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Last time

• electric field of a dipole

• continuous distributions of charge



Warm Up Questions

Very far away from an electric dipole, the electric field decreases as
with distance from the dipole r as:

(A)
1
r

(B)
1
r2

(C)
1
r3

(D)
1
r4



Warm Up Questions

Very far away from an electric dipole, the electric field decreases as
with distance from the dipole r as:

(A)
1
r

(B)
1
r2

(C)
1
r3 ←

(D)
1
r4



Warm Up Questions

Very far away from a uniform ring of charge, the electric field
decreases as with distance from the dipole r as:

(A)
1
r

(B)
1
r2

(C)
1
r3

(D)
1
r4



Warm Up Questions

Very far away from a uniform ring of charge, the electric field
decreases as with distance from the dipole r as:

(A)
1
r

(B)
1
r2 ←

(C)
1
r3

(D)
1
r4



Overview

• more fields from continuous charge distributions

• conductors in fields



Example: Field from a ring of charge (23.8 in
textbook)

Some Measures of Electric Charge

Name Symbol SI Unit

Charge q C
Linear charge 

density l C/m
Surface charge 

density s C/m2

Volume charge 
density r C/m3

Table 22-2

Fig. 22-10 A ring of uniform positive
charge. A differential element of charge 
occupies a length ds (greatly exaggerated for
clarity).This element sets up an electric field

at point P. The component of along
the central axis of the ring is dE cos u.
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The perpendicular
components just
cancel but the parallel
components add.
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22-6 The Electric Field Due to a Line of Charge
We now consider charge distributions that consist of a great many closely spaced
point charges (perhaps billions) that are spread along a line, over a surface, or
within a volume. Such distributions are said to be continuous rather than discrete.
Since these distributions can include an enormous number of point charges, we
find the electric fields that they produce by means of calculus rather than by con-
sidering the point charges one by one. In this section we discuss the electric field
caused by a line of charge. We consider a charged surface in the next section. In
the next chapter, we shall find the field inside a uniformly charged sphere.

When we deal with continuous charge distributions, it is most convenient to
express the charge on an object as a charge density rather than as a total charge.
For a line of charge, for example, we would report the linear charge density
(or charge per unit length) l, whose SI unit is the coulomb per meter. Table 22-2
shows the other charge densities we shall be using.

Figure 22-10 shows a thin ring of radius R with a uniform positive linear
charge density l around its circumference. We may imagine the ring to be made
of plastic or some other insulator, so that the charges can be regarded as fixed
in place. What is the electric field at point P, a distance z from the plane of the
ring along its central axis?

To answer, we cannot just apply Eq. 22-3, which gives the electric field set up
by a point charge, because the ring is obviously not a point charge. However, we
can mentally divide the ring into differential elements of charge that are so small
that they are like point charges, and then we can apply Eq. 22-3 to each of them.
Next, we can add the electric fields set up at P by all the differential elements.
The vector sum of the fields gives us the field set up at P by the ring.

Let ds be the (arc) length of any differential element of the ring. Since l is
the charge per unit (arc) length, the element has a charge of magnitude

dq ! l ds. (22-10)

This differential charge sets up a differential electric field at point P, which is
a distance r from the element. Treating the element as a point charge and using
Eq. 22-10, we can rewrite Eq. 22-3 to express the magnitude of as

(22-11)

From Fig. 22-10, we can rewrite Eq. 22-11 as
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Vertical components? From each
charge dq = λ ds:

dEz = dE cos θ

=

(
kλ ds
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kλ ds
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dEz =
k z λ ds

(R2 + z2)3/2

There are 2πR-worth of little lengths
ds. Adding the field for all together:

Ez =

∫
dEz =

k z λ

(R2 + z2)3/2

∫
ds

=
k q z

(R2 + z2)3/2

since total charge q = 2πRλ by
definition.



Example: Field from a disk of charge (23.9 in
textbook)

 23.5 Electric Field of a Continuous Charge Distribution 707

the axis of the ring and dE! perpendicular to the axis. Figure 23.16b shows the electric field contributions from two 
segments on opposite sides of the ring. Because of the symmetry of the situation, the perpendicular components of the 
field cancel. That is true for all pairs of segments around the ring, so we can ignore the perpendicular component of 
the field and focus solely on the parallel components, which simply add.

Categorize  Because the ring is continuous, we are evaluating the field due to a continuous charge distribution rather 
than a group of individual charges.

continued

 

▸ 23.8 c o n t i n u e d

 Suppose a negative charge is placed at the 
center of the ring in Figure 23.16 and displaced slightly 
by a distance x ,, a along the x axis. When the charge is 
released, what type of motion does it exhibit?

Answer  In the expression for the field due to a ring of 
charge, let x ,, a, which results in

Ex 5
keQ

a3  x

WHAT IF ? Therefore, from Equation 23.8, the force on a charge 2q 
placed near the center of the ring is

Fx 5 2
keqQ

a3  x

Because this force has the form of Hooke’s law (Eq. 15.1), 
the motion of the negative charge is described with the  
particle in simple harmonic motion model!

Analyze  Evaluate the parallel component of an electric 
field contribution from a segment of charge dq on the ring:

(1)   dEx 5 ke 
dq

r 2 cos u 5 ke 
dq

a 2 1 x2 cos u

From the geometry in Figure 23.16a, evaluate cos u: (2)   cos u 5
x
r

5
x1a 2 1 x 2 21/2

Substitute Equation (2) into Equation (1): dEx 5 ke 
dq

a 2 1 x 2  c x1a 2 1 x 2 21/2 d 5
kex1a 2 1 x2 23/2 dq

All segments of the ring make the same contribution to 
the field at P because they are all equidistant from this 
point. Integrate over the circumference of the ring to 
obtain the total field at P :

Ex 5 3 
kex1a 2 1 x2 23/2 dq 5

kex1a 2 1 x 2 23/2 3 dq

(3)   E 5 
kex1a 2 1 x2 23/2 Q

Finalize  This result shows that the field is zero at x 5 0. Is that consistent with the symmetry in the problem? Further-
more, notice that Equation (3) reduces to keQ /x 2 if x .. a, so the ring acts like a point charge for locations far away 
from the ring. From a faraway point, we cannot distinguish the ring shape of the charge.

Example 23.9   The Electric Field of a Uniformly Charged Disk

A disk of radius R has a uniform surface charge density s. Calculate the electric 
field at a point P that lies along the central perpendicular axis of the disk and a 
distance x from the center of the disk (Fig. 23.17).

Conceptualize  If the disk is considered to be 
a set of concentric rings, we can use our result 
from Example 23.8—which gives the field cre-
ated by a single ring of radius a—and sum the 
contributions of all rings making up the disk. By symmetry, the field at an axial point must be along the central axis.

S O L U T I O N
P

x
r

R

dq

dr

xFigure 23.17  (Example 23.9) A 
uniformly charged disk of radius R. 
The electric field at an axial point P 
is directed along the central axis, per-
pendicular to the plane of the disk.

We already know the field contribution for a ring of charge.
(dq = 2πrσ dr)

Just add up rings of different radius.

Ex =

∫R
0

k x

(r2 + x2)3/2
(2πrσ) dr

= 2πkσ

[
1 −

x√
R2 + x2

]
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Ex = 2πkσ

[
1 −

x√
R2 + x2

]
What happens if x →∞ while R is constant?

What happens if R →∞ while x is constant?



Conductors in Electric fields

Consider a neutral conductor placed in an electric field:

64524-12 POTE NTIAL OF A CHARG E D I SOLATE D CON DUCTOR
PART 3

12

V 
(k

V
) 8

4

0
0 1 2 3 4

r (m)

(a)

(b)

12

E 
(k

V
/m

) 8

4

0
0 1 2 3 4

r (m)

Fig. 24-18 (a) A plot of V(r) both
inside and outside a charged spheri-
cal shell of radius 1.0 m. (b) A plot of
E(r) for the same shell.Fig. 24-19 A large spark

jumps to a car’s body and then
exits by moving across the
insulating left front tire (note
the flash there), leaving the per-
son inside unharmed. (Courtesy
Westinghouse Electric
Corporation)

Figure 24-18a is a plot of potential against radial distance r from the center
for an isolated spherical conducting shell of 1.0 m radius, having a charge of
1.0 mC. For points outside the shell, we can calculate V(r) from Eq. 24-26 because
the charge q behaves for such external points as if it were concentrated at the
center of the shell. That equation holds right up to the surface of the shell. Now
let us push a small test charge through the shell—assuming a small hole exists—
to its center. No extra work is needed to do this because no net electric force acts
on the test charge once it is inside the shell. Thus, the potential at all points inside
the shell has the same value as that on the surface, as Fig. 24-18a shows.

Figure 24-18b shows the variation of electric field with radial distance for the
same shell. Note that E ! 0 everywhere inside the shell.The curves of Fig. 24-18b
can be derived from the curve of Fig. 24-18a by differentiating with respect to r,
using Eq. 24-40 (recall that the derivative of any constant is zero). The curve of
Fig. 24-18a can be derived from the curves of Fig. 24-18b by integrating with
respect to r, using Eq. 24-19.

Fig. 24-20 An uncharged conduc-
tor is suspended in an external elec-
tric field.The free electrons in the
conductor distribute themselves on
the surface as shown, so as to reduce
the net electric field inside the con-
ductor to zero and make the net field
at the surface perpendicular to the
surface.

E = 0

+

+
+

+
+

++++

+ + ++++
–––––––––– –

–
–
–
–

Spark Discharge from a Charged Conductor
On nonspherical conductors, a surface charge does not distribute itself uniformly
over the surface of the conductor.At sharp points or sharp edges, the surface charge
density—and thus the external electric field, which is proportional to it—may reach
very high values.The air around such sharp points or edges may become ionized, pro-
ducing the corona discharge that golfers and mountaineers see on the tips of bushes,
golf clubs, and rock hammers when thunderstorms threaten. Such corona discharges,
like hair that stands on end, are often the precursors of lightning strikes. In such cir-
cumstances, it is wise to enclose yourself in a cavity inside a conducting shell, where
the electric field is guaranteed to be zero. A car (unless it is a convertible or made
with a plastic body) is almost ideal (Fig.24-19).

Isolated Conductor in an External Electric Field
If an isolated conductor is placed in an external electric field, as in Fig. 24-20, all
points of the conductor still come to a single potential regardless of whether the
conductor has an excess charge. The free conduction electrons distribute them-
selves on the surface in such a way that the electric field they produce at interior
points cancels the external electric field that would otherwise be there.
Furthermore, the electron distribution causes the net electric field at all points on
the surface to be perpendicular to the surface. If the conductor in Fig. 24-20 could
be somehow removed, leaving the surface charges frozen in place, the internal
and external electric field would remain absolutely unchanged.
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Conductors in Electric fields

Electric fields exert forces on free charges in conductors.

Each charge keeps moving until:

1 the charges reaches the edge of the conductor and can move
no further OR

2 the field is cancelled out!

Inside a conducting object, the electric field is zero!



Effects of E-Fields: Sparking (Electrical Breakdown)

Electric fields can cause forces on charges.

If the field is very strong, it begins to accelerate free electrons
which strike atoms, knocking away more electrons forming ions.
This starts a cascade, forming a spark.

The strength of the field where this happens is called the critical
field, Ec , For air Ec ≈ 3× 106 N/C.

The air along the spark becomes a plamsa of free charges and can
conduct electricity.

Sparks look like bright streaks because the air molecules becomes
so hot. Accelerating charges radiate, so lightning can also cause
radio interference.
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Faraday Cages
A conducting shell can shield the interior from even very strong
electric fields.
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If an isolated conductor is placed in an external electric field, as in Fig. 24-20, all
points of the conductor still come to a single potential regardless of whether the
conductor has an excess charge. The free conduction electrons distribute them-
selves on the surface in such a way that the electric field they produce at interior
points cancels the external electric field that would otherwise be there.
Furthermore, the electron distribution causes the net electric field at all points on
the surface to be perpendicular to the surface. If the conductor in Fig. 24-20 could
be somehow removed, leaving the surface charges frozen in place, the internal
and external electric field would remain absolutely unchanged.
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Summary

• more continuous charge distributions

• conductors in electric fields

Quiz on Friday, Jan 19.

Homework
• Collected homework 1, posted online, due on Monday, Jan 22.

Serway & Jewett:

• PREVIOUS: Ch 23, Probs: 45, 71, 84

• NEW!: Ch 23, Probs: 75, 83


