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Last time

• phase offsets with inductors and capacitors

• reactance



Overview

• RLC series circuit

• impedance

• power

• resonance



AC in RLC Circuits
Consider the case of a series RLC circuit:
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Example 33.3   A Purely Capacitive AC Circuit

An 8.00-mF capacitor is connected to the terminals of a 60.0-Hz AC source whose rms voltage is 150 V. Find the capaci-
tive reactance and the rms current in the circuit.

Conceptualize  Figure 33.9 shows the physical situation for this problem. Keep in mind that capacitive reactance 
decreases with increasing frequency of the applied voltage.

Categorize  We determine the reactance and the current from equations developed in this section, so we categorize 
this example as a substitution problem.

S O L U T I O N

Use Equation 33.18 to find the capacitive reactance: XC 5
1

vC
5

1
2pfC

5
1

2p 160.0 Hz 2 18.00 3 1026 F 2 5 332 V

Use an rms version of Equation 33.19 to find the  
rms current:

I rms 5
DVrms

XC
5

150 V
332 V

5 0.452 A

What if the frequency is doubled? What happens to the rms current in the circuit?

Answer  If the frequency increases, the capacitive reactance decreases, which is just the opposite from the case of an 
inductor. The decrease in capacitive reactance results in an increase in the current.
 Let’s calculate the new capacitive reactance and the new rms current:

XC 5
1

vC
5

1
2p 1120 Hz 2 18.00 3 1026 F 2 5 166 V

I rms 5
150 V
166 V

5 0.904 A

WHAT IF ?

33.5 The RLC Series Circuit
In the previous sections, we considered individual circuit elements connected to 
an AC source. Figure 33.13a shows a circuit that contains a combination of circuit 
elements: a resistor, an inductor, and a capacitor connected in series across an 
alternating-voltage source. If the applied voltage varies sinusoidally with time, the 
instantaneous applied voltage is

Dv 5 DVmax sin vt

R L C

!vR !vL !vC

a

!vR
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!vL

!vC

b

Figure 33.13 (a) A series circuit 
consisting of a resistor, an induc-
tor, and a capacitor connected to 
an AC source. (b) Phase relation-
ships between the current and the 
voltages in the individual circuit 
elements if they were connected 
alone to the AC source.Suppose the emf source supplies:

∆v = ∆Vmax sin(ωt)

Can we relate this to the current that results?

i = Imax sin(ωt − φ)

(Find φ and Imax.)
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Figure 33.13 (a) A series circuit 
consisting of a resistor, an induc-
tor, and a capacitor connected to 
an AC source. (b) Phase relation-
ships between the current and the 
voltages in the individual circuit 
elements if they were connected 
alone to the AC source.

∆v = ∆vR + ∆vL + ∆vC
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To follow along with the textbook’s diagrams, we will now redefine
our time variable, t → t ′.

Let

t ′ = t −
φ

ω

so that ωt − φ = ωt ′.

Then the voltage and current are given by:

∆v = ∆Vmax sin(ωt ′ + φ)

i = Imax sin(ωt ′)
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∆v = ∆Vmax sin(ωt ′ + φ)

i = Imax sin(ωt ′)

∆v = ∆vR + ∆vL + ∆vC
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∆v = ∆Vmax sin(ωt ′ + φ)

i = Imax sin(ωt ′)

∆v = ∆vR + ∆vL + ∆vC

∆vR is in phase with the current

∆vR = ∆VR sin(ωt ′)

where ∆VR = ImaxR.
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∆v = ∆vR + ∆vL + ∆vC

∆vL and ∆vC are π radians out
of phase: easy to see how to add
them:

∆vL = ∆VL sin(ωt ′ + π/2)

∆vC = ∆VC sin(ωt ′ − π/2)

Then,

∆vL+∆vC = (∆VL−∆VC ) cosωt ′
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∆v = ∆vR + ∆vL + ∆vC

However, ∆vL + ∆vC and ∆vR
are not in phase.

They can be added using a
phasor diagram.
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Phasor diagram:
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Figure 33.13b shows the voltage versus time across each element in the circuit and 
its phase relationships to the current if it were connected individually to the AC 
source, as discussed in Sections 33.2–33.4.
 When the circuit elements are all connected together to the AC source, as in 
Figure 33.13a, the current in the circuit is given by

i 5 Imax sin 1vt 2 f 2
where f is some phase angle between the current and the applied voltage. Based 
on our discussions of phase in Sections 33.3 and 33.4, we expect that the current 
will generally not be in phase with the voltage in an RLC circuit. 
 Because the circuit elements in Figure 33.13a are in series, the current every-
where in the circuit must be the same at any instant. That is, the current at all points 
in a series AC circuit has the same amplitude and phase. Based on the preceding 
sections, we know that the voltage across each element has a different amplitude 
and phase. In particular, the voltage across the resistor is in phase with the current, 
the voltage across the inductor leads the current by 90°, and the voltage across the 
capacitor lags behind the current by 90°. Using these phase relationships, we can 
express the instantaneous voltages across the three circuit elements as

 DvR 5 Imax R sin vt 5 DVR sin vt  (33.21)

 DvL 5 ImaxXL sin avt 1
p

2
b 5 DVL cos vt  (33.22)

 DvC 5 ImaxXC sin avt 2
p

2
b 5 2DVC cos vt  (33.23)

The sum of these three voltages must equal the instantaneous voltage from the AC 
source, but it is important to recognize that because the three voltages have dif-
ferent phase relationships with the current, they cannot be added directly. Figure 
33.14 represents the phasors at an instant at which the current in all three elements 
is momentarily zero. The zero current is represented by the current phasor along 
the horizontal axis in each part of the figure. Next the voltage phasor is drawn at 
the appropriate phase angle to the current for each element.
 Because phasors are rotating vectors, the voltage phasors in Figure 33.14 can be 
combined using vector addition as in Figure 33.15. In Figure 33.15a, the voltage 
phasors in Figure 33.14 are combined on the same coordinate axes. Figure 33.15b 
shows the vector addition of the voltage phasors. The voltage phasors DVL and DVC 
are in opposite directions along the same line, so we can construct the difference 
phasor DVL 2 DVC , which is perpendicular to the phasor DVR . This diagram shows 
that the vector sum of the voltage amplitudes DVR, DVL, and DVC equals a phasor 
whose length is the maximum applied voltage DVmax and which makes an angle f 
with the current phasor Imax. From the right triangle in Figure 33.15b, we see that

a b

Resistor Inductor Capacitor

vvv

c

Imax !VR Imax

!VL

!VC

Imax

a b

Resistor Inductor Capacitor

vvv

c

Imax !VR Imax

!VL

!VC

Imax

a b

Resistor Inductor Capacitor

vvv

c

Imax !VR Imax

!VL

!VC

Imax

Figure 33.14  Phase relation-
ships between the voltage and  
current phasors for (a) a resistor, 
(b) an inductor, and (c) a capaci-
tor connected in series.

The total voltage !Vmax 
makes an angle f with Imax.

The phasors of Figure 33.14 
are combined on a single set 
of axes.

!VL

!VR
!VC

!VR

!VL " !VC

Imax
Imax

Vmax!

v

f

v

a b

Figure 33.15 (a) Phasor diagram 
for the series RLC circuit shown in 
Figure 33.13a. (b) The inductance 
and capacitance phasors are added 
together and then added vectori-
ally to the resistance phasor.
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Can add the vectors in the phasor diagram. (Normal vector
addition.)
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Figure 33.15 (a) Phasor diagram 
for the series RLC circuit shown in 
Figure 33.13a. (b) The inductance 
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together and then added vectori-
ally to the resistance phasor.

Vector addition:

∆Vmax =
√

(∆VR)2 + (∆VL − ∆VC )2

and

∆VL − ∆VC = Imax(XL − XC )

So,

∆Vmax = Imax

√
R2 + X 2

where X = XL − XC

Notice that
√
R2 + X 2 has units of

Ohms and a role like a resistance...
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Figure 33.13b shows the voltage versus time across each element in the circuit and 
its phase relationships to the current if it were connected individually to the AC 
source, as discussed in Sections 33.2–33.4.
 When the circuit elements are all connected together to the AC source, as in 
Figure 33.13a, the current in the circuit is given by

i 5 Imax sin 1vt 2 f 2
where f is some phase angle between the current and the applied voltage. Based 
on our discussions of phase in Sections 33.3 and 33.4, we expect that the current 
will generally not be in phase with the voltage in an RLC circuit. 
 Because the circuit elements in Figure 33.13a are in series, the current every-
where in the circuit must be the same at any instant. That is, the current at all points 
in a series AC circuit has the same amplitude and phase. Based on the preceding 
sections, we know that the voltage across each element has a different amplitude 
and phase. In particular, the voltage across the resistor is in phase with the current, 
the voltage across the inductor leads the current by 90°, and the voltage across the 
capacitor lags behind the current by 90°. Using these phase relationships, we can 
express the instantaneous voltages across the three circuit elements as

 DvR 5 Imax R sin vt 5 DVR sin vt  (33.21)

 DvL 5 ImaxXL sin avt 1
p

2
b 5 DVL cos vt  (33.22)

 DvC 5 ImaxXC sin avt 2
p

2
b 5 2DVC cos vt  (33.23)

The sum of these three voltages must equal the instantaneous voltage from the AC 
source, but it is important to recognize that because the three voltages have dif-
ferent phase relationships with the current, they cannot be added directly. Figure 
33.14 represents the phasors at an instant at which the current in all three elements 
is momentarily zero. The zero current is represented by the current phasor along 
the horizontal axis in each part of the figure. Next the voltage phasor is drawn at 
the appropriate phase angle to the current for each element.
 Because phasors are rotating vectors, the voltage phasors in Figure 33.14 can be 
combined using vector addition as in Figure 33.15. In Figure 33.15a, the voltage 
phasors in Figure 33.14 are combined on the same coordinate axes. Figure 33.15b 
shows the vector addition of the voltage phasors. The voltage phasors DVL and DVC 
are in opposite directions along the same line, so we can construct the difference 
phasor DVL 2 DVC , which is perpendicular to the phasor DVR . This diagram shows 
that the vector sum of the voltage amplitudes DVR, DVL, and DVC equals a phasor 
whose length is the maximum applied voltage DVmax and which makes an angle f 
with the current phasor Imax. From the right triangle in Figure 33.15b, we see that
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Impedance

Impedance, Z

The ratio of the maximum voltage to the maximum current.

Z =
∆Vmax

Imax

For a series RLC circuit (or a component with some resistance,
some capacitance, and some inductance):

Z =
√
R2 + X 2

where the reactance X = XL − XC .
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Figure 33.13b shows the voltage versus time across each element in the circuit and 
its phase relationships to the current if it were connected individually to the AC 
source, as discussed in Sections 33.2–33.4.
 When the circuit elements are all connected together to the AC source, as in 
Figure 33.13a, the current in the circuit is given by

i 5 Imax sin 1vt 2 f 2
where f is some phase angle between the current and the applied voltage. Based 
on our discussions of phase in Sections 33.3 and 33.4, we expect that the current 
will generally not be in phase with the voltage in an RLC circuit. 
 Because the circuit elements in Figure 33.13a are in series, the current every-
where in the circuit must be the same at any instant. That is, the current at all points 
in a series AC circuit has the same amplitude and phase. Based on the preceding 
sections, we know that the voltage across each element has a different amplitude 
and phase. In particular, the voltage across the resistor is in phase with the current, 
the voltage across the inductor leads the current by 90°, and the voltage across the 
capacitor lags behind the current by 90°. Using these phase relationships, we can 
express the instantaneous voltages across the three circuit elements as
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source, but it is important to recognize that because the three voltages have dif-
ferent phase relationships with the current, they cannot be added directly. Figure 
33.14 represents the phasors at an instant at which the current in all three elements 
is momentarily zero. The zero current is represented by the current phasor along 
the horizontal axis in each part of the figure. Next the voltage phasor is drawn at 
the appropriate phase angle to the current for each element.
 Because phasors are rotating vectors, the voltage phasors in Figure 33.14 can be 
combined using vector addition as in Figure 33.15. In Figure 33.15a, the voltage 
phasors in Figure 33.14 are combined on the same coordinate axes. Figure 33.15b 
shows the vector addition of the voltage phasors. The voltage phasors DVL and DVC 
are in opposite directions along the same line, so we can construct the difference 
phasor DVL 2 DVC , which is perpendicular to the phasor DVR . This diagram shows 
that the vector sum of the voltage amplitudes DVR, DVL, and DVC equals a phasor 
whose length is the maximum applied voltage DVmax and which makes an angle f 
with the current phasor Imax. From the right triangle in Figure 33.15b, we see that
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(where the reactance X = XL − XC )
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Figure 33.13b shows the voltage versus time across each element in the circuit and 
its phase relationships to the current if it were connected individually to the AC 
source, as discussed in Sections 33.2–33.4.
 When the circuit elements are all connected together to the AC source, as in 
Figure 33.13a, the current in the circuit is given by

i 5 Imax sin 1vt 2 f 2
where f is some phase angle between the current and the applied voltage. Based 
on our discussions of phase in Sections 33.3 and 33.4, we expect that the current 
will generally not be in phase with the voltage in an RLC circuit. 
 Because the circuit elements in Figure 33.13a are in series, the current every-
where in the circuit must be the same at any instant. That is, the current at all points 
in a series AC circuit has the same amplitude and phase. Based on the preceding 
sections, we know that the voltage across each element has a different amplitude 
and phase. In particular, the voltage across the resistor is in phase with the current, 
the voltage across the inductor leads the current by 90°, and the voltage across the 
capacitor lags behind the current by 90°. Using these phase relationships, we can 
express the instantaneous voltages across the three circuit elements as
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The sum of these three voltages must equal the instantaneous voltage from the AC 
source, but it is important to recognize that because the three voltages have dif-
ferent phase relationships with the current, they cannot be added directly. Figure 
33.14 represents the phasors at an instant at which the current in all three elements 
is momentarily zero. The zero current is represented by the current phasor along 
the horizontal axis in each part of the figure. Next the voltage phasor is drawn at 
the appropriate phase angle to the current for each element.
 Because phasors are rotating vectors, the voltage phasors in Figure 33.14 can be 
combined using vector addition as in Figure 33.15. In Figure 33.15a, the voltage 
phasors in Figure 33.14 are combined on the same coordinate axes. Figure 33.15b 
shows the vector addition of the voltage phasors. The voltage phasors DVL and DVC 
are in opposite directions along the same line, so we can construct the difference 
phasor DVL 2 DVC , which is perpendicular to the phasor DVR . This diagram shows 
that the vector sum of the voltage amplitudes DVR, DVL, and DVC equals a phasor 
whose length is the maximum applied voltage DVmax and which makes an angle f 
with the current phasor Imax. From the right triangle in Figure 33.15b, we see that
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(where the reactance X = XL − XC )
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For which of these is XC > XL?

 33.5 The RLC Series Circuit 1009

DVmax 5 "DVR
2 1 1DVL 2 DVC 22 5 "1ImaxR 22 1 1ImaxXL 2 ImaxXC 22

DVmax 5 Imax "R2 1 1XL 2 XC 22

Therefore, we can express the maximum current as

 Imax 5
DVmax"R2 1 1XL 2 XC 22

 (33.24)

 Once again, this expression has the same mathematical form as Equation 27.7. 
The denominator of the fraction plays the role of resistance and is called the 
impedance Z of the circuit:

 Z ; "R 2 1 1XL 2 XC 22  (33.25)

where impedance also has units of ohms. Therefore, Equation 33.24 can be written 
in the form

 Imax 5
DVmax

Z
 (33.26)

Equation 33.26 is the AC equivalent of Equation 27.7. Note that the impedance 
and therefore the current in an AC circuit depend on the resistance, the induc-
tance, the capacitance, and the frequency (because the reactances are frequency 
dependent).
 From the right triangle in the phasor diagram in Figure 33.15b, the phase angle 
f between the current and the voltage is found as follows:

f 5 tan21 aDVL 2 DVC

DVR
b 5 tan21 aImaxXL 2 ImaxXC

ImaxR
b

 f 5 tan21 aXL 2 XC

R
b  (33.27)

When XL . XC (which occurs at high frequencies), the phase angle is positive, signi-
fying that the current lags the applied voltage as in Figure 33.15b. We describe this 
situation by saying that the circuit is more inductive than capacitive. When XL , XC , 
the phase angle is negative, signifying that the current leads the applied voltage, 
and the circuit is more capacitive than inductive. When XL 5 XC , the phase angle is 
zero and the circuit is purely resistive.

Q uick Quiz 33.5  Label each part of Figure 33.16, (a), (b), and (c), as representing 
XL . XC , XL 5 XC , or XL , XC .

�W  Maximum current  
in an RLC circuit

�W Impedance

�W Phase angle

a

!VmaxImax !Vmax
Imax

b

!Vmax

Imax

c

Figure 33.16  (Quick Quiz 33.5)  
Match the phasor diagrams to 
the relationships between the 
reactances.

Example 33.4   Analyzing a Series RLC Circuit

A series RLC circuit has R 5 425 V, L 5 1.25 H, and C 5 3.50 mF. It is connected to an AC source with f 5 60.0 Hz and 
DVmax 5 150 V.

(A)  Determine the inductive reactance, the capacitive reactance, and the impedance of the circuit. continued

(a) a

(b) b

(c) c

(d) none of these
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P = i∆v

∆v = ∆Vmax sin(ωt)

i = Imax sin(ωt − φ)

Therefore,
P = Imax∆Vmax sin(ωt − φ) sin(ωt)

After using some trigonometric identities:

Pavg = Irms∆Vrms cosφ
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Figure 33.13b shows the voltage versus time across each element in the circuit and 
its phase relationships to the current if it were connected individually to the AC 
source, as discussed in Sections 33.2–33.4.
 When the circuit elements are all connected together to the AC source, as in 
Figure 33.13a, the current in the circuit is given by

i 5 Imax sin 1vt 2 f 2
where f is some phase angle between the current and the applied voltage. Based 
on our discussions of phase in Sections 33.3 and 33.4, we expect that the current 
will generally not be in phase with the voltage in an RLC circuit. 
 Because the circuit elements in Figure 33.13a are in series, the current every-
where in the circuit must be the same at any instant. That is, the current at all points 
in a series AC circuit has the same amplitude and phase. Based on the preceding 
sections, we know that the voltage across each element has a different amplitude 
and phase. In particular, the voltage across the resistor is in phase with the current, 
the voltage across the inductor leads the current by 90°, and the voltage across the 
capacitor lags behind the current by 90°. Using these phase relationships, we can 
express the instantaneous voltages across the three circuit elements as

 DvR 5 Imax R sin vt 5 DVR sin vt  (33.21)

 DvL 5 ImaxXL sin avt 1
p

2
b 5 DVL cos vt  (33.22)

 DvC 5 ImaxXC sin avt 2
p

2
b 5 2DVC cos vt  (33.23)

The sum of these three voltages must equal the instantaneous voltage from the AC 
source, but it is important to recognize that because the three voltages have dif-
ferent phase relationships with the current, they cannot be added directly. Figure 
33.14 represents the phasors at an instant at which the current in all three elements 
is momentarily zero. The zero current is represented by the current phasor along 
the horizontal axis in each part of the figure. Next the voltage phasor is drawn at 
the appropriate phase angle to the current for each element.
 Because phasors are rotating vectors, the voltage phasors in Figure 33.14 can be 
combined using vector addition as in Figure 33.15. In Figure 33.15a, the voltage 
phasors in Figure 33.14 are combined on the same coordinate axes. Figure 33.15b 
shows the vector addition of the voltage phasors. The voltage phasors DVL and DVC 
are in opposite directions along the same line, so we can construct the difference 
phasor DVL 2 DVC , which is perpendicular to the phasor DVR . This diagram shows 
that the vector sum of the voltage amplitudes DVR, DVL, and DVC equals a phasor 
whose length is the maximum applied voltage DVmax and which makes an angle f 
with the current phasor Imax. From the right triangle in Figure 33.15b, we see that
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Pavg = Irms∆Vrms cosφ

From the phasor diagram:

∆VR = ∆Vmax cosφ

and since ∆VR = ImaxR

ImaxR√
2

=
∆Vmax√

2
cosφ

Equating the red pieces:

Pavg = I2rmsR



Power in AC Circuits

Pavg = Irms∆Vrms cosφ

The average power delivered is largest when φ = 0. Current is in
phase with the voltage.

Then:
Pavg = Irms∆Vrms

Using our expression for φ:

φ = tan−1

(
X

R

)
= 0⇒ X = 0

Notice that since, X = 0:

Z =
√
R2 + 0 = R

This is the minimum possible value for Z .
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Resonance and Power in AC Circuits

Current is in phase with the voltage when X = 0.

XL = XC

ωL =
1

ωC

ω =
1√
LC

If the circuit is driven by an oscillating voltage with frequency

ω0 =
1√
LC

the power delivered will be high. This is the resonance frequency
of the circuit. (Where did we see this before?)



Resonance and Power in AC Circuits

Current is in phase with the voltage when X = 0.

XL = XC

ωL =
1

ωC

ω =
1√
LC

If the circuit is driven by an oscillating voltage with frequency

ω0 =
1√
LC

the power delivered will be high. This is the resonance frequency
of the circuit.

(Where did we see this before?)



Resonance and Power in AC Circuits

Current is in phase with the voltage when X = 0.

XL = XC

ωL =
1

ωC

ω =
1√
LC

If the circuit is driven by an oscillating voltage with frequency

ω0 =
1√
LC

the power delivered will be high. This is the resonance frequency
of the circuit. (Where did we see this before?)



Resonance and Power in AC Circuits

We can express the average power in terms of ∆Vrms and Z
instead of Irms, which varies with frequency, ω.

Pavg = I2rmsR =

(
∆Vrms

Z

)2

R

Using Z =
√
R2 + (XL − XC )2 and our definitions of XL, XC , and

ω0:

Pavg =
(∆Vrms)

2Rω2

R2ω2 + L2(ω2 −ω2
0)

2

This is a Lorentzian function.
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Using this result in Equation 33.36 gives

 Pavg 5
1DVrms 22 Rv2

R2 v2 1 L2 1v2 2 v0
2 22 (33.37)

Equation 33.37 shows that at resonance, when v 5 v0, the average power is a maxi-
mum and has the value (DVrms)2/R . Figure 33.17b is a plot of average power versus 
frequency for three values of R in a series RLC circuit. As the resistance is made 
smaller, the curve becomes sharper in the vicinity of the resonance frequency. This 
curve sharpness is usually described by a dimensionless parameter known as the 
quality factor,2 denoted by Q :

 Q 5
v0

Dv
 

where Dv is the width of the curve measured between the two values of v for which 
Pavg has one-half its maximum value, called the half-power points (see Fig. 33.17b.) It 
is left as a problem (Problem 76) to show that the width at the half-power points has 
the value Dv 5 R/L so that

 Q 5
v0L
R

 (33.38)

 A radio’s receiving circuit is an important application of a resonant circuit. The 
radio is tuned to a particular station (which transmits an electromagnetic wave or 
signal of a specific frequency) by varying a capacitor, which changes the receiv-
ing circuit’s resonance frequency. When the circuit is driven by the electromag-
netic oscillations a radio signal produces in an antenna, the tuner circuit responds 
with a large amplitude of electrical oscillation only for the station frequency that 
matches the resonance frequency. Therefore, only the signal from one radio sta-
tion is passed on to the amplifier and loudspeakers even though signals from all 
stations are driving the circuit at the same time. Because many signals are often 
present over a range of frequencies, it is important to design a high-Q circuit to 
eliminate unwanted signals. In this manner, stations whose frequencies are near 
but not equal to the resonance frequency have a response at the receiver that is 
negligibly small relative to the signal that matches the resonance frequency.

Average power as X 
a function of frequency in 

an RLC circuit

Quality factor X

2The quality factor is also defined as the ratio 2pE/DE, where E is the energy stored in the oscillating system and DE 
is the energy decrease per cycle of oscillation due to the resistance.

Figure 33.17 (a) The rms cur-
rent versus frequency for a series 
RLC circuit for three values of R . 
(b) Average power delivered to 
the circuit versus frequency for 
the series RLC circuit for three 
values of R .
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Maxwell’s Laws

Amazingly, we can summarize the majority of the relations that we
have talked about in this course in a set of just 4 equations.

These are together called Maxwell’s equations.

∮
E · dA =

qenc
ε∮

B · dA = 0∮
E · ds = −

dΦB

dt∮
B · ds = µ0ε0

dΦE

dt
+µ0Ienc



Gauss’s Law for Magnetic Fields

The first of Maxwell’s equations is Gauss’s Law for E-fields:∮
E · dA =

qenc
ε

The second is for Gauss’s Law for B-fields:∮
B · dA = 0



Faraday’s Law of Induction
Faraday’s Law of Induction is the third of Maxwell’s laws.∮

E · ds = −
dΦB

dt

This tells us that a changing magnetic field will induce an electric
field.

But what about the reverse? A changing electric field inducing a
magnetic field?

It does happen!

Maxwell’s Law of Induction∮
B · ds = µ0ε0

dΦE

dt
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Maxwell’s Law of Induction

∮
B · ds = µ0ε0

dΦE

dt
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a changing electric flux will always induce a magnetic field whenever it occurs.) We
assume that the charge on our capacitor (Fig. 32-5a) is being increased at a steady
rate by a constant current i in the connecting wires. Then the electric field magni-
tude between the plates must also be increasing at a steady rate.

Figure 32-5b is a view of the right-hand plate of Fig. 32-5a from between the
plates. The electric field is directed into the page. Let us consider a circular loop
through point 1 in Figs. 32-5a and b, a loop that is concentric with the capacitor plates
and has a radius smaller than that of the plates. Because the electric field through the
loop is changing, the electric flux through the loop must also be changing.According to
Eq.32-3, this changing electric flux induces a magnetic field around the loop.

Experiment proves that a magnetic field is indeed induced around such
a loop, directed as shown. This magnetic field has the same magnitude at every
point around the loop and thus has circular symmetry about the central axis of
the capacitor plates (the axis extending from one plate center to the other).

If we now consider a larger loop—say, through point 2 outside the plates
in Figs. 32-5a and b—we find that a magnetic field is induced around that loop
as well. Thus, while the electric field is changing, magnetic fields are induced
between the plates, both inside and outside the gap. When the electric field stops
changing, these induced magnetic fields disappear.

Although Eq. 32-3 is similar to Eq. 32-2, the equations differ in two ways.
First, Eq. 32-3 has the two extra symbols m 0 and !0, but they appear only because
we employ SI units. Second, Eq. 32-3 lacks the minus sign of Eq. 32-2, mean-
ing that the induced electric field and the induced magnetic field have
opposite directions when they are produced in otherwise similar situations. To
see this opposition, examine Fig. 32-6, in which an increasing magnetic field ,
directed into the page, induces an electric field . The induced field is counter-
clockwise, opposite the induced magnetic field in Fig. 32-5b.

Ampere–Maxwell Law
Now recall that the left side of Eq. 32-3, the integral of the dot product 
around a closed loop, appears in another equation—namely,Ampere’s law:

(Ampere’s law), (32-4)

where ienc is the current encircled by the closed loop.Thus, our two equations that
specify the magnetic field produced by means other than a magnetic material
(that is, by a current and by a changing electric field) give the field in exactly the
same form.We can combine the two equations into the single equation

(Ampere–Maxwell law). (32-5)! B
:

! ds: " #0!0 
d$E

dt
% #0 ienc
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! B
:

! ds: " #0ienc
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Fig. 32-6 A uniform magnetic
field in a circular region.The field,
directed into the page, is increasing in
magnitude.The electric field in-
duced by the changing magnetic field
is shown at four points on a circle
concentric with the circular region.
Compare this situation with that of
Fig. 32-5b.
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The induced E direction here is opposite the
induced B direction in the preceding figure.

Fig. 32-5 (a) A circular parallel-plate ca-
pacitor, shown in side view, is being charged
by a constant current i. (b) A view from
within the capacitor, looking toward the plate
at the right in (a).The electric field is uni-
form, is directed into the page (toward the
plate), and grows in magnitude as the charge
on the capacitor increases.The magnetic field

induced by this changing electric field is
shown at four points on a circle with a radius r
less than the plate radius R.
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Ampere-Maxwell Law

However, a changing electric field is not the only cause of a
magnetic field.

We know from Ampere’s Law:∮
B · ds = µ0ienc

that a moving charge (current) causes a magnetic field also.



Reminder: Ampère’s Law

∮
B · ds = µ0Ienc

The line integral of the magnetic field around a closed loop is
proportional to the current that flows through the loop.1

between the rails, and then back to the current source along the second rail. The
projectile to be fired lies on the far side of the fuse and fits loosely between the
rails. Immediately after the current begins, the fuse element melts and vaporizes,
creating a conducting gas between the rails where the fuse had been.

The curled–straight right-hand rule of Fig. 29-4 reveals that the currents in
the rails of Fig. 29-10a produce magnetic fields that are directed downward
between the rails. The net magnetic field exerts a force on the gas due to the
current i through the gas (Fig. 29-10b). With Eq. 29-12 and the right-hand rule
for cross products, we find that points outward along the rails. As the gas is
forced outward along the rails, it pushes the projectile, accelerating it by as much
as 5 ! 106g, and then launches it with a speed of 10 km/s, all within 1 ms. Some-
day rail guns may be used to launch materials into space from mining operations
on the Moon or an asteroid.

F
:

F
:

B
:

CHECKPOINT 1

The figure here shows three long, straight, parallel, equally spaced wires with identical
currents either into or out of the page. Rank the wires according to the magnitude of
the force on each due to the currents in the other two wires, greatest first.

a b c

29-4 Ampere’s Law
We can find the net electric field due to any distribution of charges by first writing
the differential electric field due to a charge element and then summing the
contributions of from all the elements. However, if the distribution is compli-
cated, we may have to use a computer. Recall, however, that if the distribution
has planar, cylindrical, or spherical symmetry, we can apply Gauss’ law to find the
net electric field with considerably less effort.

Similarly, we can find the net magnetic field due to any distribution of currents
by first writing the differential magnetic field (Eq. 29-3) due to a current-length
element and then summing the contributions of from all the elements.Again we
may have to use a computer for a complicated distribution. However, if the distrib-
ution has some symmetry, we may be able to apply Ampere’s law to find the mag-
netic field with considerably less effort. This law, which can be derived from the
Biot–Savart law, has traditionally been credited to André-Marie Ampère
(1775–1836), for whom the SI unit of current is named. However, the law actually
was advanced by English physicist James Clerk Maxwell.

Ampere’s law is

(Ampere’s law). (29-14)

The loop on the integral sign means that the scalar (dot) product is to be
integrated around a closed loop, called an Amperian loop. The current ienc is the
net current encircled by that closed loop.

To see the meaning of the scalar product and its integral, let us first
apply Ampere’s law to the general situation of Fig. 29-11. The figure shows cross
sections of three long straight wires that carry currents i1, i2, and i3 either directly
into or directly out of the page. An arbitrary Amperian loop lying in the plane of
the page encircles two of the currents but not the third. The counterclockwise
direction marked on the loop indicates the arbitrarily chosen direction of integra-
tion for Eq. 29-14.

To apply Ampere’s law, we mentally divide the loop into differential vector
elements that are everywhere directed along the tangent to the loop in theds:

B
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! ds:  

B
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! ds: 

! B
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! ds: " #0ienc
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77129-4 AM PE R E’S LAW
PART 3

HALLIDAY REVISED

Fig. 29-11 Ampere’s law applied to an
arbitrary Amperian loop that encircles two
long straight wires but excludes a third
wire. Note the directions of the currents.

i3 
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i2 

Direction of 
integration 

ds 
θ 

Amperian 
loop 
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Only the currents
encircled by the
loop are used in
Ampere's law.
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1That is, the current that flows through any surface bounded by the loop.



Maxwell’s Law of Induction

 34.1 Displacement Current and the General Form of Ampère’s Law 1031

34.1  Displacement Current and the General Form  
of Ampère’s Law

In Chapter 30, we discussed using Ampère’s law (Eq. 30.13) to analyze the magnetic 
fields created by currents:

 C B
S

? d sS 5 m0I  

In this equation, the line integral is over any closed path through which conduc-
tion current passes, where conduction current is defined by the expression I 5  
dq/dt. (In this section, we use the term conduction current to refer to the current car-
ried by charge carriers in the wire to distinguish it from a new type of current we 
shall introduce shortly.) We now show that Ampère’s law in this form is valid only 
if any electric fields present are constant in time. James Clerk Maxwell recognized 
this limitation and modified Ampère’s law to include time-varying electric fields.
 Consider a capacitor being charged as illustrated in Figure 34.1. When a conduc-
tion current is present, the charge on the positive plate changes, but no conduction 
current exists in the gap between the plates because there are no charge carriers 
in the gap. Now consider the two surfaces S1 and S2 in Figure 34.1, bounded by the 
same path P. Ampère’s law states that r B

S
? d sS around this path must equal m0I, 

where I is the total current through any surface bounded by the path P.
 When the path P is considered to be the boundary of S1, r B

S
? d sS 5 m0I  because 

the conduction current I passes through S1. When the path is considered to be 
the boundary of S2, however, r B

S
? d sS 5 0 because no conduction current passes 

through S2. Therefore, we have a contradictory situation that arises from the dis-
continuity of the current! Maxwell solved this problem by postulating an additional 
term on the right side of Ampère’s law, which includes a factor called the displace-
ment current Id defined as1

 Id ; P0 
dFE

dt
 (34.1) �W Displacement current

1Displacement in this context does not have the meaning it does in Chapter 2. Despite the inaccurate implications, the 
word is historically entrenched in the language of physics, so we continue to use it.

James Clerk Maxwell
Scottish Theoretical Physicist 
(1831–1879)
Maxwell developed the electromagnetic 
theory of light and the kinetic theory 
of gases, and explained the nature of 
Saturn’s rings and color vision. Max-
well’s successful interpretation of the 
electromagnetic field resulted in the 
field equations that bear his name. For-
midable mathematical ability combined 
with great insight enabled him to lead 
the way in the study of electromag-
netism and kinetic theory. He died of 
cancer before he was 50.
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The conduction current I  in the 
wire passes only through S1, which 
leads to a contradiction in 
Ampère’s law that is resolved only 
if one postulates a displacement 
current through S2.

Figure 34.1  Two surfaces S1 and 
S2 near the plate of a capacitor are 
bounded by the same path P.

Surfaces S1 and S2 have different currents flowing through them!



Maxwell’s Law of Induction

Maxwell realized that there should be another term in Ampère’s
law.

He introduced the notion of a displacement current:

Id = ε0
dΦE

dt

Note: The displacement “current” is not a current and has
nothing to do with displacement. However, it does have units of
Amps.

This completes Ampere’s law as:∮
B · ds = µ0(Ienc + Id)
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Id = ε0
dΦE
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The Ampère-Maxwell’s Law

The fourth and last of Maxwell’s equations:

The Ampère-Maxwell’s Law∮
B · ds = µ0ε0

dΦE

dt
+µ0Ienc

Differential form:

∇× B = µ0ε0
∂E

∂t
+ µ0J



Summary

• RLC series circuit

• impedance

• power

• resonance

Collected Homework 4! due tomorrow.

Final Exam Tuesday, Mar 27, 9:15-11:15am, S35 (here).

Homework Serway & Jewett:

• PREV: Ch 33, onward from page 1021. Problems: 9, 15, 19

• NEW: Ch 33, onward from page 1021. Problems: 25, 27, 33,
43, 45, 65


