# Electricity and Magnetism <br> Electric Dipole Continuous Distribution of Charge 

Lana Sheridan<br>De Anza College<br>Jan 16, 2018

## Last time

- electric field lines
- electric field from a point charge
- net electric field from many charges
- effect of fields on charges


## Warm Up Questions

Which expression relating force to electric field is correct?
(A) $\mathbf{F}=m_{0} \mathbf{E}$
(B) $\mathbf{E}=q_{0} \mathbf{F}$
(C) $\mathbf{F}=q_{0} \mathbf{E}$
(D) $F=E$

## Warm Up Questions

Which expression relating force to electric field is correct?
(A) $F=M_{D} E$
(B) $E=q_{0} F$
(C) $\mathbf{F}=q_{0} \mathbf{E} \leftarrow$
(D) $E \geq E$

## Warm Up Questions

What are the units of electric field?
(A) Nm
(B) $\mathrm{N} / \mathrm{C}$
(C) $\mathrm{Nm}^{2} / \mathrm{C}^{2}$
(D) $\mathrm{C} / \mathrm{N}$

## Warm Up Questions

What are the units of electric field?
(A) Nm
(B) $\mathrm{N} / \mathrm{C} \leftarrow$
(C) $\mathrm{Nm}^{2} / \mathrm{C}^{2}$
(D) $\mathrm{C} / \mathrm{N}$

## Warm Up Questions

$q_{1}=q_{3}=5.00 \mu \mathrm{C}, q_{2}=-2.00 \mu \mathrm{C}$, and $a=0.100 \mathrm{~m}$.
The resultant force exerted on $q_{3}$ is $\mathbf{F}_{\text {net, } 3}=(-1.04 \mathbf{i}+7.94 \mathbf{j}) \mathrm{N}$.
What is the electric field at the location of $q_{3}$ due to the other two charges?

(A) $(-1.04 \mathbf{i}+7.94 \mathbf{j}) \mathrm{N}$
(B) $(-1.04 \mathbf{i}+7.94 \mathbf{j}) \mathrm{N} / \mathrm{C}$
(C) $(-0.208 \mathbf{i}+1.59 \mathbf{j}) \mathrm{MN} / \mathrm{C}$
(D) $(-2.08 \mathbf{i}+15.9 \mathbf{j}) \mathrm{N} / \mathrm{C}$
${ }^{1}$ Figure from Serway \& Jewett, pg 696, Ex 2.

## Warm Up Questions

$q_{1}=q_{3}=5.00 \mu \mathrm{C}, q_{2}=-2.00 \mu \mathrm{C}$, and $a=0.100 \mathrm{~m}$.
The resultant force exerted on $q_{3}$ is $\mathbf{F}_{\text {net, } 3}=(-1.04 \mathbf{i}+7.94 \mathbf{j}) \mathrm{N}$.
What is the electric field at the location of $q_{3}$ due to the other two charges?

(A) $(-1.04 \mathbf{i}+7.94 \mathbf{j}) \mathrm{N}$
(B) $(-1.04 \mathbf{i}+7.94 \mathbf{j}) \mathrm{N} / \mathrm{C}$
(C) $(-0.208 \mathbf{i}+1.59 \mathbf{j}) \mathrm{MN} / \mathrm{C} \leftarrow$
(D) $(-2.08 \mathbf{i}+15.9 \mathbf{j}) \mathrm{N} / \mathrm{C}$
${ }^{1}$ Figure from Serway \& Jewett, pg 696, Ex 2.

## Overview

- electric field of a dipole
- continuous distributions of charge


## Electric Dipole

## electric dipole

A pair of charges of equal magnitude $q$ but opposite sign, separated by a distance, $d$.
dipole moment:

$$
\mathbf{p}=q d \hat{\mathbf{r}}
$$

where $\hat{\mathbf{r}}$ is a unit vector pointing from the negative charge to the positive charge.


## Electric Dipole (Example 23.6, B)

Evaluate the electric field from the dipole at point $P$, which is at position ( $0, y$ ).


## Electric Dipole (Example 23.7)

The $y$-components of the electric field
 cancel out, $E_{y}=0$.
$x$-components:

$$
E_{x}=E_{1, x}+E_{2, x}
$$

Also $E_{1, x}=E_{2, x}$

## Electric Dipole (Example 23.7)

The $y$-components of the electric field
 cancel out, $E_{y}=0$.
$x$-components:

$$
E_{x}=E_{1, x}+E_{2, x}
$$

Also $E_{1, x}=E_{2, x}$

$$
\begin{aligned}
E_{x} & =2\left(\frac{k_{e} q}{r^{2}} \cos \theta\right) \\
& =\frac{2 k_{e} q}{\left(a^{2}+y^{2}\right)}\left(\frac{a}{\sqrt{a^{2}+y^{2}}}\right) \\
& =\frac{2 k_{e} a q}{\left(a^{2}+y^{2}\right)^{3 / 2}}
\end{aligned}
$$

## Electric Dipole (Example 23.7)



What happens as we move infinitely far from the dipole? $(y \gg a)$

## Electric Dipole (Example 23.7)

What happens as we move infinitely far from
 the dipole? $(y \gg a)$
The constant $a$ in the denominator has less and less affect on the function. We can see that the field function approaches $E_{\mathrm{far}}=\frac{2 k_{e} a q}{y^{3}}$

$$
\begin{aligned}
\lim _{y \rightarrow \infty}\left[\frac{E}{E_{f a r}}\right] & =\lim _{y \rightarrow \infty}\left[\frac{\frac{2 k_{e} a q}{\left(a^{2}+y^{2}\right)^{3 / 2}}}{\frac{2 k_{e} a q}{y^{3}}}\right] \\
& =\lim _{y \rightarrow \infty}\left[\frac{y^{3}\left(\left(\frac{a}{y}\right)^{2}+1\right)^{3 / 2}}{\frac{2 k_{e} a q}{y^{3}}}\right. \\
& =1
\end{aligned}
$$

## Electric Dipole (Example 23.7)

What happens as we move infinitely far from
 the dipole? $(y \gg a)$
The constant $a$ in the denominator has less and less affect on the function. We can see that the field function approaches $E_{\text {far }}=\frac{2 k_{e} a q}{y^{3}}$

$$
\begin{aligned}
\lim _{y \rightarrow \infty}\left[\frac{E}{E_{f a r}}\right] & =\lim _{y \rightarrow \infty}\left[\frac{\frac{2 k_{e} a q}{\left(a^{2}+y^{2}\right)^{3 / 2}}}{\frac{2 k_{e} a q}{y^{3}}}\right] \\
& =\lim _{y \rightarrow \infty}\left[\frac{\frac{2 k_{e} a q}{y^{\gamma}\left(\left(\frac{a}{y}\right)^{2}+1\right)^{3 / 2}}}{\frac{2 k_{e} a q}{y^{3}}}\right] \\
& =1
\end{aligned}
$$

## Big-O Notation (Example 23.7)

$$
\begin{aligned}
& y \gg a \\
& \text { Recall that } f(x)=O(g(x)) \text { if }\left|\frac{f(x)}{g(x)}\right| \leqslant C \\
& \forall x>k
\end{aligned}
$$

## Big-O Notation (Example 23.7)

$y \gg a$
Recall that $f(x)=O(g(x))$ if $\left|\frac{f(x)}{g(x)}\right| \leqslant C$ $\forall x>k$.

$$
\begin{aligned}
\left|\frac{E}{E_{\mathrm{far}}}\right| & =\left|\frac{\frac{2 k_{e} a q}{\left(a^{2}+y^{2}\right)^{3 / 2}}}{\frac{2 k_{e} a q}{y^{3}}}\right| \\
& =\left|\left(\left(\frac{a}{y}\right)^{2}+1\right)^{-3 / 2}\right|
\end{aligned}
$$

Choosing $k=a$ we can see:

$$
\left|\frac{E}{E_{\mathrm{far}}}\right| \leqslant \frac{1}{2 \sqrt{2}} \quad \forall y>a
$$

Therefore, $E=O\left(\frac{2 k_{e} a q}{y^{3}}\right)$ or simply $O\left(y^{-3}\right)$.

## Electric Dipole (Example 23.7)

As we move away from the dipole (red line, $r^{-3}$ ) the E-field falls off faster than it does for a point charge (blue line, $r^{-2}$ ).


The negative charge partially shields the effect of the positive charge and vice versa.

## Continuous distribution of charge

In previous example, we added up the field from each point charge.

But what about the case of a charged object, like a plate or a wire?

In just -1 Coulomb of charge, there are more than a quintillion excess electrons!

## Continuous distribution of charge

In previous example, we added up the field from each point charge.

But what about the case of a charged object, like a plate or a wire?

In just -1 Coulomb of charge, there are more than a quintillion excess electrons!

You do not want to add up the effect of each one by one.

## Continuous distribution of charge

In previous example, we added up the field from each point charge.

But what about the case of a charged object, like a plate or a wire?

In just -1 Coulomb of charge, there are more than a quintillion excess electrons!

You do not want to add up the effect of each one by one.

Solution: treat the charge as a continuous distribution with some charge density.

## Charge Density

## charge density

## The amount of charge in per unit 'volume' of an object.

(Here 'volume' could be volume, area, or length)

By convention, different symbols can be used in different cases:

| symbol | description | SI units |
| :--- | :---: | :---: |
| $\lambda$ | charge per unit length | $\mathrm{Cm}^{-1}$ |
| $\sigma$ | charge per unit area | $\mathrm{C} \mathrm{m}^{-2}$ |
| $\rho$ | charge per unit volume | $\mathrm{C} \mathrm{m}^{-3}$ |

For a wire, usually use charge per length.
For a plate, charge per area.

## Continuous distribution of charge (Ex. 23.7)

A rod of length $\ell$, has a uniform positive charge per unit length $\lambda$ and a total charge $Q$.

Calculate the electric field at a point $P$ that is located along the long axis of the rod and a distance a from one end.


## Continuous distribution of charge



We need to add up the charge of each little "particle" dx. Each has charge $\lambda d x$.

To be perfectly accurate, we would make the length of $\mathrm{dx} \rightarrow 0$. This is an integral: $\sum \lambda \Delta x \rightarrow \int \lambda d x$

## Continuous distribution of charge (Ex. 23.7)



## Continuous distribution of charge (Ex. 23.7)



$$
\begin{aligned}
E & =\int \frac{k_{e} \mathrm{dq}}{x^{2}} \\
& =k_{e} \int_{a}^{\ell+a} \frac{1}{x^{2}} \lambda d x \\
& =k_{e} \lambda\left[-\frac{1}{x}\right]_{a}^{\ell+a} \\
& =k_{e} \frac{Q}{\ell}\left(\frac{1}{a}-\frac{1}{\ell+a}\right)=\frac{k_{e} Q}{a(\ell+a)}
\end{aligned}
$$

## Question

The figure here shows three nonconducting rods, one circular and two straight. Each has a uniform charge of magnitude $Q$ along its top half and another along its bottom half. For each rod, what is the direction of the net electric field at point $P$ ?

For (a) it is:
(A) up
(B) down
(C) left
(D) right

(b)

(c)


[^0]
## Question

The figure here shows three nonconducting rods, one circular and two straight. Each has a uniform charge of magnitude $Q$ along its top half and another along its bottom half. For each rod, what is the direction of the net electric field at point $P$ ?

For (a) it is:
(A) up $\leftarrow$
(B) down
(C) left
(D) right

(b)

(c)


[^1]
## Question

The figure here shows three nonconducting rods, one circular and two straight. Each has a uniform charge of magnitude $Q$ along its top half and another along its bottom half. For each rod, what is the direction of the net electric field at point $P$ ?

For (b) it is:
(A) up
(B) down
(C) left
(D) right

(b)

(c)


[^2]
## Question

The figure here shows three nonconducting rods, one circular and two straight. Each has a uniform charge of magnitude $Q$ along its top half and another along its bottom half. For each rod, what is the direction of the net electric field at point $P$ ?

For (b) it is:
(A) up
(B) down
(C) left
(D) right $\leftarrow$

(b)

(c)


[^3]
## Question

The figure here shows three nonconducting rods, one circular and two straight. Each has a uniform charge of magnitude $Q$ along its top half and another along its bottom half. For each rod, what is the direction of the net electric field at point $P$ ?

For (c) it is:
(A) up
(B) down
(C) left
(D) right

(b)

(c)


[^4]
## Question

The figure here shows three nonconducting rods, one circular and two straight. Each has a uniform charge of magnitude $Q$ along its top half and another along its bottom half. For each rod, what is the direction of the net electric field at point $P$ ?

For (c) it is:
(A) up
(B) down $\leftarrow$
(C) left
(D) right

(b)

(c)


[^5]
## Summary

- electric dipole field
- electric fields of charge distribution


## Homework

- Collected homework 1, posted online, due on Monday, Jan 22.

Serway \& Jewett:

- Ch 23, onward from page 716. Probs: 45, 71, 84


[^0]:    ${ }^{1}$ Page 590, Halliday, Resnick, Walker.

[^1]:    ${ }^{1}$ Page 590, Halliday, Resnick, Walker.

[^2]:    ${ }^{1}$ Page 590, Halliday, Resnick, Walker.

[^3]:    ${ }^{1}$ Page 590, Halliday, Resnick, Walker.

[^4]:    ${ }^{1}$ Page 590, Halliday, Resnick, Walker.

[^5]:    ${ }^{1}$ Page 590, Halliday, Resnick, Walker.

