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Last time

• mutual inductance

• LC circuits and oscillations



Overview

• LC circuits, mechanical analogy

• oscillations in RLC circuits

• alternating current



LC Circuits: Mechanical Analogy 32.5 Oscillations in an LC Circuit 981

which leads to the phenomenon of resonance. The same phenomenon is observed in 
the LC circuit. (See Section 33.7.)
 A representation of the energy transfer in an LC circuit is shown in Figure 
32.11. As mentioned, the behavior of the circuit is analogous to that of the par-
ticle in simple harmonic motion studied in Chapter 15. For example, consider 
the block–spring system shown in Figure 15.10. The oscillations of this system 
are shown at the right of Figure 32.11. The potential energy 1

2kx2 stored in the 
stretched spring is analogous to the potential energy Q 2

max/2C stored in the capaci-
tor in Figure 32.11. The kinetic energy 1

2mv2 of the moving block is analogous to  
the magnetic energy 1

2Li 2 stored in the inductor, which requires the presence of 
moving charges. In Figure 32.11a, all the energy is stored as electric potential energy 
in the capacitor at t 5 0 (because i 5 0), just as all the energy in a block–spring sys-
tem is initially stored as potential energy in the spring if it is stretched and released 
at t 5 0. In Figure 32.11b, all the energy is stored as magnetic energy 1

2LI 2
max in the 

inductor, where Imax is the maximum current. Figures 32.11c and 32.11d show sub-
sequent quarter-cycle situations in which the energy is all electric or all magnetic. 
At intermediate points, part of the energy is electric and part is magnetic.
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Figure 32.11 Energy transfer in a resistanceless, nonradiating LC circuit. The capacitor has a 
charge Q max at t 5 0, the instant at which the switch in Figure 32.10 is closed. The mechanical analog 
of this circuit is the particle in simple harmonic motion, represented by the block–spring system at 
the right of the figure. (a)–(d)  At these special instants, all of the energy in the circuit resides in one 
of the circuit elements. (e) At an arbitrary instant, the energy is split between the capacitor and the 
inductor.



RLC Circuits

Of course, we can add resistors into an LC circuit.

 32.6 The RLC Circuit 985
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The switch is set first to position
a, and the capacitor is charged. 
The switch is then thrown to 
position b.

Figure 32.15 A series RLC 
circuit.

the resistance of the resistor represents all the resistance in the circuit. Suppose the 
switch is at position a so that the capacitor has an initial charge Q max. The switch 
is now thrown to position b. At this instant, the total energy stored in the capacitor 
and inductor is Q max

2 /2C . This total energy, however, is no longer constant as it 
was in the LC circuit because the resistor causes transformation to internal energy.  
(We continue to ignore electromagnetic radiation from the circuit in this discus-
sion.) Because the rate of energy transformation to internal energy within a resis-
tor is i 2R,

dU
dt

5 2i 2R

where the negative sign signifies that the energy U of the circuit is decreasing in 
time. Substituting U 5 UE 1 UB gives

 
q
C

  
dq
dt

1  Li 
di
dt

 5 2i 2R  (32.28)

To convert this equation into a form that allows us to compare the electrical oscilla-
tions with their mechanical analog, we first use i 5 dq/dt and move all terms to the 
left-hand side to obtain

Li 
d2q
dt 2 1 i 2R 1

q
C

 i 5 0

Now divide through by i:

L 
d2q
dt 2 1 iR 1

q
C

5 0

 L 
d2q
dt 2 1 R 

dq
dt

1
q
C

5 0 (32.29)

 The RLC circuit is analogous to the damped harmonic oscillator discussed in 
Section 15.6 and illustrated in Figure 15.20. The equation of motion for a damped 
block–spring system is, from Equation 15.31,

 m 
d2x
dt 2 1 b 

dx
dt

1 kx 5 0 (32.30)

Comparing Equations 32.29 and 32.30, we see that q corresponds to the position 
x of the block at any instant, L to the mass m of the block, R to the damping coef-
ficient b, and C to 1/k, where k is the force constant of the spring. These and other 
relationships are listed in Table 32.1 on page 986.
 Because the analytical solution of Equation 32.29 is cumbersome, we give only 
a qualitative description of the circuit behavior. In the simplest case, when R 5 0, 
Equation 32.29 reduces to that of a simple LC circuit as expected, and the charge 
and the current oscillate sinusoidally in time. This situation is equivalent to remov-
ing all damping in the mechanical oscillator.
 When R is small, a situation that is analogous to light damping in the mechani-
cal oscillator, the solution of Equation 32.29 is

 q 5 Q maxe2Rt/2L cos vdt (32.31)

where vd, the angular frequency at which the circuit oscillates, is given by

 vd 5 c 1
LC

2 a R
2L

b2 d 1/2

 (32.32)

That is, the value of the charge on the capacitor undergoes a damped harmonic 
oscillation in analogy with a block–spring system moving in a viscous medium. 
Equation 32.32 shows that when R ,, !4L/C  (so that the second term in the 



RLC Circuits: Damped Oscillations

In RLC circuits, electromagnetic energy is “lost” as heat in the
resistor.

 32.6 The RLC Circuit 985
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Comparing Equations 32.29 and 32.30, we see that q corresponds to the position 
x of the block at any instant, L to the mass m of the block, R to the damping coef-
ficient b, and C to 1/k, where k is the force constant of the spring. These and other 
relationships are listed in Table 32.1 on page 986.
 Because the analytical solution of Equation 32.29 is cumbersome, we give only 
a qualitative description of the circuit behavior. In the simplest case, when R 5 0, 
Equation 32.29 reduces to that of a simple LC circuit as expected, and the charge 
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 When R is small, a situation that is analogous to light damping in the mechani-
cal oscillator, the solution of Equation 32.29 is
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where vd, the angular frequency at which the circuit oscillates, is given by

 vd 5 c 1
LC
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b2 d 1/2

 (32.32)

That is, the value of the charge on the capacitor undergoes a damped harmonic 
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dU

dt
= −i2R
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The equation for a damped oscillator!
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468 Chapter 15 Oscillatory Motion

 o t 5 Ia   S   2ku 5 I 
d2u

dt 2  

 
d 2u

dt 2 5 2
k

I
 u  (15.29)

Again, this result is the equation of motion for a simple harmonic oscillator, with 
v 5 !k/I  and a period

 T 5 2pÅ I
k

 (15.30)

 This system is called a torsional pendulum. There is no small-angle restriction in 
this situation as long as the elastic limit of the wire is not exceeded.

15.6 Damped Oscillations
The oscillatory motions we have considered so far have been for ideal systems, that is, 
systems that oscillate indefinitely under the action of only one force, a linear restoring 
force. In many real systems, nonconservative forces such as friction or air resistance 
also act and retard the motion of the system. Consequently, the mechanical energy of 
the system diminishes in time, and the motion is said to be damped. The mechanical 
energy of the system is transformed into internal energy in the object and the retard-
ing medium. Figure 15.20 depicts one such system: an object attached to a spring 
and submersed in a viscous liquid. Another example is a simple pendulum oscillating 
in air. After being set into motion, the pendulum eventually stops oscillating due to 
air resistance. The opening photograph for this chapter depicts damped oscillations 
in practice. The spring-loaded devices mounted below the bridge are dampers that 
transform mechanical energy of the oscillating bridge into internal energy.
 One common type of retarding force is that discussed in Section 6.4, where 
the force is proportional to the speed of the moving object and acts in the direc-
tion opposite the velocity of the object with respect to the medium. This retarding 
force is often observed when an object moves through air, for instance. Because 
the retarding force can be expressed as R

S
5 2b vS (where b is a constant called the 

damping coefficient) and the restoring force of the system is 2kx, we can write New-
ton’s second law as
 o Fx = 2kx 2 bvx = max 

 2kx 2 b 
dx
dt

5 m 
d 2x
dt 2  (15.31)

The solution to this equation requires mathematics that may be unfamiliar to you; 
we simply state it here without proof. When the retarding force is small compared 
with the maximum restoring force—that is, when the damping coefficient b is 
small—the solution to Equation 15.31 is

 x 5 Ae2(b/2m)t cos (vt 1 f) (15.32)

where the angular frequency of oscillation is

 v 5 Å k
m 2 a b

2m
b2

 (15.33)

 This result can be verified by substituting Equation 15.32 into Equation 15.31. It 
is convenient to express the angular frequency of a damped oscillator in the form

 v 5 Åv0
2 2 a b

2m
b2

 

where v0 5 !k/m represents the angular frequency in the absence of a retarding 
force (the undamped oscillator) and is called the natural frequency of the system.

O

P
maxu

The object oscillates about the 
line OP with an amplitude umax.

Figure 15.19  A torsional 
pendulum.

m

Figure 15.20  One example of 
a damped oscillator is an object 
attached to a spring and sub-
mersed in a viscous liquid.



RLC Circuits: Damped Oscillations

d2q

dt2
+

R

L

dq

dt
+

1

LC
q = 0

986 Chapter 32 Inductance

Table 32.1 Analogies Between the RLC Circuit and the Particle in Simple Harmonic Motion
  One-Dimensional
RLC Circuit  Particle in Simple Harmonic Motion

Charge q 4 x Position

Current i 4 vx Velocity

Potential difference DV 4 Fx Force

Resistance R 4 b Viscous damping coefficient

Capacitance C 4 1/k (k 5 spring constant)

Inductance L 4 m Mass

Current 5 time derivative 
 i 5

dq
dt

 4 vx 5
dx
dt

 
Velocity 5 time derivative 

 of charge    of position 

Rate of change of current 5 
 
di
dt

5
d 2q

dt 2 4 ax 5
dvx

dt
5

d 2x
dt 2  

Acceleration 5 second time 
 second time derivative    derivative of position 
 of charge

Energy in inductor  UB 5 1
2 Li 2 4 K 5 1

2mv 2  Kinetic energy of moving object

Energy in capacitor  UE 5 1
2 

q 2

C
 4 U 5 1

2 kx 2  Potential energy stored in a spring

Rate of energy loss due  i 2R 4 bv 2  Rate of energy loss due 
 to resistance    to friction

RLC circuit L 
d 2q

dt2 1 R 
dq
dt

1
q
C

5 0 4 m 
d 2x
dt2 1 b 

dx
dt

1 kx 5 0  Damped object on a spring

brackets is much smaller than the first), the frequency vd of the damped oscillator 
is close to that of the undamped oscillator, 1/!LC . Because i 5 dq/dt, it follows that 
the current also undergoes damped harmonic oscillation. A plot of the charge ver-
sus time for the damped oscillator is shown in Figure 32.16a, and an oscilloscope 
trace for a real RLC circuit is shown in Figure 32.16b. The maximum value of q 
decreases after each oscillation, just as the amplitude of a damped block–spring 
system decreases in time.
 For larger values of R, the oscillations damp out more rapidly; in fact, there 
exists a critical resistance value Rc 5 !4L/C  above which no oscillations occur. A 
system with R 5 Rc is said to be critically damped. When R exceeds Rc, the system is 
said to be overdamped.

a

The q -versus-t curve represents 
a plot of Equation 32.31.
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Figure 32.16 (a) Charge versus 
time for a damped RLC circuit. 
The charge decays in this way 
when R , !4L/C . (b) Oscillo-
scope pattern showing the decay in 
the oscillations of an RLC circuit.Solution

q(t) = Qmaxe
−Rt/2L cos(ωd t) , where ωd =

√
1

LC
−

(
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Mutual Inductance Applications

If there is a changing current in one coil, an emf can be induced in
the other coil.

The current can be transferred to a whole different circuit that is
no directly connected.

This can be used for wireless charging and transformers.

For either of those applications to work, there must be a
constantly changing current.



Alternating Current (AC)

Alternating current (AC) power supplies are the alternative to
direct current (DC) power supplies.

In an alternating current supply, the voltage and current vary
sinusoidally with time:

84731-10 POWE R I N ALTE R NATI NG- CU R R E NT CI RCU ITS
PART 3

31-10 Power in Alternating-Current Circuits
In the RLC circuit of Fig. 31-7, the source of energy is the alternating-current
generator. Some of the energy that it provides is stored in the electric field in the
capacitor, some is stored in the magnetic field in the inductor, and some is dis-
sipated as thermal energy in the resistor. In steady-state operation, the average
stored energy remains constant.The net transfer of energy is thus from the gener-
ator to the resistor, where energy is dissipated.

The instantaneous rate at which energy is dissipated in the resistor can be
written, with the help of Eqs. 26-27 and 31-29, as

P ! i2R ! [I sin(vdt " f)]2R ! I 2R sin2(vdt " f). (31-68)

The average rate at which energy is dissipated in the resistor, however, is the aver-
age of Eq. 31-68 over time. Over one complete cycle, the average value of sin u,
where u is any variable, is zero (Fig. 31-17a) but the average value of sin2 u is 
(Fig. 31-17b). (Note in Fig. 31-17b how the shaded areas under the curve but
above the horizontal line marked exactly fill in the unshaded spaces below
that line.) Thus, we can write, from Eq. 31-68,

(31-69)

The quantity is called the root-mean-square, or rms, value of the current i:

(rms current). (31-70)Irms !
I12

I/1 2

Pavg !
I 2R

2
! ! I12 "

2

R.

#1
2

1
2

Sample Problem

We then find

(Answer)

(b) What is the phase constant f of the current in the 
circuit relative to the driving emf?

The phase constant depends on the inductive reactance, the
capacitive reactance, and the resistance of the circuit,
according to Eq. 31-65.

Calculation: Solving Eq. 31-65 for f leads to

(Answer)

The negative phase constant is consistent with the fact that
the load is mainly capacitive; that is, XC $ XL. In the com-
mon mnemonic for driven series RLC circuits, this circuit is
an ICE circuit—the current leads the driving emf.

! "24.3% ! "0.424 rad.

& ! tan"1 
XL " XC

R
! tan"1 

86.7 ' " 177 '
200 '

I !
!m

Z
!

36.0 V
219 '

! 0.164 A.

Additional examples, video, and practice available at WileyPLUS

Current amplitude, impedance, and phase constant

In Fig. 31-7, let R ! 200 ', C ! 15.0 mF, L ! 230 mH,
fd ! 60.0 Hz, and !m ! 36.0 V. (These parameters are those
used in the earlier sample problems above.)

(a) What is the current amplitude I?

The current amplitude I depends on the amplitude !m of the
driving emf and on the impedance Z of the circuit, accord-
ing to Eq. 31-62 (I ! !m /Z).

Calculations: So, we need to find Z, which depends on resis-
tance R, capacitive reactance XC, and inductive reactance XL.
The circuit’s resistance is the given resistance R. Its capacitive
reactance is due to the given capacitance and, from an earlier
sample problem, XC ! 177 '. Its inductive reactance is due
to the given inductance and, from another sample problem,
XL ! 86.7 '.Thus, the circuit’s impedance is

! 219 '.

! 2(200 ')2 # (86.7 ' " 177 ')2

 Z ! 2R2 # (XL " XC)2

KEY I DEA

KEY I DEA

Fig. 31-17 (a) A plot of sin u versus u.
The average value over one cycle is zero. (b)
A plot of sin2 u versus u.The average value
over one cycle is .1
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∆v = ∆Vmax sin(ωt)

The power delivered to a resistive load fluctuates as
P = Pmax sin2(ωt).
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Alternating current (AC) power supplies are the alternative to
direct current (DC) power supplies.
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 Z ! 2R2 # (XL " XC)2

KEY I DEA

KEY I DEA

Fig. 31-17 (a) A plot of sin u versus u.
The average value over one cycle is zero. (b)
A plot of sin2 u versus u.The average value
over one cycle is .1
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31-10 Power in Alternating-Current Circuits
In the RLC circuit of Fig. 31-7, the source of energy is the alternating-current
generator. Some of the energy that it provides is stored in the electric field in the
capacitor, some is stored in the magnetic field in the inductor, and some is dis-
sipated as thermal energy in the resistor. In steady-state operation, the average
stored energy remains constant.The net transfer of energy is thus from the gener-
ator to the resistor, where energy is dissipated.

The instantaneous rate at which energy is dissipated in the resistor can be
written, with the help of Eqs. 26-27 and 31-29, as

P ! i2R ! [I sin(vdt " f)]2R ! I 2R sin2(vdt " f). (31-68)

The average rate at which energy is dissipated in the resistor, however, is the aver-
age of Eq. 31-68 over time. Over one complete cycle, the average value of sin u,
where u is any variable, is zero (Fig. 31-17a) but the average value of sin2 u is 
(Fig. 31-17b). (Note in Fig. 31-17b how the shaded areas under the curve but
above the horizontal line marked exactly fill in the unshaded spaces below
that line.) Thus, we can write, from Eq. 31-68,

(31-69)

The quantity is called the root-mean-square, or rms, value of the current i:

(rms current). (31-70)Irms !
I12

I/1 2

Pavg !
I 2R

2
! ! I12 "

2

R.

#1
2

1
2

Sample Problem

We then find

(Answer)

(b) What is the phase constant f of the current in the 
circuit relative to the driving emf?

The phase constant depends on the inductive reactance, the
capacitive reactance, and the resistance of the circuit,
according to Eq. 31-65.

Calculation: Solving Eq. 31-65 for f leads to

(Answer)

The negative phase constant is consistent with the fact that
the load is mainly capacitive; that is, XC $ XL. In the com-
mon mnemonic for driven series RLC circuits, this circuit is
an ICE circuit—the current leads the driving emf.

! "24.3% ! "0.424 rad.

& ! tan"1 
XL " XC

R
! tan"1 

86.7 ' " 177 '
200 '

I !
!m

Z
!

36.0 V
219 '

! 0.164 A.

Additional examples, video, and practice available at WileyPLUS

Current amplitude, impedance, and phase constant

In Fig. 31-7, let R ! 200 ', C ! 15.0 mF, L ! 230 mH,
fd ! 60.0 Hz, and !m ! 36.0 V. (These parameters are those
used in the earlier sample problems above.)

(a) What is the current amplitude I?

The current amplitude I depends on the amplitude !m of the
driving emf and on the impedance Z of the circuit, accord-
ing to Eq. 31-62 (I ! !m /Z).

Calculations: So, we need to find Z, which depends on resis-
tance R, capacitive reactance XC, and inductive reactance XL.
The circuit’s resistance is the given resistance R. Its capacitive
reactance is due to the given capacitance and, from an earlier
sample problem, XC ! 177 '. Its inductive reactance is due
to the given inductance and, from another sample problem,
XL ! 86.7 '.Thus, the circuit’s impedance is

! 219 '.

! 2(200 ')2 # (86.7 ' " 177 ')2

 Z ! 2R2 # (XL " XC)2

KEY I DEA

KEY I DEA

Fig. 31-17 (a) A plot of sin u versus u.
The average value over one cycle is zero. (b)
A plot of sin2 u versus u.The average value
over one cycle is .1
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∆v = ∆Vmax sin(ωt)

The power delivered to a resistive load fluctuates as
P = Pmax sin2(ωt).



Alternating Current (AC)

∆v = ∆Vmax sin(ωt)

The power delivered to a resistive load fluctuates as
P = Pmax sin2(ωt).
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capacitive reactance, and the resistance of the circuit,
according to Eq. 31-65.
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The negative phase constant is consistent with the fact that
the load is mainly capacitive; that is, XC $ XL. In the com-
mon mnemonic for driven series RLC circuits, this circuit is
an ICE circuit—the current leads the driving emf.
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Additional examples, video, and practice available at WileyPLUS
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In Fig. 31-7, let R ! 200 ', C ! 15.0 mF, L ! 230 mH,
fd ! 60.0 Hz, and !m ! 36.0 V. (These parameters are those
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(a) What is the current amplitude I?

The current amplitude I depends on the amplitude !m of the
driving emf and on the impedance Z of the circuit, accord-
ing to Eq. 31-62 (I ! !m /Z).

Calculations: So, we need to find Z, which depends on resis-
tance R, capacitive reactance XC, and inductive reactance XL.
The circuit’s resistance is the given resistance R. Its capacitive
reactance is due to the given capacitance and, from an earlier
sample problem, XC ! 177 '. Its inductive reactance is due
to the given inductance and, from another sample problem,
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Integrating to find the shaded area we see that the average power
delivered over a cycle will be:

Pavg =
Pmax

2



Alternating Current (AC)
We describe the amount of current and potential difference across
the circuit by its root-mean-square (RMS) value.

The RMS voltage supplied is

∆Vrms =
∆Vmax√

2

The RMS current supplied is

Irms =
Imax√

2

Average power (resistive circuit):

P = Irms (∆Vrms) =
1

2
Pmax



Alternating Current (AC) Example 33.1

The voltage output of an AC source is given by the expression
∆v = 200 sin(ωt), where ∆v is in volts.

Find the rms current in the circuit when this source is connected to
a 100 Ω resistor.

∆Vrms =
200√

2
= 141 V

Irms =
∆Vrms

R
= 1.41 A
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∆v = 200 sin(ωt), where ∆v is in volts.
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Transformers
Transformers change ∆Vrms and Irms simultaneously, while keeping
the average power Pavg = Irms∆Vrms constant (conservation of
energy).
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31-11 Transformers
Energy Transmission Requirements
When an ac circuit has only a resistive load, the power factor in Eq. 31-76 is 
cos 0° ! 1 and the applied rms emf !rms is equal to the rms voltage Vrms across the
load. Thus, with an rms current Irms in the load, energy is supplied and dissipated
at the average rate of

Pavg ! !I ! IV. (31-77)

(In Eq. 31-77 and the rest of this section, we follow conventional practice and drop
the subscripts identifying rms quantities. Engineers and scientists assume that all
time-varying currents and voltages are reported as rms values; that is what the me-
ters read.) Equation 31-77 tells us that, to satisfy a given power requirement, we
have a range of choices for I and V, provided only that the product IV is as required.

In electrical power distribution systems it is desirable for reasons of safety and
for efficient equipment design to deal with relatively low voltages at both the gener-
ating end (the electrical power plant) and the receiving end (the home or factory).
Nobody wants an electric toaster or a child’s electric train to operate at, say, 10 kV.
On the other hand, in the transmission of electrical energy from the generating plant
to the consumer, we want the lowest practical current (hence the largest practical
voltage) to minimize I2R losses (often called ohmic losses) in the transmission line.

As an example, consider the 735 kV line used to transmit electrical energy
from the La Grande 2 hydroelectric plant in Quebec to Montreal, 1000 km away.
Suppose that the current is 500 A and the power factor is close to unity. Then
from Eq. 31-77, energy is supplied at the average rate

Pavg ! !I ! (7.35 " 105 V)(500 A) ! 368 MW.

The resistance of the transmission line is about 0.220 #/km; thus, there is a total
resistance of about 220 # for the 1000 km stretch. Energy is dissipated due to that
resistance at a rate of about

Pavg ! I 2R ! (500 A)2(220 #) ! 55.0 MW,

which is nearly 15% of the supply rate.
Imagine what would happen if we doubled the current and halved the volt-

age. Energy would be supplied by the plant at the same average rate of 368 MW
as previously, but now energy would be dissipated at the rate of about

Pavg ! I 2R ! (1000 A)2(220 #) ! 220 MW,

which is almost 60% of the supply rate. Hence the general energy transmission
rule:Transmit at the highest possible voltage and the lowest possible current.

The Ideal Transformer
The transmission rule leads to a fundamental mismatch between the requirement
for efficient high-voltage transmission and the need for safe low-voltage generation
and consumption. We need a device with which we can raise (for transmission) and
lower (for use) the ac voltage in a circuit, keeping the product current " voltage es-
sentially constant.The transformer is such a device. It has no moving parts, operates
by Faraday’s law of induction, and has no simple direct-current counterpart.

The ideal transformer in Fig. 31-18 consists of two coils, with different num-
bers of turns, wound around an iron core. (The coils are insulated from the core.)
In use, the primary winding, of Np turns, is connected to an alternating-current
generator whose emf ! at any time t is given by

! ! !m sin vt. (31-78)

The secondary winding, of Ns turns, is connected to load resistance R, but its

Fig. 31-18 An ideal transformer (two
coils wound on an iron core) in a basic
transformer circuit.An ac generator pro-
duces current in the coil at the left (the pri-
mary).The coil at the right (the secondary)
is connected to the resistive load R when
switch S is closed.

RVp Vs

S

Np

Ns

ΦB

Primary Secondary
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This works via mutual inductance. If the current in the first coil
did not constantly change (AC) this would not work.

∆vs = ∆vp
Ns

Np



Summary

• RLC circuits

• alternating current

Collected Homework 4 due Thursday, Mar 22.

Homework
Serway & Jewett:

• NEW: Ch 32, Probs: 45, 53, 57, 59

• NEW: Ch 33, onward from page 1021. Obj. Qs: 12, 13;
Conc. Qs.: 8; Probs: 1, 3, 5, 49, 51, 57



Appendix: Damped Oscillations Solution Derivation

d2x

dt2
+

b

m

dx

dt
+
k

m
x = 0

Suppose an exponential function is the solution to this equation:

x = B ert

r and B are constants.
Then

B ert(r2 +
b

m
r +

k

m
) = 0

The exponential function is not zero for any finite t, so the other
factor must be zero. We must find the roots for r that make this
equation true.



Appendix: Damped Oscillations Solution Derivation

This is called the characteristic equation

r2 +
b

m
r +

k

m
= 0

The roots are:

r =
−b

2m
±

√(
b

2m

)2

−
k

m

This means the solutions are of the form:

x = e−b/(2m)t
(
B1e

iωt + B2e
−iωt

)
where

ω =

√
k

m
−

(
b

2m

)2



Appendix: Damped Oscillations Solution Derivation

This means the solutions are of the form:

x = e−b/(2m)t
(
B1e

iωt + B2e
−iωt

)
where

ω =

√
k

m
−

(
b

2m

)2

Recall that cos(x) = 1
2(e

ix + e−ix). (If you haven’t seen this, try to
prove it using the series expansions of cosine and the exponential
function.)

We can write the solution as

x = A e−(b/2m)t cos(ωt + φ)

where B1 = A e iφ and B2 = A e−iφ.


