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Last time

• alternating current (AC)

• impedance

• power and resonance



Overview

• Maxwell’s equations

• Ampère-Maxwell law

• electromagnetic radiation



Maxwell’s Laws

Amazingly, we can summarize the majority of the relations that we
have talked about in this course in a set of just 4 equations.

These are together called Maxwell’s equations.

∮
E · dA =

qenc
ε∮

B · dA = 0∮
E · ds = −

dΦB

dt∮
B · ds = µ0ε0

dΦE

dt
+µ0Ienc



Gauss’s Law for Magnetic Fields

The first of Maxwell’s equations is Gauss’s Law for E-fields:∮
E · dA =

qenc
ε

The second is for Gauss’s Law for B-fields:∮
B · dA = 0



Faraday’s Law of Induction
Faraday’s Law of Induction is the third of Maxwell’s laws.∮

E · ds = −
dΦB

dt

This tells us that a changing magnetic field will induce an electric
field.

But what about the reverse? A changing electric field inducing a
magnetic field?

It does happen!

Maxwell’s Law of Induction∮
B · ds = µ0ε0

dΦE

dt

(A piece of the Ampère-Maxwell’s Law.)
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The Ampère-Maxwell’s Law

The fourth and last of Maxwell’s equations:

The Ampère-Maxwell’s Law∮
B · ds = µ0ε0

dΦE

dt
+µ0Ienc

Differential form:

∇× B = µ0ε0
∂E

∂t
+ µ0J



Maxwell’s Law of Induction

∮
B · ds = µ0ε0

dΦE

dt
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a changing electric flux will always induce a magnetic field whenever it occurs.) We
assume that the charge on our capacitor (Fig. 32-5a) is being increased at a steady
rate by a constant current i in the connecting wires. Then the electric field magni-
tude between the plates must also be increasing at a steady rate.

Figure 32-5b is a view of the right-hand plate of Fig. 32-5a from between the
plates. The electric field is directed into the page. Let us consider a circular loop
through point 1 in Figs. 32-5a and b, a loop that is concentric with the capacitor plates
and has a radius smaller than that of the plates. Because the electric field through the
loop is changing, the electric flux through the loop must also be changing.According to
Eq.32-3, this changing electric flux induces a magnetic field around the loop.

Experiment proves that a magnetic field is indeed induced around such
a loop, directed as shown. This magnetic field has the same magnitude at every
point around the loop and thus has circular symmetry about the central axis of
the capacitor plates (the axis extending from one plate center to the other).

If we now consider a larger loop—say, through point 2 outside the plates
in Figs. 32-5a and b—we find that a magnetic field is induced around that loop
as well. Thus, while the electric field is changing, magnetic fields are induced
between the plates, both inside and outside the gap. When the electric field stops
changing, these induced magnetic fields disappear.

Although Eq. 32-3 is similar to Eq. 32-2, the equations differ in two ways.
First, Eq. 32-3 has the two extra symbols m 0 and !0, but they appear only because
we employ SI units. Second, Eq. 32-3 lacks the minus sign of Eq. 32-2, mean-
ing that the induced electric field and the induced magnetic field have
opposite directions when they are produced in otherwise similar situations. To
see this opposition, examine Fig. 32-6, in which an increasing magnetic field ,
directed into the page, induces an electric field . The induced field is counter-
clockwise, opposite the induced magnetic field in Fig. 32-5b.

Ampere–Maxwell Law
Now recall that the left side of Eq. 32-3, the integral of the dot product 
around a closed loop, appears in another equation—namely,Ampere’s law:

(Ampere’s law), (32-4)

where ienc is the current encircled by the closed loop.Thus, our two equations that
specify the magnetic field produced by means other than a magnetic material
(that is, by a current and by a changing electric field) give the field in exactly the
same form.We can combine the two equations into the single equation

(Ampere–Maxwell law). (32-5)! B
:

! ds: " #0!0 
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dt
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Fig. 32-6 A uniform magnetic
field in a circular region.The field,
directed into the page, is increasing in
magnitude.The electric field in-
duced by the changing magnetic field
is shown at four points on a circle
concentric with the circular region.
Compare this situation with that of
Fig. 32-5b.
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The induced E direction here is opposite the
induced B direction in the preceding figure.

Fig. 32-5 (a) A circular parallel-plate ca-
pacitor, shown in side view, is being charged
by a constant current i. (b) A view from
within the capacitor, looking toward the plate
at the right in (a).The electric field is uni-
form, is directed into the page (toward the
plate), and grows in magnitude as the charge
on the capacitor increases.The magnetic field

induced by this changing electric field is
shown at four points on a circle with a radius r
less than the plate radius R.
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The changing of the
electric field between
the plates creates a
magnetic field.
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Maxwell’s Law of Induction question
The figure shows graphs of the electric field magnitude E versus
time t for four uniform electric fields, all contained within identical
circular regions as in the circular-plate capacitor. Rank the E-fields
according to the magnitudes of the magnetic fields they induce at
the edge of the region, greatest first.

86532-3 I N DUCE D MAG N ETIC F I E LDS
PART 3

CHECKPOINT 2

The figure shows graphs of the electric field magnitude E
versus time t for four uniform electric fields, all contained
within identical circular regions as in Fig. 32-5b. Rank the
fields according to the magnitudes of the magnetic fields
they induce at the edge of the region, greatest first.

a

b

c

d
E

t

Sample Problem

Right side of Eq. 32-6: We assume that the electric field 
is uniform between the capacitor plates and directed per-

pendicular to the plates. Then the electric flux !E through
the Amperian loop is EA, where A is the area encircled by
the loop within the electric field. Thus, the right side of Eq.
32-6 is m0"0 d(EA)/dt.

Combining results: Substituting our results for the left
and right sides into Eq. 32-6, we get

Because A is a constant,we write d(EA) as A dE; so we have

(32-7)

The area A that is encircled by the Amperian loop within the
electric field is the full area pr2 of the loop because the loop’s
radius r is less than (or equal to) the plate radius R. Sub-
stituting pr2 for A in Eq.32-7 leads to, for r # R,

(Answer) (32-8)

This equation tells us that, inside the capacitor, B increases
linearly with increased radial distance r, from 0 at the cen-
tral axis to a maximum value at plate radius R.

(b) Evaluate the field magnitude B for r $ R/5 $ 11.0 mm
and dE/dt $ 1.50 % 1012 V/m & s.

Calculation: From the answer to (a), we have

(Answer) $ 9.18 % 10'8 T.
  % (11.0 % 10'3 m)(1.50 % 1012 V/m & s)

 $ 1
2 (4( % 10'7 T & m/A)(8.85 % 10'12 C2/N & m2)

  B $
1
2

 )0"0r 
dE
dt

B $
)0"0r

2
 

dE
dt

.

(B)(2(r) $ )0"0 A 
dE
dt

.

(B)(2(r) $ )0"0 
d(EA)

dt
.

E
:

Magnetic field induced by changing electric field

A parallel-plate capacitor with circular plates of radius R is
being charged as in Fig. 32-5a.

(a) Derive an expression for the magnetic field at radius r
for the case r # R.

A magnetic field can be set up by a current and by induction
due to a changing electric flux; both effects are included in
Eq. 32-5.There is no current between the capacitor plates of
Fig. 32-5, but the electric flux there is changing. Thus, Eq.
32-5 reduces to

(32-6)

We shall separately evaluate the left and right sides of this
equation.

Left side of Eq. 32-6: We choose a circular Amperian loop
with a radius r # R as shown in Fig. 32-5b because we want
to evaluate the magnetic field for r # R—that is, inside the
capacitor.The magnetic field at all points along the loop is
tangent to the loop, as is the path element . Thus, and

are either parallel or antiparallel at each point of the
loop. For simplicity, assume they are parallel (the choice
does not alter our outcome here).Then

Due to the circular symmetry of the plates, we can also as-
sume that has the same magnitude at every point around
the loop.Thus, B can be taken outside the integral on the right
side of the above equation. The integral that remains is ,
which simply gives the circumference 2pr of the loop.The left
side of Eq. 32-6 is then (B)(2pr).

! ds

B
:

" B
:

! ds: $ " B ds cos 0* $ " B ds.

ds:
B
:

ds:
B
:

" B
:

! ds: $ )0 "0 
d!E

dt
.

KEY I DEAS

When there is a current but no change in electric flux (such as with a wire
carrying a constant current), the first term on the right side of Eq. 32-5 is zero, and
so Eq. 32-5 reduces to Eq. 32-4, Ampere’s law. When there is a change in electric
flux but no current (such as inside or outside the gap of a charging capacitor), the
second term on the right side of Eq. 32-5 is zero, and so Eq. 32-5 reduces to
Eq. 32-3, Maxwell’s law of induction.
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A a, b, c, d

B a, c, b, d

C d, b, c, a

D d, c, a, b
1Halliday, Resnick, Walker, page 865.
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B a, c, b, d←
C d, b, c, a

D d, c, a, b
1Halliday, Resnick, Walker, page 865.



Reminder: Ampère’s Law

∮
B · ds = µ0Ienc

(The other piece of the Ampère-Maxwell’s Law.)

The line integral of the magnetic field around a closed loop is
proportional to the current that flows through the loop.1

between the rails, and then back to the current source along the second rail. The
projectile to be fired lies on the far side of the fuse and fits loosely between the
rails. Immediately after the current begins, the fuse element melts and vaporizes,
creating a conducting gas between the rails where the fuse had been.

The curled–straight right-hand rule of Fig. 29-4 reveals that the currents in
the rails of Fig. 29-10a produce magnetic fields that are directed downward
between the rails. The net magnetic field exerts a force on the gas due to the
current i through the gas (Fig. 29-10b). With Eq. 29-12 and the right-hand rule
for cross products, we find that points outward along the rails. As the gas is
forced outward along the rails, it pushes the projectile, accelerating it by as much
as 5 ! 106g, and then launches it with a speed of 10 km/s, all within 1 ms. Some-
day rail guns may be used to launch materials into space from mining operations
on the Moon or an asteroid.

F
:

F
:

B
:

CHECKPOINT 1

The figure here shows three long, straight, parallel, equally spaced wires with identical
currents either into or out of the page. Rank the wires according to the magnitude of
the force on each due to the currents in the other two wires, greatest first.

a b c

29-4 Ampere’s Law
We can find the net electric field due to any distribution of charges by first writing
the differential electric field due to a charge element and then summing the
contributions of from all the elements. However, if the distribution is compli-
cated, we may have to use a computer. Recall, however, that if the distribution
has planar, cylindrical, or spherical symmetry, we can apply Gauss’ law to find the
net electric field with considerably less effort.

Similarly, we can find the net magnetic field due to any distribution of currents
by first writing the differential magnetic field (Eq. 29-3) due to a current-length
element and then summing the contributions of from all the elements.Again we
may have to use a computer for a complicated distribution. However, if the distrib-
ution has some symmetry, we may be able to apply Ampere’s law to find the mag-
netic field with considerably less effort. This law, which can be derived from the
Biot–Savart law, has traditionally been credited to André-Marie Ampère
(1775–1836), for whom the SI unit of current is named. However, the law actually
was advanced by English physicist James Clerk Maxwell.

Ampere’s law is

(Ampere’s law). (29-14)

The loop on the integral sign means that the scalar (dot) product is to be
integrated around a closed loop, called an Amperian loop. The current ienc is the
net current encircled by that closed loop.

To see the meaning of the scalar product and its integral, let us first
apply Ampere’s law to the general situation of Fig. 29-11. The figure shows cross
sections of three long straight wires that carry currents i1, i2, and i3 either directly
into or directly out of the page. An arbitrary Amperian loop lying in the plane of
the page encircles two of the currents but not the third. The counterclockwise
direction marked on the loop indicates the arbitrarily chosen direction of integra-
tion for Eq. 29-14.

To apply Ampere’s law, we mentally divide the loop into differential vector
elements that are everywhere directed along the tangent to the loop in theds:

B
:

! ds:  

B
:

! ds: 

! B
:

! ds: " #0ienc

dB
:

dB
:

dE
:

dE
:

77129-4 AM PE R E’S LAW
PART 3

HALLIDAY REVISED

Fig. 29-11 Ampere’s law applied to an
arbitrary Amperian loop that encircles two
long straight wires but excludes a third
wire. Note the directions of the currents.

i3 

i1 

i2 

Direction of 
integration 

ds 
θ 

Amperian 
loop 

B 

Only the currents
encircled by the
loop are used in
Ampere's law.
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1That is, the current that flows through any surface bounded by the loop.



Maxwell’s Law of Induction

 34.1 Displacement Current and the General Form of Ampère’s Law 1031

34.1  Displacement Current and the General Form  
of Ampère’s Law

In Chapter 30, we discussed using Ampère’s law (Eq. 30.13) to analyze the magnetic 
fields created by currents:

 C B
S

? d sS 5 m0I  

In this equation, the line integral is over any closed path through which conduc-
tion current passes, where conduction current is defined by the expression I 5  
dq/dt. (In this section, we use the term conduction current to refer to the current car-
ried by charge carriers in the wire to distinguish it from a new type of current we 
shall introduce shortly.) We now show that Ampère’s law in this form is valid only 
if any electric fields present are constant in time. James Clerk Maxwell recognized 
this limitation and modified Ampère’s law to include time-varying electric fields.
 Consider a capacitor being charged as illustrated in Figure 34.1. When a conduc-
tion current is present, the charge on the positive plate changes, but no conduction 
current exists in the gap between the plates because there are no charge carriers 
in the gap. Now consider the two surfaces S1 and S2 in Figure 34.1, bounded by the 
same path P. Ampère’s law states that r B

S
? d sS around this path must equal m0I, 

where I is the total current through any surface bounded by the path P.
 When the path P is considered to be the boundary of S1, r B

S
? d sS 5 m0I  because 

the conduction current I passes through S1. When the path is considered to be 
the boundary of S2, however, r B

S
? d sS 5 0 because no conduction current passes 

through S2. Therefore, we have a contradictory situation that arises from the dis-
continuity of the current! Maxwell solved this problem by postulating an additional 
term on the right side of Ampère’s law, which includes a factor called the displace-
ment current Id defined as1

 Id ; P0 
dFE

dt
 (34.1) �W Displacement current

1Displacement in this context does not have the meaning it does in Chapter 2. Despite the inaccurate implications, the 
word is historically entrenched in the language of physics, so we continue to use it.

James Clerk Maxwell
Scottish Theoretical Physicist 
(1831–1879)
Maxwell developed the electromagnetic 
theory of light and the kinetic theory 
of gases, and explained the nature of 
Saturn’s rings and color vision. Max-
well’s successful interpretation of the 
electromagnetic field resulted in the 
field equations that bear his name. For-
midable mathematical ability combined 
with great insight enabled him to lead 
the way in the study of electromag-
netism and kinetic theory. He died of 
cancer before he was 50.
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The conduction current I  in the 
wire passes only through S1, which 
leads to a contradiction in 
Ampère’s law that is resolved only 
if one postulates a displacement 
current through S2.

Figure 34.1  Two surfaces S1 and 
S2 near the plate of a capacitor are 
bounded by the same path P.

Surfaces S1 and S2 have different currents flowing through them!



Maxwell’s Law of Induction

Maxwell realized that there should be another term in Ampère’s
law.

He introduced the notion of a displacement current:

Id = ε0
dΦE

dt

Note: The displacement “current” is not a current and has
nothing to do with displacement. However, it does have units of
Amps.

This completes Ampere’s law as:∮
B · ds = µ0(Ienc + Id)



Maxwell’s Law of Induction

Maxwell realized that there should be another term in Ampère’s
law.

He introduced the notion of a displacement current:

Id = ε0
dΦE

dt

Note: The displacement “current” is not a current and has
nothing to do with displacement. However, it does have units of
Amps.

This completes Ampere’s law as:∮
B · ds = µ0(Ienc + Id)



Ampere-Maxwell Law and Displacement “Current”

displacement “current”

Id = ε0
dΦE

dt

This lets us rewrite the Ampere-Maxwell law as:∮
B · ds = µ0Id + µ0Ienc

Looking at it this way can give us some insights.



B-field around a charging capacitor

Suppose a capacitor is being charged with a constant current, i .

86732-4 DI S PLACE M E NT CU R R E NT
PART 3

becomes

(32-14)

Comparing Eqs. 32-13 and 32-14, we see that the real current i charging the
capacitor and the fictitious displacement current id between the plates have the
same magnitude:

id ! i (displacement current in a capacitor). (32-15)

Thus, we can consider the fictitious displacement current id to be simply a con-
tinuation of the real current i from one plate, across the capacitor gap, to the
other plate. Because the electric field is uniformly spread over the plates, the
same is true of this fictitious displacement current id, as suggested by the spread
of current arrows in Fig. 32-7b.Although no charge actually moves across the gap
between the plates, the idea of the fictitious current id can help us to quickly find
the direction and magnitude of an induced magnetic field, as follows.

Finding the Induced Magnetic Field
In Chapter 29 we found the direction of the magnetic field produced by a real
current i by using the right-hand rule of Fig. 29-4. We can apply the same rule to
find the direction of an induced magnetic field produced by a fictitious displace-
ment current id, as is shown in the center of Fig. 32-7c for a capacitor.

We can also use id to find the magnitude of the magnetic field induced by
a charging capacitor with parallel circular plates of radius R. We simply consider
the space between the plates to be an imaginary circular wire of radius R carrying
the imaginary current id. Then, from Eq. 29-20, the magnitude of the magnetic

id ! "0
d#E

dt
! "0

d(EA)
dt

! "0A
dE
dt

.

Fig. 32-7 (a) Before and (d) after 
the plates are charged, there is no 
magnetic field. (b) During the charging,
magnetic field is created by both the real
current and the (fictional) displacement
current. (c) The same right-hand rule
works for both currents to give the direc-
tion of the magnetic field.
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B-field around a charging capacitor

id = ε0
dΦE

dt
= ε0A

dE

dt

Gauss’s law allows us to relate q, the charge on one plate of the
capacitor to the flux:

q

ε0
=

∮
E · dA = EA

The current is the rate of flow of charge:

i =
dq

dt
= ε0A

dE

dt

So, id = i !

The B-field outside a circular capacitor looks the same as the
B-field around the wire leading up to the capacitor.



Magnetic Field around a circular capacitor

Can be calculated just like the field around a wire!

Outside the capacitor at radius r from the center:

B =
µ0id
2πr

Inside the capacitor (plates have radius R) at radius r from the
center:

B =
µ0id
2πR2

r

But remember: id is not a current. No current flows across the
gap between the plates.



Magnetic Field around a circular capacitor

Can be calculated just like the field around a wire!

Outside the capacitor at radius r from the center:

B =
µ0id
2πr

Inside the capacitor (plates have radius R) at radius r from the
center:

B =
µ0id
2πR2

r

But remember: id is not a current. No current flows across the
gap between the plates.



Maxwell’s Equations

∮
E · dA =

qenc
ε∮

B · dA = 0∮
E · ds = −

dΦB

dt∮
B · ds = µ0ε0

dΦE

dt
+µ0ienc

1Strictly, these are Maxwell’s equations in a vacuum.



Maxwell’s Equations Differential Form

∇ · E =
ρ

ε0

∇ · B = 0

∇× E = −
∂B

∂t

∇× B = µ0ε0
∂E

∂t
+ µ0J



Another Implication of Maxwell’s Equations

Using all 4 equations (in their differential form) it is possible to
reach a pair of wave equations for the electric and magnetic fields:

∇2E =
1

c2
∂2E

∂t2

∇2B =
1

c2
∂2B

∂t2

with wave solutions:

E = E0 sin(k · r −ωt)

B = B0 sin(k · r −ωt)

where c = ω
k .



Another Implication of Maxwell’s Equations

∇2E =
1

c2
∂2E

∂t2

The constant c appears as the wave speed and

c =
1

√
µ0ε0

c = 3.00× 108 m/s, is the speed of light.

The values of ε0 and µ0 together predict the speed of light!



Another Implication of Maxwell’s Equations

Wave solutions:

E = E0 sin(k · r −ωt)

B = B0 sin(k · r −ωt)

where c = ω
k .

These two solutions are in phase. There is no offset in the angles
inside the sine functions.

The two fields peak at the same point in space and time.

At all times:
E

B
= c



Relation between Electric and Magnetic Fields

These oscillating electric and magnetic fields make up light.

Faraday’s Law of Induction

A changing magnetic field gives rise to an electric field.

Ampere-Maxwell Law of Induction

A changing electric field gives rise to an magnetic field.



Light

Faraday’s Law ⇒ a changing magnetic field causes an electric field.

Maxwell’s Law ⇒ a changing electric field causes a magnetic field.



Light (Electromagnetic Radiation)

All light waves in a vacuum travel at the same speed, the speed of
light, c = 3.00× 108 m s−1.

Maxwell’s equations possess the ‘wrong’ symmetry for Gallilean
transformations between observers; they are Lorentz-invariant.
This gave Einstein an important idea.

All observers, no matter how they move relative to one another all
agree that any light wave travels at that same speed.



Light (Electromagnetic Radiation)

Light travels at this fixed speed, c = 3.00× 108 m s−1.

For any wave, if v is the wave propogation speed:

v = f λ

For light:

c = f λ

So, if the frequency of the light is given, you also know the
wavelength, and vice versa.

λ =
c

f
; f =

c

λ



Electromagnetic spectrum



Electromagnetic spectrum



Summary

• Maxwell’s equations

• Ampère-Maxwell law

• electromagnetic radiation

Final Exam Tuesday, Mar 27, 9:15-11:15am, S35 (here).

Homework
Serway & Jewett:

• NEW: Ch 34, onward from page 1048. Obj. Qs: 3; Probs: 1,
3, 5


