Electricity and Magnetism AC Circuits RLC Series Circuits Impedance

Lana Sheridan
De Anza College

Mar 20, 2018

Last time

- phase offsets with inductors and capacitors
- reactance

Overview

- RLC series circuit
- impedance
- power
- resonance

AC in RLC Circuits

Consider the case of a series RLC circuit:

Suppose the emf source supplies:

$$
\Delta v=\Delta V_{\max } \sin (\omega t)
$$

Can we relate this to the current that results?

$$
i=I_{\max } \sin (\omega t-\phi)
$$

(Find ϕ and $I_{\text {max }}$.)

AC in RLC Circuits

Consider the case of a series RLC circuit:

$$
\Delta v=\Delta v_{R}+\Delta v_{L}+\Delta v_{C}
$$

AC in RLC Circuits

To follow along with the textbook's diagrams, we will now redefine our time variable, $t \rightarrow t^{\prime}$.

Let

$$
t^{\prime}=t-\frac{\phi}{\omega}
$$

so that $\omega t-\phi=\omega t^{\prime}$.

Then the voltage and current are given by:

$$
\begin{aligned}
\Delta v & =\Delta V_{\max } \sin \left(\omega t^{\prime}+\phi\right) \\
i & =I_{\max } \sin \left(\omega t^{\prime}\right)
\end{aligned}
$$

AC in RLC Circuits

$$
\begin{aligned}
\Delta v & =\Delta V_{\max } \sin \left(\omega t^{\prime}+\phi\right) \\
i & =I_{\max } \sin \left(\omega t^{\prime}\right) \\
\Delta v & =\Delta v_{R}+\Delta v_{L}+\Delta v_{C}
\end{aligned}
$$

AC in RLC Circuits

$$
\begin{aligned}
\Delta v & =\Delta V_{\max } \sin \left(\omega t^{\prime}+\phi\right) \\
i & =I_{\max } \sin \left(\omega t^{\prime}\right)
\end{aligned}
$$

$$
\Delta v=\Delta v_{R}+\Delta v_{L}+\Delta v_{C}
$$

Δv_{R} is in phase with the current

$$
\Delta v_{R}=\Delta V_{R} \sin \left(\omega t^{\prime}\right)
$$

where $\Delta V_{R}=I_{\max } R$.

AC in RLC Circuits

$$
\Delta v=\Delta v_{R}+\Delta v_{L}+\Delta v_{C}
$$

Δv_{L} and Δv_{C} are π radians out of phase: easy to see how to add them:

$$
\begin{array}{r}
\Delta v_{L}=\Delta V_{L} \sin \left(\omega t^{\prime}+\pi / 2\right) \\
\Delta v_{C}=\Delta V_{C} \sin \left(\omega t^{\prime}-\pi / 2\right)
\end{array}
$$

Then,
$\Delta v_{L}+\Delta v_{C}=\left(\Delta V_{L}-\Delta V_{C}\right) \cos \omega t^{\prime}$

AC in RLC Circuits

$$
\Delta v=\Delta v_{R}+\Delta v_{L}+\Delta v_{C}
$$

However, $\Delta v_{L}+\Delta v_{C}$ and Δv_{R} are not in phase.

They can be added using a phasor diagram.

AC in RLC Circuits

Phasor diagram:

AC in RLC Circuits

Can add the vectors in the phasor diagram. (Normal vector addition.)

AC in RLC Circuits

Vector addition:

$$
\Delta V_{\max }=\sqrt{\left(\Delta V_{R}\right)^{2}+\left(\Delta V_{L}-\Delta V_{C}\right)^{2}}
$$

AC in RLC Circuits

Vector addition:

$$
\begin{aligned}
& \Delta V_{\max }=\sqrt{\left(\Delta V_{R}\right)^{2}+\left(\Delta V_{L}-\Delta V_{C}\right)^{2}} \\
& \text { and } \\
& \qquad \Delta V_{L}-\Delta V_{C}=I_{\max }\left(X_{L}-X_{C}\right)
\end{aligned}
$$

So,

$$
\Delta V_{\max }=I_{\max } \sqrt{R^{2}+X^{2}}
$$

where $X=X_{L}-X_{C}$
Notice that $\sqrt{R^{2}+X^{2}}$ has units of Ohms and a role like a resistance...

Impedance

Impedance, Z

The ratio of the maximum voltage to the maximum current.

$$
Z=\frac{\Delta V_{\max }}{I_{\max }}
$$

For a series RLC circuit (or a component with some resistance, some capacitance, and some inductance):

$$
Z=\sqrt{R^{2}+X^{2}}
$$

where the reactance $X=X_{L}-X_{C}$.

AC in RLC Circuits

Vector addition:

$$
\tan \phi=\left(\Delta V_{L}-\Delta V_{C}\right) /\left(\Delta V_{R}\right)
$$

AC in RLC Circuits

Vector addition:

$$
\tan \phi=\left(\Delta V_{L}-\Delta V_{C}\right) /\left(\Delta V_{R}\right)
$$

$$
\phi=\tan ^{-1}\left(\frac{X}{R}\right)
$$

(where the reactance $X=X_{L}-X_{C}$)

AC in RLC Circuits Question

For which of these is $X_{C}>X_{L}$?

(a) a
(b) b
(c) c
(d) none of these

AC in RLC Circuits Question

For which of these is $X_{C}>X_{L}$?

(a) $a \leftarrow$
(b) b
(c) c
(d) none of these

Power in AC Circuits

$$
P=i \Delta v
$$

$$
\begin{aligned}
\Delta v & =\Delta V_{\max } \sin (\omega t) \\
i & =I_{\max } \sin (\omega t-\phi)
\end{aligned}
$$

Therefore,

$$
P=I_{\max } \Delta V_{\max } \sin (\omega t-\phi) \sin (\omega t)
$$

Power in AC Circuits

$$
P=i \Delta v
$$

$$
\begin{aligned}
\Delta v & =\Delta V_{\max } \sin (\omega t) \\
i & =I_{\max } \sin (\omega t-\phi)
\end{aligned}
$$

Therefore,

$$
P=I_{\max } \Delta V_{\max } \sin (\omega t-\phi) \sin (\omega t)
$$

After using some trigonometric identities:

$$
P_{\mathrm{avg}}=I_{\mathrm{rms}} \Delta V_{\mathrm{rms}} \cos \phi
$$

AC in RLC Circuits

$$
P_{\mathrm{avg}}=I_{\mathrm{rms}} \Delta V_{\mathrm{rms}} \cos \phi
$$

From the phasor diagram:

$$
\begin{aligned}
& \qquad \Delta V_{R}=\Delta V_{\max } \cos \phi \\
& \text { and since } \Delta V_{R}=I_{\max } R
\end{aligned}
$$

$$
\frac{I_{\max } R}{\sqrt{2}}=\frac{\Delta V_{\max }}{\sqrt{2}} \cos \phi
$$

Equating the red pieces:

$$
P_{\mathrm{avg}}=I_{\mathrm{rms}}^{2} R
$$

Power in AC Circuits

$$
P_{\mathrm{avg}}=I_{\mathrm{rms}} \Delta V_{\mathrm{rms}} \cos \phi
$$

The average power delivered is largest when $\phi=0$. Current is in phase with the voltage.

Then:

$$
P_{\mathrm{avg}}=I_{\mathrm{rms}} \Delta V_{\mathrm{rms}}
$$

Power in AC Circuits

$$
P_{\mathrm{avg}}=I_{\mathrm{rms}} \Delta V_{\mathrm{rms}} \cos \phi
$$

The average power delivered is largest when $\phi=0$. Current is in phase with the voltage.

Then:

$$
P_{\mathrm{avg}}=I_{\mathrm{rms}} \Delta V_{\mathrm{rms}}
$$

Using our expression for ϕ :

$$
\phi=\tan ^{-1}\left(\frac{X}{R}\right)=0 \Rightarrow X=0
$$

Notice that since, $X=0$:

$$
Z=\sqrt{R^{2}+0}=R
$$

This is the minimum possible value for Z.

Resonance and Power in AC Circuits

Current is in phase with the voltage when $X=0$.

$$
\begin{aligned}
X_{L} & =X_{C} \\
\omega L & =\frac{1}{\omega C} \\
\omega & =\frac{1}{\sqrt{L C}}
\end{aligned}
$$

Resonance and Power in AC Circuits

Current is in phase with the voltage when $X=0$.

$$
\begin{aligned}
X_{L} & =X_{C} \\
\omega L & =\frac{1}{\omega C} \\
\omega & =\frac{1}{\sqrt{L C}}
\end{aligned}
$$

If the circuit is driven by an oscillating voltage with frequency

$$
\omega_{0}=\frac{1}{\sqrt{L C}}
$$

the power delivered will be high. This is the resonance frequency of the circuit.

Resonance and Power in AC Circuits

Current is in phase with the voltage when $X=0$.

$$
\begin{aligned}
X_{L} & =X_{C} \\
\omega L & =\frac{1}{\omega C} \\
\omega & =\frac{1}{\sqrt{L C}}
\end{aligned}
$$

If the circuit is driven by an oscillating voltage with frequency

$$
\omega_{0}=\frac{1}{\sqrt{L C}}
$$

the power delivered will be high. This is the resonance frequency of the circuit. (Where did we see this before?)

Resonance and Power in AC Circuits

We can express the average power in terms of ΔV_{rms} and Z instead of I_{rms}, which varies with frequency, ω.

$$
P_{\mathrm{avg}}=I_{\mathrm{rms}}^{2} R=\left(\frac{\Delta V_{\mathrm{rms}}}{Z}\right)^{2} R
$$

Using $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$ and our definitions of X_{L}, X_{C}, and ω_{0} :

$$
P_{\mathrm{avg}}=\frac{\left(\Delta V_{\mathrm{rms}}\right)^{2} R \omega^{2}}{R^{2} \omega^{2}+L^{2}\left(\omega^{2}-\omega_{0}^{2}\right)^{2}}
$$

This is a Lorentzian function.

Resonance and Power in AC Circuits

Maxwell's Laws

Amazingly, we can summarize the majority of the relations that we have talked about in this course in a set of just 4 equations.

These are together called Maxwell's equations.

$$
\begin{gathered}
\oint \mathbf{E} \cdot \mathrm{d} \mathbf{A}=\frac{q_{\mathrm{enc}}}{\epsilon} \\
\oint \mathbf{B} \cdot \mathrm{~d} \mathbf{A}=0 \\
\oint \mathbf{E} \cdot \mathrm{ds}=-\frac{\mathrm{d} \Phi_{\mathrm{B}}}{\mathrm{dt}} \\
\oint \mathbf{B} \cdot \mathrm{ds}=\mu_{0} \epsilon_{0} \frac{\mathrm{~d} \Phi_{\mathrm{E}}}{\mathrm{dt}}+\mu_{0} I_{\mathrm{enc}}
\end{gathered}
$$

Gauss's Law for Magnetic Fields

The first of Maxwell's equations is Gauss's Law for E-fields:

$$
\oint \mathbf{E} \cdot \mathrm{d} \mathbf{A}=\frac{q_{\mathrm{enc}}}{\epsilon}
$$

The second is for Gauss's Law for B-fields:

$$
\oint \mathbf{B} \cdot \mathrm{d} \mathbf{A}=0
$$

Faraday's Law of Induction

Faraday's Law of Induction is the third of Maxwell's laws.

$$
\oint \mathbf{E} \cdot \mathrm{d} \mathbf{s}=-\frac{\mathrm{d} \Phi_{\mathrm{B}}}{\mathrm{dt}}
$$

This tells us that a changing magnetic field will induce an electric field.

Faraday's Law of Induction

Faraday's Law of Induction is the third of Maxwell's laws.

$$
\oint \mathbf{E} \cdot \mathrm{d} \mathbf{s}=-\frac{\mathrm{d} \Phi_{\mathrm{B}}}{\mathrm{dt}}
$$

This tells us that a changing magnetic field will induce an electric field.

But what about the reverse? A changing electric field inducing a magnetic field?

Faraday's Law of Induction

Faraday's Law of Induction is the third of Maxwell's laws.

$$
\oint \mathbf{E} \cdot \mathrm{d} \mathbf{s}=-\frac{\mathrm{d} \Phi_{\mathrm{B}}}{\mathrm{dt}}
$$

This tells us that a changing magnetic field will induce an electric field.

But what about the reverse? A changing electric field inducing a magnetic field?

It does happen!

Maxwell's Law of Induction

$$
\oint \mathbf{B} \cdot \mathrm{ds}=\mu_{0} \epsilon_{0} \frac{\mathrm{~d} \Phi_{\mathrm{E}}}{\mathrm{dt}}
$$

Maxwell's Law of Induction

$$
\oint \mathbf{B} \cdot \mathrm{d} \mathbf{s}=\mu_{0} \epsilon_{0} \frac{\mathrm{~d} \Phi_{\mathrm{E}}}{\mathrm{dt}}
$$

Ampere-Maxwell Law

However, a changing electric field is not the only cause of a magnetic field.

We know from Ampere's Law:

$$
\oint \mathbf{B} \cdot \mathbf{d} \mathbf{s}=\mu_{0} i_{\mathrm{enc}}
$$

that a moving charge (current) causes a magnetic field also.

Reminder: Ampère's Law

$$
\mathbf{B} \cdot \mathrm{ds}=\mu_{0} I_{\mathrm{enc}}
$$

The line integral of the magnetic field around a closed loop is proportional to the current that flows through the loop. ${ }^{1}$

[^0]
Maxwell's Law of Induction

Surfaces S_{1} and S_{2} have different currents flowing through them!

Maxwell's Law of Induction

Maxwell realized that there should be another term in Ampère's law.

He introduced the notion of a displacement current:

$$
I_{d}=\epsilon_{0} \frac{\mathrm{~d} \Phi_{\mathrm{E}}}{\mathrm{dt}}
$$

Maxwell's Law of Induction

Maxwell realized that there should be another term in Ampère's law.

He introduced the notion of a displacement current:

$$
I_{d}=\epsilon_{0} \frac{\mathrm{~d} \Phi_{\mathrm{E}}}{\mathrm{dt}}
$$

Note: The displacement "current" is not a current and has nothing to do with displacement. However, it does have units of Amps.

This completes Ampere's law as:

$$
\oint \mathbf{B} \cdot \mathrm{d} \mathbf{s}=\mu_{0}\left(I_{\mathrm{enc}}+I_{d}\right)
$$

The Ampère-Maxwell's Law

The fourth and last of Maxwell's equations:
The Ampère-Maxwell's Law

$$
\oint \mathbf{B} \cdot \mathrm{ds}=\mu_{0} \epsilon_{0} \frac{\mathrm{~d} \Phi_{\mathrm{E}}}{\mathrm{dt}}+\mu_{0} I_{\mathrm{enc}}
$$

Differential form:

$$
\nabla \times \mathbf{B}=\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \mathbf{J}
$$

Summary

- RLC series circuit
- impedance
- power
- resonance

Collected Homework 4! due tomorrow.

Final Exam Tuesday, Mar 27, 9:15-11:15am, S35 (here).
Homework Serway \& Jewett:

- PREV: Ch 33, onward from page 1021. Problems: 9, 15, 19
- NEW: Ch 33, onward from page 1021. Problems: 25, 27, 33, 43, 45, 65

[^0]: ${ }^{1}$ That is, the current that flows through any surface bounded by the loop.

