Electricity and Magnetism Transformers and Alternating Current

Lana Sheridan
De Anza College

Mar 16, 2018

Last time

- mutual inductance
- LC circuits and oscillations

Overview

- LC circuits, mechanical analogy
- oscillations in RLC circuits
- alternating current

LC Circuits: Mechanical Analogy

RLC Circuits

Of course, we can add resistors into an $L C$ circuit.

RLC Circuits: Damped Oscillations

In RLC circuits, electromagnetic energy is "lost" as heat in the resistor.

$$
\frac{\mathrm{dU}}{\mathrm{dt}}=-i^{2} R
$$

RLC Circuits: Damped Oscillations

$$
\frac{q}{C} \frac{\mathrm{~d} q}{d \mathrm{dt}}+L \frac{\mathrm{~d} q}{d \mathrm{dt}} \frac{\mathrm{~d}^{2} q}{\mathrm{dt}^{2}}=-\left(\frac{\mathrm{dq}}{\mathrm{dt}}\right)^{\npreceq} R
$$

Giving,

$$
\frac{\mathrm{d}^{2} q}{\mathrm{dt}^{2}}+\frac{R}{L} \frac{\mathrm{dq}}{\mathrm{dt}}+\frac{1}{L C} q=0
$$

The equation for a damped oscillator!

RLC Circuits: Mechanical Analogy

RLC Circuits: Damped Oscillations

$$
\frac{\mathrm{d}^{2} q}{\mathrm{dt}^{2}}+\frac{R}{L} \frac{\mathrm{dq}}{\mathrm{dt}}+\frac{1}{L C} q=0
$$

Solution

$$
q(t)=Q_{\max } e^{-R t / 2 L} \cos \left(\omega_{d} t\right), \text { where } \omega_{d}=\sqrt{\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}}
$$

Mutual Inductance Applications

If there is a changing current in one coil, an emf can be induced in the other coil.

The current can be transferred to a whole different circuit that is no directly connected.

This can be used for wireless charging and transformers.

For either of those applications to work, there must be a constantly changing current.

Alternating Current (AC)

Alternating current (AC) power supplies are the alternative to direct current (DC) power supplies.

Alternating Current (AC)

Alternating current (AC) power supplies are the alternative to direct current (DC) power supplies.

In an alternating current supply, the voltage and current vary sinusoidally with time:

$$
\Delta v=\Delta V_{\max } \sin (\omega t)
$$

The power delivered to a resistive load fluctuates as
$P=P_{\max } \sin ^{2}(\omega t)$.

Alternating Current (AC)

$$
\Delta v=\Delta V_{\max } \sin (\omega t)
$$

The power delivered to a resistive load fluctuates as
$P=P_{\text {max }} \sin ^{2}(\omega t)$.

Integrating to find the shaded area we see that the average power delivered over a cycle will be:

$$
P_{\mathrm{avg}}=\frac{P_{\max }}{2}
$$

Alternating Current (AC)

We describe the amount of current and potential difference across the circuit by its root-mean-square (RMS) value.

The RMS voltage supplied is

$$
\Delta V_{\mathrm{rms}}=\frac{\Delta V_{\max }}{\sqrt{2}}
$$

The RMS current supplied is

$$
I_{\mathrm{rms}}=\frac{I_{\mathrm{max}}}{\sqrt{2}}
$$

Average power (resistive circuit):

$$
P=I_{\mathrm{rms}}\left(\Delta V_{\mathrm{rms}}\right)=\frac{1}{2} P_{\max }
$$

Alternating Current (AC) Example 33.1

The voltage output of an AC source is given by the expression $\Delta v=200 \sin (\omega t)$, where Δv is in volts.

Find the rms current in the circuit when this source is connected to a 100Ω resistor.

Alternating Current (AC) Example 33.1

The voltage output of an AC source is given by the expression $\Delta v=200 \sin (\omega t)$, where Δv is in volts.

Find the rms current in the circuit when this source is connected to a 100Ω resistor.

$$
\Delta V_{\mathrm{rms}}=\frac{200}{\sqrt{2}}=141 \mathrm{~V}
$$

Alternating Current (AC) Example 33.1

The voltage output of an AC source is given by the expression $\Delta v=200 \sin (\omega t)$, where Δv is in volts.

Find the rms current in the circuit when this source is connected to a 100Ω resistor.

$$
\begin{aligned}
& \Delta V_{\mathrm{rms}}=\frac{200}{\sqrt{2}}=141 \mathrm{~V} \\
& I_{\mathrm{rms}}=\frac{\Delta V_{\mathrm{rms}}}{R}=1.41 \mathrm{~A}
\end{aligned}
$$

Transformers

Transformers change $\Delta V_{\text {rms }}$ and $I_{\text {rms }}$ simultaneously, while keeping the average power $P_{\text {avg }}=I_{\mathrm{rms}} \Delta V_{\mathrm{rms}}$ constant (conservation of energy).

This works via mutual inductance. If the current in the first coil did not constantly change (AC) this would not work.

$$
\Delta v_{s}=\Delta v_{p} \frac{N_{s}}{N_{p}}
$$

Summary

- RLC circuits
- alternating current

Collected Homework 4 due Thursday, Mar 22.

Homework
Serway \& Jewett:

- NEW: Ch 32, Probs: 45, 53, 57, 59
- NEW: Ch 33, onward from page 1021. Obj. Qs: 12, 13; Conc. Qs.: 8; Probs: 1, 3, 5, 49, 51, 57

Appendix: Damped Oscillations Solution Derivation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{dt}^{2}}+\frac{b}{m} \frac{\mathrm{dx}}{\mathrm{dt}}+\frac{k}{m} x=0
$$

Suppose an exponential function is the solution to this equation:

$$
x=B e^{r t}
$$

r and B are constants.
Then

$$
B e^{r t}\left(r^{2}+\frac{b}{m} r+\frac{k}{m}\right)=0
$$

The exponential function is not zero for any finite t, so the other factor must be zero. We must find the roots for r that make this equation true.

Appendix: Damped Oscillations Solution Derivation

This is called the characteristic equation

$$
r^{2}+\frac{b}{m} r+\frac{k}{m}=0
$$

The roots are:

$$
r=\frac{-b}{2 m} \pm \sqrt{\left(\frac{b}{2 m}\right)^{2}-\frac{k}{m}}
$$

This means the solutions are of the form:

$$
x=e^{-b /(2 m) t}\left(B_{1} e^{i \omega t}+B_{2} e^{-i \omega t}\right)
$$

where

$$
\omega=\sqrt{\frac{k}{m}-\left(\frac{b}{2 m}\right)^{2}}
$$

Appendix: Damped Oscillations Solution Derivation

This means the solutions are of the form:

$$
x=e^{-b /(2 m) t}\left(B_{1} e^{i \omega t}+B_{2} e^{-i \omega t}\right)
$$

where

$$
\omega=\sqrt{\frac{k}{m}-\left(\frac{b}{2 m}\right)^{2}}
$$

Recall that $\cos (x)=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$. (If you haven't seen this, try to prove it using the series expansions of cosine and the exponential function.)

We can write the solution as

$$
x=A e^{-(b / 2 m) t} \cos (\omega t+\phi)
$$

where $B_{1}=A e^{i \phi}$ and $B_{2}=A e^{-i \phi}$.

