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Last time

• alternating current

• transformers

• rectifiers and filters



Overview

• phase offsets with inductors and capacitors

• reactance



AC and Types of circuits

The current and potential difference both change sinusoidally in
AC circuits.

However, they do not necessarily reach their peaks at the same
time across a particular circuit component.

It depends on the type of circuit.

For every circuit we can choose to describe the dependance on
time of the voltage and current as:

∆v(t) = ∆vmax sin(ωt)

i(t) = imax sin(ωt − φ)
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31-7 Forced Oscillations
We have seen that once started, the charge, potential difference, and current in
both undamped LC circuits and damped RLC circuits (with small enough R)
oscillate at angular frequency . Such oscillations are said to be free
oscillations (free of any external emf), and the angular frequency v is said to be
the circuit’s natural angular frequency.

When the external alternating emf of Eq. 31-28 is connected to an RLC
circuit, the oscillations of charge, potential difference, and current are said to be
driven oscillations or forced oscillations. These oscillations always occur at the
driving angular frequency vd :

! " 1/√LC

Whatever the natural angular frequency v of a circuit may be, forced oscillations
of charge, current, and potential difference in the circuit always occur at the driving
angular frequency vd.

However, as you will see in Section 31-9, the amplitudes of the oscillations very
much depend on how close vd is to v.When the two angular frequencies match—
a condition known as resonance—the amplitude I of the current in the circuit is
maximum.

31-8 Three Simple Circuits
Later in this chapter, we shall connect an external alternating emf device to 
a series RLC circuit as in Fig. 31-7. We shall then find expressions for the
amplitude I and phase constant f of the sinusoidally oscillating current in
terms of the amplitude !m and angular frequency vd of the external emf. First,
let’s consider three simpler circuits, each having an external emf and only one
other circuit element: R, C, or L. We start with a resistive element (a purely re-
sistive load).

A Resistive Load
Figure 31-8 shows a circuit containing a resistance element of value R and an
ac generator with the alternating emf of Eq. 31-28. By the loop rule, we have

! # vR " 0.
With Eq. 31-28, this gives us

vR " !m sin vdt.

Because the amplitude VR of the alternating potential difference (or voltage)
across the resistance is equal to the amplitude !m of the alternating emf, we can
write this as

vR " VR sin vdt. (31-30)

From the definition of resistance (R " V/i), we can now write the current iR in the
resistance as

(31-31)

From Eq. 31-29, we can also write this current as

iR " IR sin(vdt # f), (31-32)

where IR is the amplitude of the current iR in the resistance. Comparing Eqs.
31-31 and 31-32, we see that for a purely resistive load the phase constant f " 0°.

iR "
vR

R
"

VR

R
 sin !dt.

Fig. 31-7 A single-loop circuit contain-
ing a resistor, a capacitor, and an inductor.
A generator, represented by a sine wave in
a circle, produces an alternating emf that
establishes an alternating current; the di-
rections of the emf and current are indi-
cated here at only one instant.

i

i

iC

R

L

Fig. 31-8 A resistor is connected across an
alternating-current generator.

iRR vR
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We also see that the voltage amplitude and current amplitude are related by

VR ! IRR (resistor). (31-33)

Although we found this relation for the circuit of Fig. 31-8, it applies to any
resistance in any ac circuit.

By comparing Eqs. 31-30 and 31-31, we see that the time-varying quantities
vR and iR are both functions of sin vdt with f ! 0°. Thus, these two quantities are
in phase, which means that their corresponding maxima (and minima) occur at
the same times. Figure 31-9a, which is a plot of vR(t) and iR(t), illustrates this fact.
Note that vR and iR do not decay here because the generator supplies energy to
the circuit to make up for the energy dissipated in R.

The time-varying quantities vR and iR can also be represented geometrically
by phasors. Recall from Section 16-11 that phasors are vectors that rotate around
an origin. Those that represent the voltage across and current in the resistor of
Fig. 31-8 are shown in Fig. 31-9b at an arbitrary time t. Such phasors have the
following properties:

Angular speed: Both phasors rotate counterclockwise about the origin with an
angular speed equal to the angular frequency vd of vR and iR.

Length: The length of each phasor represents the amplitude of the alternating
quantity: VR for the voltage and IR for the current.

Projection: The projection of each phasor on the vertical axis represents the
value of the alternating quantity at time t: vR for the voltage and iR for
the current.

Rotation angle: The rotation angle of each phasor is equal to the phase of the
alternating quantity at time t. In Fig. 31-9b, the voltage and current are in
phase; so their phasors always have the same phase vdt and the same rotation
angle, and thus they rotate together.

Mentally follow the rotation. Can you see that when the phasors have
rotated so that vdt ! 90° (they point vertically upward), they indicate that just
then vR ! VR and iR ! IR? Equations 31-30 and 31-32 give the same results.

CHECKPOINT 3

If we increase the driving frequency in a circuit with a purely resistive load, do (a) am-
plitude VR and (b) amplitude IR increase, decrease, or remain the same?

vR, iR

T

IR

 = 0° = 0 rad

VR

0

Instants
represented in (b)(a) (b)

iR
vR

VR

IR

Rotation of
phasors at

rate   d 

t dtω
vR

iR

T/2

ωφ

For a resistive load,
the current and potential
difference are in phase.

“In phase” means
that they peak at
the same time.
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Fig. 31-9 (a) The current iR and the potential difference vR across the resistor are plotted on
the same graph,both versus time t.They are in phase and complete one cycle in one period T.(b)
A phasor diagram shows the same thing as (a).

halliday_c31_826-860hr.qxd  11-12-2009  13:11  Page 837

The voltage and current are in phase.

(Definition of resistance! R = ∆v
i )



Resistive Circuits
On the right is a phasor diagram.
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projection of the phasor onto the vertical axis represents the instantaneous value of 
the quantity it represents.
 Figure 33.3b shows voltage and current phasors for the circuit of Figure 33.2 at 
some instant of time. The projections of the phasor arrows onto the vertical axis 
are determined by a sine function of the angle of the phasor with respect to the 
horizontal axis. For example, the projection of the current phasor in Figure 33.3b is 
Imax sin vt. Notice that this expression is the same as Equation 33.1. Therefore, the 
projections of phasors represent current values that vary sinusoidally in time. We 
can do the same with time-varying voltages. The advantage of this approach is that 
the phase relationships among currents and voltages can be represented as vector 
additions of phasors using the vector addition techniques discussed in Chapter 3.
 In the case of the single-loop resistive circuit of Figure 33.2, the current and 
voltage phasors are in the same direction in Figure 33.3b because iR and DvR are in 
phase. The current and voltage in circuits containing capacitors and inductors have 
different phase relationships.

Q uick Quiz 33.1  Consider the voltage phasor in Figure 33.4, shown at three 
instants of time. (i) Choose the part of the figure, (a), (b), or (c), that represents 
the instant of time at which the instantaneous value of the voltage has the larg-
est magnitude. (ii) Choose the part of the figure that represents the instant of 
time at which the instantaneous value of the voltage has the smallest magnitude.

a b c

Figure 33.4  (Quick Quiz 33.1) A voltage 
phasor is shown at three instants of time,  
(a), (b), and (c).

The current and the voltage are in phase:
they simultaneously reach their 
maximum values, their minimum values, 
and their zero values.

The current and the voltage 
phasors are in the same 
direction because the current is 
in phase with the voltage.

iR
!vR

Imax

Imax

Vmax

t

a

b

c

T
vt

!Vmax

iR , !vRiR , !vR

a b

iR

!vR

Figure 33.3 (a) Plots of the 
instantaneous current iR and 
instantaneous voltage DvR across 
a resistor as functions of time. At 
time t 5 T, one cycle of the time-
varying voltage and current has 
been completed. (b) Phasor dia-
gram for the resistive circuit show-
ing that the current is in phase 
with the voltage.

Pitfall Prevention 33.2
A Phasor Is Like a Graph An alter-
nating voltage can be presented 
in different representations. One 
graphical representation is shown 
in Figure 33.1 in which the voltage 
is drawn in rectangular coordi-
nates, with voltage on the vertical 
axis and time on the horizontal 
axis. Figure 33.3b shows another 
graphical representation. The 
phase space in which the phasor 
is drawn is similar to polar coor-
dinate graph paper. The radial 
coordinate represents the ampli-
tude of the voltage. The angular 
coordinate is the phase angle. The 
vertical-axis coordinate of the tip 
of the phasor represents the instan-
taneous value of the voltage. The 
horizontal coordinate represents 
nothing at all. As shown in Figure 
33.3b, alternating currents can 
also be represented by phasors.
  To help with this discussion 
of phasors, review Section 15.4, 
where we represented the simple 
harmonic motion of a real object 
by the projection of an imagi-
nary object’s uniform circular 
motion onto a coordinate axis. A 
phasor is a direct analog to this 
representation.

 For the simple resistive circuit in Figure 33.2, notice that the average value of 
the current over one cycle is zero. That is, the current is maintained in the pos-
itive direction for the same amount of time and at the same magnitude as it is 
maintained in the negative direction. The direction of the current, however, has no 
effect on the behavior of the resistor. We can understand this concept by realizing 
that collisions between electrons and the fixed atoms of the resistor result in an 

Instantaneous current and voltage are represented by vectors that
rotate in time:

∆v(t) = ∆vmax sin(ωt)

i(t) = imax sin(ωt)

The voltage and current are in phase ⇒ the angle between the
vectors, φ = 0.
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An Inductive Load
Figure 31-12 shows a circuit containing an inductance and a generator with the al-
ternating emf of Eq. 31-28. Using the loop rule and proceeding as we did to
obtain Eq. 31-30, we find that the potential difference across the inductance is

vL ! VL sin vdt, (31-45)

where VL is the amplitude of vL. From Eq. 30-35 (!L ! "L di/dt), we can write
the potential difference across an inductance L in which the current is changing
at the rate diL/dt as

(31-46)

If we combine Eqs. 31-45 and 31-46, we have

(31-47)

Our concern, however, is with the current rather than with its time derivative. We
find the former by integrating Eq. 31-47, obtaining

(31-48)

We now modify this equation in two ways. First, for reasons of symmetry of
notation, we introduce the quantity XL, called the inductive reactance of an

iL ! ! diL !
VL

L
 ! sin #d t dt ! "" VL

#dL
 # cos #dt.

diL

dt
!

VL

L
 sin #dt.

vL ! L 
diL

dt
.

Sample Problem

In an ac circuit with a purely capacitive load, the alternating
current iC(t) in the capacitance leads the alternating poten-
tial difference vC(t) by 90°; that is, the phase constant f for
the current is "90°, or "p/2 rad.

Calculations: Thus, we can write Eq. 31-29 as

iC ! IC sin(vdt " f) ! IC sin(vdt $ p/2). (31-44)

We can find the amplitude IC from Eq. 31-42 (VC ! ICXC) if
we first find the capacitive reactance XC. From Eq. 31-39
(XC ! 1/vdC), with vd ! 2pfd, we can write

Then Eq. 31-42 tells us that the current amplitude is

(Answer)

Substituting this and vd ! 2pfd ! 120p into Eq. 31-44, we
have

iC ! (0.203 A) sin(120pt $ p/2). (Answer)

IC !
VC

XC
!

36.0 V
177 %

! 0.203 A.

 ! 177 %.

  XC !
1

2&fdC
!

1
(2&)(60.0 Hz)(15.0 ' 10"6 F)

Additional examples, video, and practice available at WileyPLUS

Purely capacitive load: potential difference and current 

In Fig. 31-10, capacitance C is 15.0 mF and the sinusoidal 
alternating emf device operates at amplitude !m ! 36.0 V
and frequency fd ! 60.0 Hz.

(a) What are the potential difference vC(t) across the 
capacitance and the amplitude VC of vC(t)?

In a circuit with a purely capacitive load, the potential differ-
ence vC(t) across the capacitance is always equal to the potential
difference !(t) across the emf device.

Calculations: Here we have vC(t) ! !(t) and VC ! !m.
Since !m is given, we have

VC ! !m ! 36.0 V. (Answer)

To find vC(t), we use Eq. 31-28 to write

vC(t) ! !(t) ! !m sin vdt. (31-43)

Then, substituting !m ! 36.0 V and vd ! 2pfd ! 120p into
Eq. 31-43, we have

vC ! (36.0 V) sin(120pt). (Answer)

(b) What are the current iC(t) in the circuit as a function of
time and the amplitude IC of iC(t)?

KEY I DEA

KEY I DEA

iL vLL

Fig. 31-12 An inductor is connected
across an alternating-current generator.
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Kirchoff’s loop law holds at each instant in this circuit:

∆v − L
di

dt
= 0

∆v = ∆Vmax sin(ωt) = L
di

dt

This means

i =
∆Vmax

ωL
sin(ωt − π/2)
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across an alternating-current generator.
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inductor, which is defined as

XL ! vdL (inductive reactance). (31-49)

The value of XL depends on the driving angular frequency vd. The unit of the
inductive time constant tL indicates that the SI unit of XL is the ohm, just as it is
for XC and for R.

Second, we replace "cos vdt in Eq. 31-48 with a phase-shifted sine:

"cos vdt ! sin(vdt " 90°).

You can verify this identity by shifting a sine curve 90° in the positive direction.
With these two changes, Eq. 31-48 becomes

(31-50)

From Eq. 31-29, we can also write this current in the inductance as

iL ! IL sin(vdt " f), (31-51)

where IL is the amplitude of the current iL. Comparing Eqs. 31-50 and 31-51,
we see that for a purely inductive load the phase constant f for the current is
#90°. We also see that the voltage amplitude and current amplitude are re-
lated by

VL ! ILXL (inductor). (31-52)

Although we found this relation for the circuit of Fig. 31-12, it applies to any
inductance in any ac circuit.

Comparison of Eqs. 31-45 and 31-50, or inspection of Fig. 31-13a, shows that
the quantities iL and vL are 90° out of phase. In this case, however, iL lags vL;
that is, monitoring the current iL and the potential difference vL in the circuit of
Fig. 31-12 shows that iL reaches its maximum value after vL does, by one-quarter
cycle.

The phasor diagram of Fig. 31-13b also contains this information. As the
phasors rotate counterclockwise in the figure, the phasor labeled IL does indeed
lag that labeled VL, and by an angle of 90°. Be sure to convince yourself that
Fig. 31-13b represents Eqs. 31-45 and 31-50.

iL ! ! VL

XL
" sin($dt " 90%).

vL, iL 

T 

iL 

vL 

0 

Instants 
represented in (b) 

(a)

(b)

iL 

vL VL 

IL 

 
 

  ω 

Rotation of 
phasors at 

rate   d 

t 

dt ω 

VL 
IL 

T/2 

= +90° = +   /2 rad φ π 

“Lags” means that the
current peaks at a
later time than the
potential difference.

For an inductive load,
the current lags the
potential difference
by 90º.

CHECKPOINT 5

If we increase the driving frequency in a circuit with a purely capacitive load, do (a) am-
plitude VC and (b) amplitude IC increase, decrease, or remain the same? If, instead, the
circuit has a purely inductive load, do (c) amplitude VL and (d) amplitude IL increase,
decrease, or remain the same?
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Fig. 31-13 (a) The current in the induc-
tor lags the voltage by 90° (! p/2 rad). (b)
A phasor diagram shows the same thing.

Problem-Solving Tactics

Leading and Lagging in AC Circuits Table 31-2 summarizes
the relations between the current i and the voltage v for each of the
three kinds of circuit elements we have considered. When an ap-
plied alternating voltage produces an alternating current in these
elements, the current is always in phase with the voltage across a re-
sistor, always leads the voltage across a capacitor, and always lags
the voltage across an inductor.

Many students remember these results with the mnemonic
“ELI the ICE man.” ELI contains the letter L (for inductor), and

in it the letter I (for current) comes after the letter E (for emf or
voltage). Thus, for an inductor, the current lags (comes after) the
voltage. Similarly ICE (which contains a C for capacitor) means
that the current leads (comes before) the voltage. You might also
use the modified mnemonic “ELI positively is the ICE man” to re-
member that the phase constant f is positive for an inductor.

If you have difficulty in remembering whether XC is equal to
vdC (wrong) or 1/vdC (right), try remembering that C is in the
“cellar”—that is, in the denominator.
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The voltage leads the current. Voltage peaks first.

The potential difference across the inductor is large when the
change in current is large. (VL = −L ∆i

∆t )
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not changing, so the voltage across the inductor is zero (point d). At points such 
as a and e, the current is zero and the rate of change of current is at a maximum. 
Therefore, the voltage across the inductor is also at a maximum (points c and f ). 
Notice that the voltage reaches its maximum value one-quarter of a period before 
the current reaches its maximum value. Therefore, for a sinusoidal applied voltage, 
the current in an inductor always lags behind the voltage across the inductor by 90° 
(one-quarter cycle in time).
 As with the relationship between current and voltage for a resistor, we can repre-
sent this relationship for an inductor with a phasor diagram as in Figure 33.7b. The 
phasors are at 90° to each other, representing the 90° phase difference between 
current and voltage.
 Equation 33.7 shows that the current in an inductive circuit reaches its maxi-
mum value when cos vt 5 61:

 Imax 5
DVmax

vL
 (33.9)

This expression is similar to the relationship between current, voltage, and resis-
tance in a DC circuit, I 5 DV/R (Eq. 27.7). Because Imax has units of amperes 
and DVmax has units of volts, vL must have units of ohms. Therefore, vL has the 
same units as resistance and is related to current and voltage in the same way as 
resistance. It must behave in a manner similar to resistance in the sense that it 
represents opposition to the flow of charge. Because vL depends on the applied 
frequency v, the inductor reacts differently, in terms of offering opposition to cur-
rent, for different frequencies. For this reason, we define vL as the inductive reac-
tance XL:

 XL ; vL (33.10)

Therefore, we can write Equation 33.9 as

 Imax 5
DVmax

XL
 (33.11)

The expression for the rms current in an inductor is similar to Equation 33.11, with 
Imax replaced by Irms and DVmax replaced by DVrms.
 Equation 33.10 indicates that, for a given applied voltage, the inductive reac-
tance increases as the frequency increases. This conclusion is consistent with Fara-
day’s law: the greater the rate of change of current in the inductor, the larger the 
back emf. The larger back emf translates to an increase in the reactance and a 
decrease in the current.

�W  Maximum current in  
an inductor

�W Inductive reactance

The current lags the voltage by 
one-fourth of a cycle.

The current and voltage phasors 
are at 90! to each other.

Imax

ta

c

d

b

e
T

f

"Vmax

"vL, iL

vt

"vL

iL

iL

"vL "Vmax

Imax

a b

"vL, iL

Figure 33.7 (a) Plots of the 
instantaneous current iL and 
instantaneous voltage DvL across 
an inductor as functions of time. 
(b) Phasor diagram for the induc-
tive circuit.

Instantaneous current and voltage:

∆v(t) = ∆vmax sin(ωt)

i(t) = imax sin(ωt − π/2)

The voltage leads the current. The angle i → ∆v is φ = π/2.
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From Kirchhoff’s loop rule we derived:

i =
∆Vmax

ωL
sin(ωt − π/2)

Therefore

imax =
∆Vmax

ωL

The product ωL has units of Ohms and behaves effectively as a
resistance. However, it depends on the frequency of the voltage.

We can think of the inductor “reacting” to the frequency of the
voltage.

We define

Inductive Reactance

XL = ωL



Inductive Circuit Question

In the AC circuit shown, the frequency of the AC source is
adjusted while its voltage amplitude is held constant. When does
the lightbulb glow the brightest?
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 Using Equations 33.6 and 33.11, we find that the instantaneous voltage across 
the inductor is

 DvL 5 2L 
diL

dt
5 2DVmax sin vt 5 2Imax XL  sin vt  (33.12)

Q uick Quiz 33.2  Consider the AC circuit in Figure 33.8. The frequency of the AC 
source is adjusted while its voltage amplitude is held constant. When does the 
lightbulb glow the brightest? (a) It glows brightest at high frequencies. (b) It glows 
brightest at low frequencies. (c) The brightness is the same at all frequencies.

Voltage across an inductor X

L

R

Figure 33.8  (Quick Quiz 33.2) At 
what frequencies does the lightbulb 
glow the brightest?

Example 33.2   A Purely Inductive AC Circuit

In a purely inductive AC circuit, L 5 25.0 mH and the rms voltage is 150 V. Calculate the inductive reactance and rms 
current in the circuit if the frequency is 60.0 Hz.

Conceptualize  Figure 33.6 shows the physical situation for this problem. Keep in mind that inductive reactance 
increases with increasing frequency of the applied voltage.

Categorize  We determine the reactance and the current from equations developed in this section, so we categorize 
this example as a substitution problem.

S O L U T I O N

Use an rms version of Equation 33.11 to find the  
rms current:

I rms 5
DVrms

XL
5

150 V
9.42 V

5 15.9 A

Use Equation 33.10 to find the inductive reactance: XL 5 vL 5 2pfL 5 2p(60.0 Hz)(25.0 3 1023 H)

5 9.42 V

If the frequency increases to 6.00 kHz, what happens to the rms current in the circuit?

Answer  If the frequency increases, the inductive reactance also increases because the current is changing at a higher 
rate. The increase in inductive reactance results in a lower current.
 Let’s calculate the new inductive reactance and the new rms current:

XL 5 2p(6.00 3 103 Hz)(25.0 3 1023 H) 5 942 V

I rms 5
150 V
942 V

5 0.159 A

WHAT IF ?

33.4 Capacitors in an AC Circuit
Figure 33.9 shows an AC circuit consisting of a capacitor connected across the 
terminals of an AC source. Kirchhoff’s loop rule applied to this circuit gives  
Dv 1 DvC 5 0, or

 Dv 2
q
C

5 0  (33.13)

(a) It glows brightest at high frequencies.

(b) It glows brightest at low frequencies.

(c) The brightness is the same at all frequencies.
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In the AC circuit shown, the frequency of the AC source is
adjusted while its voltage amplitude is held constant. When does
the lightbulb glow the brightest?
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 Using Equations 33.6 and 33.11, we find that the instantaneous voltage across 
the inductor is

 DvL 5 2L 
diL

dt
5 2DVmax sin vt 5 2Imax XL  sin vt  (33.12)
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source is adjusted while its voltage amplitude is held constant. When does the 
lightbulb glow the brightest? (a) It glows brightest at high frequencies. (b) It glows 
brightest at low frequencies. (c) The brightness is the same at all frequencies.

Voltage across an inductor X

L

R

Figure 33.8  (Quick Quiz 33.2) At 
what frequencies does the lightbulb 
glow the brightest?

Example 33.2   A Purely Inductive AC Circuit
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this example as a substitution problem.

S O L U T I O N

Use an rms version of Equation 33.11 to find the  
rms current:

I rms 5
DVrms

XL
5

150 V
9.42 V

5 15.9 A

Use Equation 33.10 to find the inductive reactance: XL 5 vL 5 2pfL 5 2p(60.0 Hz)(25.0 3 1023 H)

5 9.42 V

If the frequency increases to 6.00 kHz, what happens to the rms current in the circuit?

Answer  If the frequency increases, the inductive reactance also increases because the current is changing at a higher 
rate. The increase in inductive reactance results in a lower current.
 Let’s calculate the new inductive reactance and the new rms current:

XL 5 2p(6.00 3 103 Hz)(25.0 3 1023 H) 5 942 V

I rms 5
150 V
942 V

5 0.159 A

WHAT IF ?

33.4 Capacitors in an AC Circuit
Figure 33.9 shows an AC circuit consisting of a capacitor connected across the 
terminals of an AC source. Kirchhoff’s loop rule applied to this circuit gives  
Dv 1 DvC 5 0, or

 Dv 2
q
C

5 0  (33.13)

(a) It glows brightest at high frequencies.

(b) It glows brightest at low frequencies. ←
(c) The brightness is the same at all frequencies.
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A Capacitive Load
Figure 31-10 shows a circuit containing a capacitance and a generator with the
alternating emf of Eq. 31-28. Using the loop rule and proceeding as we did
when we obtained Eq. 31-30, we find that the potential difference across the
capacitor is

vC ! VC sin vdt, (31-36)

where VC is the amplitude of the alternating voltage across the capacitor. From
the definition of capacitance we can also write

qC ! CvC ! CVC sin vdt. (31-37)

Our concern, however, is with the current rather than the charge. Thus, we differ-
entiate Eq. 31-37 to find

(31-38)

We now modify Eq. 31-38 in two ways. First, for reasons of symmetry of nota-
tion, we introduce the quantity XC, called the capacitive reactance of a capacitor,
defined as

(capacitive reactance). (31-39)XC !
1

"dC

iC !
dqC

dt
! "dCVC  cos "dt.

Sample Problem

We can leave the argument of the sine in this form for con-
venience,or we can write it as (377 rad/s)t or as (377 s#1)t.

(b) What are the current iR(t) in the resistance and the 
amplitude IR of iR(t)?

In an ac circuit with a purely resistive load, the alternating
current iR(t) in the resistance is in phase with the alternating po-
tential difference vR(t) across the resistance; that is, the phase
constant f for the current is zero.

Calculations: Here we can write Eq. 31-29 as

iR ! IR sin(vdt # f) ! IR sin vdt. (31-35)

From Eq. 31-33, the amplitude IR is

(Answer)

Substituting this and vd ! 2p fd ! 120p into Eq. 31-35, we
have

iR ! (0.180 A) sin(120p t). (Answer)

IR !
VR

R
!

36.0 V
200 $

! 0.180 A.

Additional examples, video, and practice available at WileyPLUS

Purely resistive load: potential difference and current 

In Fig. 31-8, resistance R is 200 $ and the sinusoidal alter-
nating emf device operates at amplitude !m ! 36.0 V and
frequency fd ! 60.0 Hz.

(a) What is the potential difference vR(t) across the resistance
as a function of time t, and what is the amplitude VR of vR(t)?

In a circuit with a purely resistive load, the potential difference
vR(t) across the resistance is always equal to the potential differ-
ence !(t) across the emf device.

Calculations: Here we have vR(t) ! !(t) and VR ! !m.
Since !m is given, we can write

VR ! !m ! 36.0 V. (Answer)

To find vR(t), we use Eq. 31-28 to write

vR(t) ! !(t) ! !m sin vdt (31-34)

and then substitute !m ! 36.0 V and

vd ! 2pfd ! 2p(60 Hz) ! 120p
to obtain

vR ! (36.0 V) sin(120pt). (Answer)

KEY I DEA

KEY I DEA

Fig. 31-10 A capacitor is connected
across an alternating-current generator.

iC vCC
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Kirchoff’s loop law holds at each instant in this circuit:

∆v −
q

C
= 0

i =
dq

dt
= C (∆Vmax)

d

dt
sin(ωt)

i = ωC (∆Vmax) sin(ωt + π/2)
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In an ac circuit with a purely resistive load, the alternating
current iR(t) in the resistance is in phase with the alternating po-
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constant f for the current is zero.

Calculations: Here we can write Eq. 31-29 as
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From Eq. 31-33, the amplitude IR is

(Answer)

Substituting this and vd ! 2p fd ! 120p into Eq. 31-35, we
have

iR ! (0.180 A) sin(120p t). (Answer)

IR !
VR

R
!

36.0 V
200 $

! 0.180 A.

Additional examples, video, and practice available at WileyPLUS

Purely resistive load: potential difference and current 

In Fig. 31-8, resistance R is 200 $ and the sinusoidal alter-
nating emf device operates at amplitude !m ! 36.0 V and
frequency fd ! 60.0 Hz.

(a) What is the potential difference vR(t) across the resistance
as a function of time t, and what is the amplitude VR of vR(t)?

In a circuit with a purely resistive load, the potential difference
vR(t) across the resistance is always equal to the potential differ-
ence !(t) across the emf device.

Calculations: Here we have vR(t) ! !(t) and VR ! !m.
Since !m is given, we can write

VR ! !m ! 36.0 V. (Answer)

To find vR(t), we use Eq. 31-28 to write

vR(t) ! !(t) ! !m sin vdt (31-34)

and then substitute !m ! 36.0 V and

vd ! 2pfd ! 2p(60 Hz) ! 120p
to obtain

vR ! (36.0 V) sin(120pt). (Answer)

KEY I DEA

KEY I DEA

Fig. 31-10 A capacitor is connected
across an alternating-current generator.

iC vCC
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Its value depends not only on the capacitance but also on the driving angular
frequency vd. We know from the definition of the capacitive time constant 
(t ! RC) that the SI unit for C can be expressed as seconds per ohm. Applying
this to Eq. 31-39 shows that the SI unit of XC is the ohm, just as for resistance R.

Second, we replace cos vdt in Eq. 31-38 with a phase-shifted sine:

cos vdt ! sin(vdt " 90°).

You can verify this identity by shifting a sine curve 90° in the negative direction.
With these two modifications, Eq. 31-38 becomes

(31-40)

From Eq. 31-29, we can also write the current iC in the capacitor of Fig. 31-10 as

iC ! IC sin(vdt # f), (31-41)

where IC is the amplitude of iC. Comparing Eqs. 31-40 and 31-41, we see that for
a purely capacitive load the phase constant f for the current is #90°. We also see
that the voltage amplitude and current amplitude are related by

VC ! ICXC (capacitor). (31-42)

Although we found this relation for the circuit of Fig. 31-10, it applies to any
capacitance in any ac circuit.

Comparison of Eqs. 31-36 and 31-40, or inspection of Fig. 31-11a, shows that
the quantities vC and iC are 90°, p/2 rad, or one-quarter cycle, out of phase.
Furthermore, we see that iC leads vC, which means that, if you monitored the
current iC and the potential difference vC in the circuit of Fig. 31-10, you would
find that iC reaches its maximum before vC does, by one-quarter cycle.

This relation between iC and vC is illustrated by the phasor diagram of
Fig. 31-11b.As the phasors representing these two quantities rotate counterclock-
wise together, the phasor labeled IC does indeed lead that labeled VC, and by an
angle of 90°; that is, the phasor IC coincides with the vertical axis one-quarter
cycle before the phasor VC does. Be sure to convince yourself that the phasor
diagram of Fig. 31-11b is consistent with Eqs. 31-36 and 31-40.

iC ! ! VC

XC
" sin($dt " 90%).

Fig. 31-11 (a) The current in the capacitor leads the voltage by 90° (! p/2 rad). (b) A
phasor diagram shows the same thing.

vC, iC 

T 
iC 

vC 

0 

Instants 
represented in (b) 

(a) (b)

iC

vC VC

IC
Rotation of
phasors at

rate   d 

dtω
T/2 

IC 

VC 

= –90° = –   /2 rad φ π ω

t 

For a capacitive load, the
current leads the potential
difference by 90º.

“Leads” means that the
current peaks at an
earlier time than the
potential difference.

CHECKPOINT 4

The figure shows, in (a), a sine curve 
S(t) ! sin(vdt) and three other sinu-
soidal curves A(t), B(t), and C(t), each of
the form sin(vdt # f). (a) Rank the
three other curves according to the value
of f, most positive first and most nega-
tive last. (b) Which curve corresponds to
which phasor in (b) of the figure? (c)
Which curve leads the others?

t 

A 

B S 
C 

1
2 3

4

(a) 

(b)
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The current leads the voltage. Current peaks first.

The potential across the capacitor is only high once the capacitor
has built up some charge.
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Substituting DVmax sin vt for Dv and rearranging gives

 q 5 C DVmax sin vt  (33.14)

where q is the instantaneous charge on the capacitor. Differentiating Equation 
33.14 with respect to time gives the instantaneous current in the circuit:

 iC 5
dq
dt

5 vC DVmax cos vt  (33.15)

Using the trigonometric identity

cos vt 5 sin avt 1
p

2
b

we can express Equation 33.15 in the alternative form

 iC 5 vC DVmax sin avt 1
p

2
b  (33.16)

Comparing this expression with Dv 5 DVmax sin vt shows that the current is p/2 
rad 5 90° out of phase with the voltage across the capacitor. A plot of current and 
voltage versus time (Fig. 33.10a) shows that the current reaches its maximum value 
one-quarter of a cycle sooner than the voltage reaches its maximum value.
 Consider a point such as b in Figure 33.10a where the current is zero at this 
instant. That occurs when the capacitor reaches its maximum charge so that the 
voltage across the capacitor is a maximum (point d). At points such as a and e, the 
current is a maximum, which occurs at those instants when the charge on the capac-
itor reaches zero and the capacitor begins to recharge with the opposite polarity. 
When the charge is zero, the voltage across the capacitor is zero (points c and f ).
 As with inductors, we can represent the current and voltage for a capacitor on a 
phasor diagram. The phasor diagram in Figure 33.10b shows that for a sinusoidally 
applied voltage, the current always leads the voltage across a capacitor by 90°.

�W Current in a capacitor

a b

Imax Imax

a

d

f
bc

e

t
T

!Vmax

!vC , iC !vC , iC

iC

!vC !Vmax

iC

!vC

The current and voltage phasors 
are at 90" to each other.

The current leads the voltage 
by one-fourth of a cycle.

vt

Figure 33.10 (a) Plots of the 
instantaneous current iC and 
instantaneous voltage DvC across  
a capacitor as functions of time.  
(b) Phasor diagram for the capaci-
tive circuit.

C

!vC

!v # !Vmax sin vt 

Figure 33.9 A circuit 
consisting of a capacitor of 
capacitance C connected to 
an AC source.

Instantaneous current and voltage:

∆v(t) = ∆vmax sin(ωt)

i(t) = imax sin(ωt + π/2)

The current leads the voltage. The angle i → ∆v is φ = −π/2.
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From Kirchhoff’s loop (capacitance circuit) rule we derived:

i = ωC (∆Vmax) sin(ωt + π/2)

Therefore

imax =
∆Vmax

(1/ωC )

The expression 1
ωC also has units of Ohms and behaves effectively

as a resistance. Again, it depends on the frequency of the voltage.

We define

Capacitive Reactance

XC =
1

ωC



Capacitive Circuit Question

In the AC circuit shown, the frequency of the AC source is
adjusted while its voltage amplitude is held constant. When does
the lightbulb glow the brightest?
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 Equation 33.15 shows that the current in the circuit reaches its maximum value 
when cos vt 5 61:

 Imax 5 vC DVmax 5
DVmax11/vC 2  (33.17)

As in the case with inductors, this looks like Equation 27.7, so the denominator 
plays the role of resistance, with units of ohms. We give the combination 1/vC the 
symbol XC, and because this function varies with frequency, we define it as the 
capacitive reactance:

 XC ;
1

vC
 (33.18)

We can now write Equation 33.17 as

 Imax 5
DVmax

XC
 (33.19)

The rms current is given by an expression similar to Equation 33.19, with Imax 
replaced by Irms and DVmax replaced by DVrms.
 Using Equation 33.19, we can express the instantaneous voltage across the capac-
itor as

 DvC 5 DVmax sin vt 5 Imax XC sin vt  (33.20)

Equations 33.18 and 33.19 indicate that as the frequency of the voltage source 
increases, the capacitive reactance decreases and the maximum current therefore 
increases. The frequency of the current is determined by the frequency of the volt-
age source driving the circuit. As the frequency approaches zero, the capacitive 
reactance approaches infinity and the current therefore approaches zero. This con-
clusion makes sense because the circuit approaches direct current conditions as v 
approaches zero and the capacitor represents an open circuit.

Q uick Quiz 33.3  Consider the AC circuit in Figure 33.11. The frequency of the 
AC source is adjusted while its voltage amplitude is held constant. When does the 
lightbulb glow the brightest? (a) It glows brightest at high frequencies. (b) It glows 
brightest at low frequencies. (c) The brightness is the same at all frequencies.

C

R

Figure 33.11  (Quick Quiz 33.3)

Q uick Quiz 33.4  Consider the AC circuit in Figure 33.12. The frequency of the 
AC source is adjusted while its voltage amplitude is held constant. When does the 
lightbulb glow the brightest? (a) It glows brightest at high frequencies. (b) It glows 
brightest at low frequencies. (c) The brightness is the same at all frequencies.

Capacitive reactance X

Maximum current X
in a capacitor

Voltage across a capacitor X

L

R

C

Figure 33.12  (Quick Quiz 33.4)

(a) It glows brightest at high frequencies.

(b) It glows brightest at low frequencies.

(c) The brightness is the same at all frequencies.



Capacitive Circuit Question

In the AC circuit shown, the frequency of the AC source is
adjusted while its voltage amplitude is held constant. When does
the lightbulb glow the brightest?
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Figure 33.11  (Quick Quiz 33.3)

Q uick Quiz 33.4  Consider the AC circuit in Figure 33.12. The frequency of the 
AC source is adjusted while its voltage amplitude is held constant. When does the 
lightbulb glow the brightest? (a) It glows brightest at high frequencies. (b) It glows 
brightest at low frequencies. (c) The brightness is the same at all frequencies.

Capacitive reactance X

Maximum current X
in a capacitor

Voltage across a capacitor X

L

R

C

Figure 33.12  (Quick Quiz 33.4)

(a) It glows brightest at high frequencies. ←
(b) It glows brightest at low frequencies.

(c) The brightness is the same at all frequencies.



Summary

• phase offsets with inductors and capacitors

• reactance

Collected Homework 4! due Thursday.

Final Exam Tuesday, Mar 27, 9:15-11:15am, S35 (here).

Homework Serway & Jewett:

• Ch 33, onward from page 1021. Problems: 9, 15, 19


