represented by the block–spring system at 
the right of the figure. (a)–(d)  At these special instants, all of the energy in the circuit resides in one 
of the circuit elements. (e) At an arbitrary instant, the energy is split between the capacitor and the 
inductor.
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charge Q max at t 5 0, the instant at which the switch in Figure 32.10 is closed. The mechanical analog 
of this circuit is the particle in simple harmonic motion, represented by the block–spring system at 
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Summary

• mutual inductance

• applications of mutual inductance

• LC circuits

Collected Homework 4! due Thursday, Mar 22.

Homework
Serway & Jewett:

• PREV: Ch 32, onward from page 988. Obj. Qs: 1; Conc. Qs.:
7; Probs: 11, 15, 19, 33, 41, 43

• NEW: Ch 32, Probs: 49


