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Last time

• conductors in electric fields

• electric flux



Overview

• electric flux

• Gauss’s law

• Gauss’s law applied to various cases



Gauss’s Law basic idea

The electric field around a charge is stronger for charges with
larger magnitudes.

To make this observation useful, we need to quantify it.

HALLIDAY REVISED

23-1 One of the primary goals of physics is to find simple ways of solving
seemingly complex problems. One of the main tools of physics in attaining this
goal is the use of symmetry. For example, in finding the electric field of the
charged ring of Fig. 22-10 and the charged rod of Fig. 22-11, we considered the
fields of charge elements in the ring and rod. Then we simplified
the calculation of by using symmetry to discard the perpendicular components
of the vectors.That saved us some work.

For certain charge distributions involving symmetry, we can save far more work
by using a law called Gauss’ law, developed by German mathematician and physi-
cist Carl Friedrich Gauss (1777–1855). Instead of considering the fields of
charge elements in a given charge distribution, Gauss’ law considers a hypothetical
(imaginary) closed surface enclosing the charge distribution.This Gaussian surface,
as it is called, can have any shape, but the shape that minimizes our calculations of
the electric field is one that mimics the symmetry of the charge distribution. For ex-
ample, if the charge is spread uniformly over a sphere, we enclose the sphere with a
spherical Gaussian surface, such as the one in Fig. 23-1, and then, as we discuss in
this chapter, find the electric field on the surface by using the fact that
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Gauss’ law relates the electric fields at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.

We can also use Gauss’ law in reverse: If we know the electric field on a Gaussian
surface, we can find the net charge enclosed by the surface. As a limited example,
suppose that the electric field vectors in Fig. 23-1 all point radially outward from the
center of the sphere and have equal magnitude. Gauss’ law immediately tells us that
the spherical surface must enclose a net positive charge that is either a particle or
distributed spherically. However, to calculate how much charge is enclosed, we need
a way of calculating how much electric field is intercepted by the Gaussian surface in
Fig. 23-1.This measure of intercepted field is called flux, which we discuss next.

23-2 Flux
Suppose that, as in Fig. 23-2a, you aim a wide airstream of uniform velocity at
a small square loop of area A. Let " represent the volume flow rate (volume per unit
time) at which air flows through the loop.This rate depends on the angle between 
and the plane of the loop. If is perpendicular to the plane, the rate " is equal to vA.

If is parallel to the plane of the loop, no air moves through the loop, so
" is zero. For an intermediate angle u, the rate " depends on the component of 

normal to the plane (Fig.23-2b).Since that component is v cos u, the rate of volume
flow through the loop is

" ! (v cos u)A. (23-1)

This rate of flow through an area is an example of a flux—a volume flux in this
situation.
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Fig. 23-1 A spherical Gaussian 
surface. If the electric field vectors
are of uniform magnitude and point
radially outward at all surface points,
you can conclude that a net positive
distribution of charge must lie within
the surface and have spherical 
symmetry.
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Flux

Flux is a quantity that makes the idea of the “electric field
through some region” precise.

Flux is a flow rate through an area.

606 CHAPTE R 23 GAUSS’ LAW
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Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E
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Fig. 23-2 (a) A uniform airstream of ve-
locity is perpendicular to the plane of a
square loop of area A.(b) The component
of perpendicular to the plane of the loop
is v cos u, where u is the angle between 
and a normal to the plane. (c) The area vec-
tor is perpendicular to the plane of the
loop and makes an angle u with . (d) The
velocity field intercepted by the area of the
loop.
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Flux

Imagine air blowing directly through a square loop of wire of area
A.
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Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E
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Fig. 23-2 (a) A uniform airstream of ve-
locity is perpendicular to the plane of a
square loop of area A.(b) The component
of perpendicular to the plane of the loop
is v cos u, where u is the angle between 
and a normal to the plane. (c) The area vec-
tor is perpendicular to the plane of the
loop and makes an angle u with . (d) The
velocity field intercepted by the area of the
loop.

v:
A
:

v:
v:

v:

Gaussian 
surface 

1 3 

2 

∆ 

θ 

1 
Φ < 0 

Φ = 0 

Φ > 0 
3 

θ 

2 

A 

∆ A 

∆ A 
E 

E 

E 

Pierce 
inward:
negative 
flux

Pierce 
outward:
positive 
flux

Skim: zero flux

Fig. 23-3 A Gaussian surface of 
arbitrary shape immersed in an 
electric field.The surface is divided into
small squares of area !A.The electric field
vectors and the area vectors for three
representative squares, marked 1, 2, and 3,
are shown.

!"
:

E
:

halliday_c23_605-627v2.qxd  18-11-2009  15:34  Page 606

The volume of air that passes through in 1 s is V = A× v × (1 s),
where v is the speed of the air.

The rate of flow would be dV
dt = Av .



Flux

Now consider a more general situation: the air does not blow
directly through the loop, but at some angle θ.

606 CHAPTE R 23 GAUSS’ LAW

HALLIDAY REVISED

Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E
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locity is perpendicular to the plane of a
square loop of area A.(b) The component
of perpendicular to the plane of the loop
is v cos u, where u is the angle between 
and a normal to the plane. (c) The area vec-
tor is perpendicular to the plane of the
loop and makes an angle u with . (d) The
velocity field intercepted by the area of the
loop.
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If θ = 90◦, what is the flow rate (flux) through the loop?

Zero!

In that case there is no flow through the loop. The air goes around
the loop.

The flux depends on the angle that the flow makes to the loop /
area.



Flux

Now consider a more general situation: the air does not blow
directly through the loop, but at some angle θ.
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Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E
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If θ = 90◦, what is the flow rate (flux) through the loop? Zero!

In that case there is no flow through the loop. The air goes around
the loop.

The flux depends on the angle that the flow makes to the loop /
area.



Flux

726 Chapter 24 Gauss’s Law

From the SI units of E and A, we see that FE has units of newton meters squared per 
coulomb (N ? m2/C). Electric flux is proportional to the number of electric field 
lines penetrating some surface.
 If the surface under consideration is not perpendicular to the field, the flux 
through it must be less than that given by Equation 24.1. Consider Figure 24.2, where 
the normal to the surface of area A is at an angle u to the uniform electric field. Notice 
that the number of lines that cross this area A is equal to the number of lines that 
cross the area A!, which is a projection of area A onto a plane oriented perpendicu-
lar to the field. The area A is the product of the length and the width of the surface:  
A 5 ,w. At the left edge of the figure, we see that the widths of the surfaces are related 
by w! 5 w cos u. The area A! is given by A! 5 ,w! 5 ,w cos u and we see that the two 
areas are related by A! 5 A cos u. Because the flux through A equals the flux through 
A!, the flux through A is
 FE 5 EA! 5 EA cos u (24.2)

From this result, we see that the flux through a surface of fixed area A has a maxi-
mum value EA when the surface is perpendicular to the field (when the normal to 
the surface is parallel to the field, that is, when u 5 08 in Fig. 24.2); the flux is zero 
when the surface is parallel to the field (when the normal to the surface is perpen-
dicular to the field, that is, when u 5 908).
 In this discussion, the angle u is used to describe the orientation of the surface 
of area A. We can also interpret the angle as that between the electric field vector 
and the normal to the surface. In this case, the product E cos u in Equation 24.2 is 
the component of the electric field perpendicular to the surface. The flux through 
the surface can then be written FE  5 (E cos u)A 5 EnA, where we use En as the com-
ponent of the electric field normal to the surface.
 We assumed a uniform electric field in the preceding discussion. In more gen-
eral situations, the electric field may vary over a large surface. Therefore, the defi-
nition of flux given by Equation 24.2 has meaning only for a small element of area 
over which the field is approximately constant. Consider a general surface divided 
into a large number of small elements, each of area DAi. It is convenient to define 
a vector D A

S
i whose magnitude represents the area of the i th element of the large 

surface and whose direction is defined to be perpendicular to the surface element as 
shown in Figure 24.3. The electric field E

S
i  at the location of this element makes an 

angle ui with the vector D A
S

i. The electric flux FE , i through this element is

FE,i 5 Ei DAi  cos ui 5 E
S

i ? D A
S

i

where we have used the definition of the scalar product of two vectors  
( A

S
? B

S
; AB cos u ; see Chapter 7). Summing the contributions of all elements 

gives an approximation to the total flux through the surface:

FE < a E
S

i ? D A
S

i

If the area of each element approaches zero, the number of elements approaches 
infinity and the sum is replaced by an integral. Therefore, the general definition of 
electric flux is

 FE ; 3
surface

E
S

? d A
S

 (24.3)

Equation 24.3 is a surface integral, which means it must be evaluated over the surface 
in question. In general, the value of FE depends both on the field pattern and on 
the surface.
 We are often interested in evaluating the flux through a closed surface, defined as 
a surface that divides space into an inside and an outside region so that one cannot 
move from one region to the other without crossing the surface. The surface of a 
sphere, for example, is a closed surface. By convention, if the area element in Equa-

Definition of electric flux X

A

w
w›

A›

Normal

u

u

E
S

The number of field lines that 
go through the area A› is the 
same as the number that go 
through area A.

,

Figure 24.2  Field lines repre-
senting a uniform electric field 
penetrating an area A whose nor-
mal is at an angle u to the field.

The electric field makes an angle
ui with the vector !Ai 

, defined as
being normal to the surface
element.  

ui

Ei
S

S

!Ai  
S

Figure 24.3  A small element of 
surface area DAi  in an electric field.



Flux

The area A⊥ = A cos θ.

For other values of θ the flux of air that move through is vA cos θ.
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Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E
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We can define flux:

Φ = vA cos θ



Electric Flux

The electric flux, ΦE , through an area A is

ΦE = EA cos θ

where θ is the angle between the electric field vector at the surface
and the normal vector to the surface.

This can be written:

ΦE = E · A

The direction of A is ⊥ to the surface, and the magnitude is the
area of the surface.



Questions

What are the units of electric flux?

(A) N m2/C

(B) N/C

(C) N C−1 m−2

(D) N m2
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Questions

A surface has the area vector A = (2i + 3j) m2. What is the flux of
a uniform electric field through the area if the field is:

E = 4 i N/C?

(A) 0 Nm2/C

(B) 2 Nm2/C

(C) 4 Nm2/C

(D) 8 Nm2/C
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A surface has the area vector A = (2i + 3j) m2. What is the flux of
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Electric Flux
What about the electric flux through an arbitrary curved surface?

The angle θ between the surface normal and the field varies along
the surface.
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From the SI units of E and A, we see that FE has units of newton meters squared per 
coulomb (N ? m2/C). Electric flux is proportional to the number of electric field 
lines penetrating some surface.
 If the surface under consideration is not perpendicular to the field, the flux 
through it must be less than that given by Equation 24.1. Consider Figure 24.2, where 
the normal to the surface of area A is at an angle u to the uniform electric field. Notice 
that the number of lines that cross this area A is equal to the number of lines that 
cross the area A!, which is a projection of area A onto a plane oriented perpendicu-
lar to the field. The area A is the product of the length and the width of the surface:  
A 5 ,w. At the left edge of the figure, we see that the widths of the surfaces are related 
by w! 5 w cos u. The area A! is given by A! 5 ,w! 5 ,w cos u and we see that the two 
areas are related by A! 5 A cos u. Because the flux through A equals the flux through 
A!, the flux through A is
 FE 5 EA! 5 EA cos u (24.2)

From this result, we see that the flux through a surface of fixed area A has a maxi-
mum value EA when the surface is perpendicular to the field (when the normal to 
the surface is parallel to the field, that is, when u 5 08 in Fig. 24.2); the flux is zero 
when the surface is parallel to the field (when the normal to the surface is perpen-
dicular to the field, that is, when u 5 908).
 In this discussion, the angle u is used to describe the orientation of the surface 
of area A. We can also interpret the angle as that between the electric field vector 
and the normal to the surface. In this case, the product E cos u in Equation 24.2 is 
the component of the electric field perpendicular to the surface. The flux through 
the surface can then be written FE  5 (E cos u)A 5 EnA, where we use En as the com-
ponent of the electric field normal to the surface.
 We assumed a uniform electric field in the preceding discussion. In more gen-
eral situations, the electric field may vary over a large surface. Therefore, the defi-
nition of flux given by Equation 24.2 has meaning only for a small element of area 
over which the field is approximately constant. Consider a general surface divided 
into a large number of small elements, each of area DAi. It is convenient to define 
a vector D A

S
i whose magnitude represents the area of the i th element of the large 

surface and whose direction is defined to be perpendicular to the surface element as 
shown in Figure 24.3. The electric field E

S
i  at the location of this element makes an 

angle ui with the vector D A
S

i. The electric flux FE , i through this element is

FE,i 5 Ei DAi  cos ui 5 E
S

i ? D A
S

i

where we have used the definition of the scalar product of two vectors  
( A

S
? B

S
; AB cos u ; see Chapter 7). Summing the contributions of all elements 

gives an approximation to the total flux through the surface:

FE < a E
S

i ? D A
S

i

If the area of each element approaches zero, the number of elements approaches 
infinity and the sum is replaced by an integral. Therefore, the general definition of 
electric flux is

 FE ; 3
surface

E
S

? d A
S

 (24.3)

Equation 24.3 is a surface integral, which means it must be evaluated over the surface 
in question. In general, the value of FE depends both on the field pattern and on 
the surface.
 We are often interested in evaluating the flux through a closed surface, defined as 
a surface that divides space into an inside and an outside region so that one cannot 
move from one region to the other without crossing the surface. The surface of a 
sphere, for example, is a closed surface. By convention, if the area element in Equa-

Definition of electric flux X

A

w
w›

A›

Normal

u

u

E
S

The number of field lines that 
go through the area A› is the 
same as the number that go 
through area A.

,

Figure 24.2  Field lines repre-
senting a uniform electric field 
penetrating an area A whose nor-
mal is at an angle u to the field.

The electric field makes an angle
ui with the vector !Ai 

, defined as
being normal to the surface
element.  

ui

Ei
S

S

!Ai  
S

Figure 24.3  A small element of 
surface area DAi  in an electric field.

Solution: break up surface into small areas ∆Ai and add up all the
contributions

ΦE =
∑
i

Ei (∆Ai ) cos θi



Electric Flux
To makes this approximation exact, take the limit as the areas
∆Ai → 0.
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Figure 24.3  A small element of 
surface area DAi  in an electric field.Total flux through the surface:

ΦE =

∫
A

E · dA

The electric flux ΦE through a surface is proportional to the net
number of electric field lines passing through that surface.



Gaussian Surface

Gaussian surface

An imaginary boundary (closed surface) drawn around some region
of space in order to study electric charge and field.

The surface can be any shape you like, but must be closed (have
an interior and exterior).

It is just a tool for calculating charge or field.



Electric Flux through Gaussian Surfaces
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HALLIDAY REVISED

Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E
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• The flux is positive where
the field vector points out of
the surface.

• The flux is negative where
the field vector points into
the surface.

For a closed surface:

ΦE =

∮
E · dA



Electric Flux through Gaussian Surface Example

Consider a uniform electric field E = E i in empty space. A cube of
edge length `, is placed in the field, oriented as shown. Find the
net electric flux through the surface of the cube.

728 Chapter 24 Gauss’s Law

24.2 Gauss’s Law
In this section, we describe a general relationship between the net electric flux 
through a closed surface (often called a gaussian surface) and the charge enclosed 
by the surface. This relationship, known as Gauss’s law, is of fundamental impor-
tance in the study of electric fields.
 Consider a positive point charge q located at the center of a sphere of radius r as 
shown in Figure 24.6. From Equation 23.9, we know that the magnitude of the elec-
tric field everywhere on the surface of the sphere is E 5 keq/r 2. The field lines are 
directed radially outward and hence are perpendicular to the surface at every point 
on the surface. That is, at each surface point, E

S
 is parallel to the  vector D A

S
i repre-

senting a local element of area DAi surrounding the surface point. Therefore,

 E
S

? D A
S

i 5 E DAi  

and, from Equation 24.4, we find that the net flux through the gaussian surface is

 FE 5 C E
S

? d A
S

5 C E dA 5 E C dA  

What happens to the flux through the sphere and the magnitude of the elec-
tric field at the surface of the sphere? (a) The flux and field both increase. 
(b) The flux and field both decrease. (c) The flux increases, and the field 
decreases. (d) The flux decreases, and the field increases. (e) The flux remains 
the same, and the field increases. (f) The flux decreases, and the field remains 
the same.

Write the integrals for the net flux through faces !  
and ":

FE 5 3
1
  E
S

? d A
S

1 3
2
  E
S

? d A
S

For face !, E
S

 is constant and directed inward but d A
S

1 
is directed outward (u 5 1808). Find the flux through 
this face:

3
1
  E
S

? d A
S

5 3
1
 E 1cos 1808 2  dA 5 2E 3

1
 dA 5 2EA 5 2E,2

For face ", E
S

 is constant and outward and in the same 
direction as d A

S
2 (u 5 08). Find the flux through this face:

3
2
  E
S

? d A
S

5 3
2
 E 1cos 08 2  dA 5 E 3

2
 dA 5 1EA 5 E,2

Find the net flux by adding the flux over all six faces: FE 5 2E,2 1 E,2 1 0 1 0 1 0 1 0 5 0

When the charge is at the center 
of the sphere, the electric field is 
everywhere normal to the surface 
and constant in magnitude.

Spherical
gaussian
surface

E
S

 

!A i
S

r

q
"

Figure 24.6  A spherical gauss-
ian surface of radius r surround-
ing a positive point charge q. 

 

Example 24.1   Flux Through a Cube

Consider a uniform electric field E
S

 oriented in the x direction in empty 
space. A cube of edge length , is placed in the field, oriented as shown in 
Figure 24.5. Find the net electric flux through the surface of the cube.

Conceptualize  Examine Figure 24.5 carefully. Notice that the electric 
field lines pass through two faces perpendicularly and are parallel to 
four other faces of the cube.

Categorize  We evaluate the flux from its definition, so we categorize 
this example as a substitution problem.
 The flux through four of the faces (#, $, and the unnumbered 
faces) is zero because E

S
 is parallel to the four faces and therefore per-

pendicular to d A
S

 on these faces.
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Figure 24.5  (Example 24.1) A closed surface in 
the shape of a cube in a uniform electric field ori-
ented parallel to the x axis. Side $ is the bottom of 
the cube, and side ! is opposite side ".



Electric Flux through Gaussian Surface Example

Find the net electric flux through the surface of the cube.

ΦE =
∑
i

E (∆Ai ) cos θi

For sides 3, 4, 5, and 6, ∆Ai ⊥ E, so ΦE ,i = 0.

For side 1:
ΦE ,1 = E (`2) cos(180) = −E `2

For side 2:
ΦE ,2 = E (`2) cos(0) = E `2

In total:
ΦE =

∑
i

ΦE ,i = 0
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Gauss’s Law

Gauss’s law relates the electric field across a closed surface (the
flux) to the amount of net charge enclosed by the surface.

HALLIDAY REVISED

23-1 One of the primary goals of physics is to find simple ways of solving
seemingly complex problems. One of the main tools of physics in attaining this
goal is the use of symmetry. For example, in finding the electric field of the
charged ring of Fig. 22-10 and the charged rod of Fig. 22-11, we considered the
fields of charge elements in the ring and rod. Then we simplified
the calculation of by using symmetry to discard the perpendicular components
of the vectors.That saved us some work.

For certain charge distributions involving symmetry, we can save far more work
by using a law called Gauss’ law, developed by German mathematician and physi-
cist Carl Friedrich Gauss (1777–1855). Instead of considering the fields of
charge elements in a given charge distribution, Gauss’ law considers a hypothetical
(imaginary) closed surface enclosing the charge distribution.This Gaussian surface,
as it is called, can have any shape, but the shape that minimizes our calculations of
the electric field is one that mimics the symmetry of the charge distribution. For ex-
ample, if the charge is spread uniformly over a sphere, we enclose the sphere with a
spherical Gaussian surface, such as the one in Fig. 23-1, and then, as we discuss in
this chapter, find the electric field on the surface by using the fact that

dE
:

dE
:

E
:

(!k dq/r 2)dE
:

E
:

G A U S S ’  L A W 23
C H A P T E R

605

W H AT  I S  P H YS I C S ?

Gauss’ law relates the electric fields at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.

We can also use Gauss’ law in reverse: If we know the electric field on a Gaussian
surface, we can find the net charge enclosed by the surface. As a limited example,
suppose that the electric field vectors in Fig. 23-1 all point radially outward from the
center of the sphere and have equal magnitude. Gauss’ law immediately tells us that
the spherical surface must enclose a net positive charge that is either a particle or
distributed spherically. However, to calculate how much charge is enclosed, we need
a way of calculating how much electric field is intercepted by the Gaussian surface in
Fig. 23-1.This measure of intercepted field is called flux, which we discuss next.

23-2 Flux
Suppose that, as in Fig. 23-2a, you aim a wide airstream of uniform velocity at
a small square loop of area A. Let " represent the volume flow rate (volume per unit
time) at which air flows through the loop.This rate depends on the angle between 
and the plane of the loop. If is perpendicular to the plane, the rate " is equal to vA.

If is parallel to the plane of the loop, no air moves through the loop, so
" is zero. For an intermediate angle u, the rate " depends on the component of 

normal to the plane (Fig.23-2b).Since that component is v cos u, the rate of volume
flow through the loop is

" ! (v cos u)A. (23-1)

This rate of flow through an area is an example of a flux—a volume flux in this
situation.

v:

v:
v:

v:

v:

Fig. 23-1 A spherical Gaussian 
surface. If the electric field vectors
are of uniform magnitude and point
radially outward at all surface points,
you can conclude that a net positive
distribution of charge must lie within
the surface and have spherical 
symmetry.

Spherical
Gaussian
surface

?
E
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Gauss’s Law

The net flux through a surface is directly proportional to the net
charge enclosed by the surface.

ε0ΦE = qenc

This can also be written:

∮
E · dA =

qenc
ε0

This is called the “integral form” of Gauss’s Law.



Gauss’s Law

∮
E · dA =

qenc
ε0

General definition of divergence of u at point p:

∇ · u = lim
V→{p}

1

V

∮
u · dA

Differential form of Gauss’s Law:

∇ · E =
ρ

ε0

where ρ is the charge density.



Divergence

Differential form of Gauss’s Law:

∇ · E =
ρ

ε0

where ρ is the charge density.

Divergence of a vector field at a point v = [vx , vy , vz ]:

∇ · v =
∂

∂x
vx +

∂

∂y
vy +

∂

∂z
vz

Intuitively, the divergence is a measure of the “outgoingness” of a
vector field at each point.



Electrical Permittivity

Gauss’s Law1 indicates what the permittivity, ε, is:

ΦE =
qenc
ε

It relates the amount of charge required to generate one unit of
electric flux in the vacuum or in a particular medium.

Different materials have different values of ε, depending on how
they become polarized in response to an electric field.

Confusingly, a larger permittivity indicates a larger “resistance” to
an electric field.

ε = κε0

where κ is the dielectric constant or relative permittivity of the
material (see Ch. 26) and ε0 is the vacuum permittivity.

1assuming the material is homogeneous, isotropic, and linear, and the field
is static
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an electric field.

ε = κε0

where κ is the dielectric constant or relative permittivity of the
material (see Ch. 26) and ε0 is the vacuum permittivity.

1assuming the material is homogeneous, isotropic, and linear, and the field
is static



Gauss’s Law Question
Three Gaussian cubes sit in electric fields. The arrows and the
values indicate the directions of the field lines and the magnitudes
(in Nm2/C) of the flux through the six sides of each cube. (The
lighter arrows are for the hidden faces.)
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The figure shows three situations in which a Gaussian cube sits in an electric field. The
arrows and the values indicate the directions of the field lines and the magnitudes (in
N ! m2/C) of the flux through the six sides of each cube. (The lighter arrows are for the
hidden faces.) In which situation does the cube enclose (a) a positive net charge, (b) a
negative net charge, and (c) zero net charge?
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matter on the right side of Eqs. 23-6 and 23-7 are the magnitude and sign of the
net enclosed charge. The quantity on the left side of Eq. 23-7, however, is the
electric field resulting from all charges, both those inside and those outside the
Gaussian surface. This statement may seem to be inconsistent, but keep this in
mind: The electric field due to a charge outside the Gaussian surface contributes
zero net flux through the surface, because as many field lines due to that charge
enter the surface as leave it.

Let us apply these ideas to Fig. 23-6, which shows two point charges, equal in
magnitude but opposite in sign, and the field lines describing the electric fields
the charges set up in the surrounding space. Four Gaussian surfaces are also
shown, in cross section. Let us consider each in turn.

Surface S1. The electric field is outward for all points on this surface. Thus, the
flux of the electric field through this surface is positive, and so is the net
charge within the surface, as Gauss’ law requires. (That is, in Eq. 23-6, if " is
positive, qenc must be also.)

Surface S2. The electric field is inward for all points on this surface.Thus, the flux of
the electric field through this surface is negative and so is the enclosed charge, as
Gauss’ law requires.

Surface S3. This surface encloses no charge, and thus qenc # 0. Gauss’ law (Eq.
23-6) requires that the net flux of the electric field through this surface be
zero. That is reasonable because all the field lines pass entirely through the
surface, entering it at the top and leaving at the bottom.

Surface S4. This surface encloses no net charge, because the enclosed posi-
tive and negative charges have equal magnitudes. Gauss’ law requires
that the net flux of the electric field through this surface be zero. That is
reasonable because there are as many field lines leaving surface S4 as en-
tering it.

What would happen if we were to bring an enormous charge Q up close to sur-
face S4 in Fig. 23-6? The pattern of the field lines would certainly change, but
the net flux for each of the four Gaussian surfaces would not change. We can
understand this because the field lines associated with the added Q would pass
entirely through each of the four Gaussian surfaces, making no contribution to
the net flux through any of them. The value of Q would not enter Gauss’ law in
any way, because Q lies outside all four of the Gaussian surfaces that we are
considering.
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Fig. 23-6 Two point charges, equal
in magnitude but opposite in sign, and
the field lines that represent their net
electric field. Four Gaussian surfaces
are shown in cross section. Surface S1

encloses the positive charge. Surface
S2 encloses the negative charge.
Surface S3 encloses no charge. Surface
S4 encloses both charges and thus no
net charge.
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(C) zero charge



Gauss’s Law Question
Three Gaussian cubes sit in electric fields. The arrows and the
values indicate the directions of the field lines and the magnitudes
(in Nm2/C) of the flux through the six sides of each cube. (The
lighter arrows are for the hidden faces.)
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The figure shows three situations in which a Gaussian cube sits in an electric field. The
arrows and the values indicate the directions of the field lines and the magnitudes (in
N ! m2/C) of the flux through the six sides of each cube. (The lighter arrows are for the
hidden faces.) In which situation does the cube enclose (a) a positive net charge, (b) a
negative net charge, and (c) zero net charge?
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matter on the right side of Eqs. 23-6 and 23-7 are the magnitude and sign of the
net enclosed charge. The quantity on the left side of Eq. 23-7, however, is the
electric field resulting from all charges, both those inside and those outside the
Gaussian surface. This statement may seem to be inconsistent, but keep this in
mind: The electric field due to a charge outside the Gaussian surface contributes
zero net flux through the surface, because as many field lines due to that charge
enter the surface as leave it.

Let us apply these ideas to Fig. 23-6, which shows two point charges, equal in
magnitude but opposite in sign, and the field lines describing the electric fields
the charges set up in the surrounding space. Four Gaussian surfaces are also
shown, in cross section. Let us consider each in turn.

Surface S1. The electric field is outward for all points on this surface. Thus, the
flux of the electric field through this surface is positive, and so is the net
charge within the surface, as Gauss’ law requires. (That is, in Eq. 23-6, if " is
positive, qenc must be also.)

Surface S2. The electric field is inward for all points on this surface.Thus, the flux of
the electric field through this surface is negative and so is the enclosed charge, as
Gauss’ law requires.

Surface S3. This surface encloses no charge, and thus qenc # 0. Gauss’ law (Eq.
23-6) requires that the net flux of the electric field through this surface be
zero. That is reasonable because all the field lines pass entirely through the
surface, entering it at the top and leaving at the bottom.

Surface S4. This surface encloses no net charge, because the enclosed posi-
tive and negative charges have equal magnitudes. Gauss’ law requires
that the net flux of the electric field through this surface be zero. That is
reasonable because there are as many field lines leaving surface S4 as en-
tering it.

What would happen if we were to bring an enormous charge Q up close to sur-
face S4 in Fig. 23-6? The pattern of the field lines would certainly change, but
the net flux for each of the four Gaussian surfaces would not change. We can
understand this because the field lines associated with the added Q would pass
entirely through each of the four Gaussian surfaces, making no contribution to
the net flux through any of them. The value of Q would not enter Gauss’ law in
any way, because Q lies outside all four of the Gaussian surfaces that we are
considering.
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Fig. 23-6 Two point charges, equal
in magnitude but opposite in sign, and
the field lines that represent their net
electric field. Four Gaussian surfaces
are shown in cross section. Surface S1

encloses the positive charge. Surface
S2 encloses the negative charge.
Surface S3 encloses no charge. Surface
S4 encloses both charges and thus no
net charge.
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Gauss’s Law Question
Three Gaussian cubes sit in electric fields. The arrows and the
values indicate the directions of the field lines and the magnitudes
(in Nm2/C) of the flux through the six sides of each cube. (The
lighter arrows are for the hidden faces.)
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The figure shows three situations in which a Gaussian cube sits in an electric field. The
arrows and the values indicate the directions of the field lines and the magnitudes (in
N ! m2/C) of the flux through the six sides of each cube. (The lighter arrows are for the
hidden faces.) In which situation does the cube enclose (a) a positive net charge, (b) a
negative net charge, and (c) zero net charge?
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matter on the right side of Eqs. 23-6 and 23-7 are the magnitude and sign of the
net enclosed charge. The quantity on the left side of Eq. 23-7, however, is the
electric field resulting from all charges, both those inside and those outside the
Gaussian surface. This statement may seem to be inconsistent, but keep this in
mind: The electric field due to a charge outside the Gaussian surface contributes
zero net flux through the surface, because as many field lines due to that charge
enter the surface as leave it.

Let us apply these ideas to Fig. 23-6, which shows two point charges, equal in
magnitude but opposite in sign, and the field lines describing the electric fields
the charges set up in the surrounding space. Four Gaussian surfaces are also
shown, in cross section. Let us consider each in turn.

Surface S1. The electric field is outward for all points on this surface. Thus, the
flux of the electric field through this surface is positive, and so is the net
charge within the surface, as Gauss’ law requires. (That is, in Eq. 23-6, if " is
positive, qenc must be also.)

Surface S2. The electric field is inward for all points on this surface.Thus, the flux of
the electric field through this surface is negative and so is the enclosed charge, as
Gauss’ law requires.

Surface S3. This surface encloses no charge, and thus qenc # 0. Gauss’ law (Eq.
23-6) requires that the net flux of the electric field through this surface be
zero. That is reasonable because all the field lines pass entirely through the
surface, entering it at the top and leaving at the bottom.

Surface S4. This surface encloses no net charge, because the enclosed posi-
tive and negative charges have equal magnitudes. Gauss’ law requires
that the net flux of the electric field through this surface be zero. That is
reasonable because there are as many field lines leaving surface S4 as en-
tering it.

What would happen if we were to bring an enormous charge Q up close to sur-
face S4 in Fig. 23-6? The pattern of the field lines would certainly change, but
the net flux for each of the four Gaussian surfaces would not change. We can
understand this because the field lines associated with the added Q would pass
entirely through each of the four Gaussian surfaces, making no contribution to
the net flux through any of them. The value of Q would not enter Gauss’ law in
any way, because Q lies outside all four of the Gaussian surfaces that we are
considering.
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Fig. 23-6 Two point charges, equal
in magnitude but opposite in sign, and
the field lines that represent their net
electric field. Four Gaussian surfaces
are shown in cross section. Surface S1

encloses the positive charge. Surface
S2 encloses the negative charge.
Surface S3 encloses no charge. Surface
S4 encloses both charges and thus no
net charge.
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Gauss’s Law Question
Three Gaussian cubes sit in electric fields. The arrows and the
values indicate the directions of the field lines and the magnitudes
(in Nm2/C) of the flux through the six sides of each cube. (The
lighter arrows are for the hidden faces.)
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The figure shows three situations in which a Gaussian cube sits in an electric field. The
arrows and the values indicate the directions of the field lines and the magnitudes (in
N ! m2/C) of the flux through the six sides of each cube. (The lighter arrows are for the
hidden faces.) In which situation does the cube enclose (a) a positive net charge, (b) a
negative net charge, and (c) zero net charge?
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matter on the right side of Eqs. 23-6 and 23-7 are the magnitude and sign of the
net enclosed charge. The quantity on the left side of Eq. 23-7, however, is the
electric field resulting from all charges, both those inside and those outside the
Gaussian surface. This statement may seem to be inconsistent, but keep this in
mind: The electric field due to a charge outside the Gaussian surface contributes
zero net flux through the surface, because as many field lines due to that charge
enter the surface as leave it.

Let us apply these ideas to Fig. 23-6, which shows two point charges, equal in
magnitude but opposite in sign, and the field lines describing the electric fields
the charges set up in the surrounding space. Four Gaussian surfaces are also
shown, in cross section. Let us consider each in turn.

Surface S1. The electric field is outward for all points on this surface. Thus, the
flux of the electric field through this surface is positive, and so is the net
charge within the surface, as Gauss’ law requires. (That is, in Eq. 23-6, if " is
positive, qenc must be also.)

Surface S2. The electric field is inward for all points on this surface.Thus, the flux of
the electric field through this surface is negative and so is the enclosed charge, as
Gauss’ law requires.

Surface S3. This surface encloses no charge, and thus qenc # 0. Gauss’ law (Eq.
23-6) requires that the net flux of the electric field through this surface be
zero. That is reasonable because all the field lines pass entirely through the
surface, entering it at the top and leaving at the bottom.

Surface S4. This surface encloses no net charge, because the enclosed posi-
tive and negative charges have equal magnitudes. Gauss’ law requires
that the net flux of the electric field through this surface be zero. That is
reasonable because there are as many field lines leaving surface S4 as en-
tering it.

What would happen if we were to bring an enormous charge Q up close to sur-
face S4 in Fig. 23-6? The pattern of the field lines would certainly change, but
the net flux for each of the four Gaussian surfaces would not change. We can
understand this because the field lines associated with the added Q would pass
entirely through each of the four Gaussian surfaces, making no contribution to
the net flux through any of them. The value of Q would not enter Gauss’ law in
any way, because Q lies outside all four of the Gaussian surfaces that we are
considering.
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Fig. 23-6 Two point charges, equal
in magnitude but opposite in sign, and
the field lines that represent their net
electric field. Four Gaussian surfaces
are shown in cross section. Surface S1

encloses the positive charge. Surface
S2 encloses the negative charge.
Surface S3 encloses no charge. Surface
S4 encloses both charges and thus no
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Gauss’s Law Question
Three Gaussian cubes sit in electric fields. The arrows and the
values indicate the directions of the field lines and the magnitudes
(in Nm2/C) of the flux through the six sides of each cube. (The
lighter arrows are for the hidden faces.)
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The figure shows three situations in which a Gaussian cube sits in an electric field. The
arrows and the values indicate the directions of the field lines and the magnitudes (in
N ! m2/C) of the flux through the six sides of each cube. (The lighter arrows are for the
hidden faces.) In which situation does the cube enclose (a) a positive net charge, (b) a
negative net charge, and (c) zero net charge?
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matter on the right side of Eqs. 23-6 and 23-7 are the magnitude and sign of the
net enclosed charge. The quantity on the left side of Eq. 23-7, however, is the
electric field resulting from all charges, both those inside and those outside the
Gaussian surface. This statement may seem to be inconsistent, but keep this in
mind: The electric field due to a charge outside the Gaussian surface contributes
zero net flux through the surface, because as many field lines due to that charge
enter the surface as leave it.

Let us apply these ideas to Fig. 23-6, which shows two point charges, equal in
magnitude but opposite in sign, and the field lines describing the electric fields
the charges set up in the surrounding space. Four Gaussian surfaces are also
shown, in cross section. Let us consider each in turn.

Surface S1. The electric field is outward for all points on this surface. Thus, the
flux of the electric field through this surface is positive, and so is the net
charge within the surface, as Gauss’ law requires. (That is, in Eq. 23-6, if " is
positive, qenc must be also.)

Surface S2. The electric field is inward for all points on this surface.Thus, the flux of
the electric field through this surface is negative and so is the enclosed charge, as
Gauss’ law requires.

Surface S3. This surface encloses no charge, and thus qenc # 0. Gauss’ law (Eq.
23-6) requires that the net flux of the electric field through this surface be
zero. That is reasonable because all the field lines pass entirely through the
surface, entering it at the top and leaving at the bottom.

Surface S4. This surface encloses no net charge, because the enclosed posi-
tive and negative charges have equal magnitudes. Gauss’ law requires
that the net flux of the electric field through this surface be zero. That is
reasonable because there are as many field lines leaving surface S4 as en-
tering it.

What would happen if we were to bring an enormous charge Q up close to sur-
face S4 in Fig. 23-6? The pattern of the field lines would certainly change, but
the net flux for each of the four Gaussian surfaces would not change. We can
understand this because the field lines associated with the added Q would pass
entirely through each of the four Gaussian surfaces, making no contribution to
the net flux through any of them. The value of Q would not enter Gauss’ law in
any way, because Q lies outside all four of the Gaussian surfaces that we are
considering.
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in magnitude but opposite in sign, and
the field lines that represent their net
electric field. Four Gaussian surfaces
are shown in cross section. Surface S1

encloses the positive charge. Surface
S2 encloses the negative charge.
Surface S3 encloses no charge. Surface
S4 encloses both charges and thus no
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Gauss’s Law Question
Three Gaussian cubes sit in electric fields. The arrows and the
values indicate the directions of the field lines and the magnitudes
(in Nm2/C) of the flux through the six sides of each cube. (The
lighter arrows are for the hidden faces.)
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The figure shows three situations in which a Gaussian cube sits in an electric field. The
arrows and the values indicate the directions of the field lines and the magnitudes (in
N ! m2/C) of the flux through the six sides of each cube. (The lighter arrows are for the
hidden faces.) In which situation does the cube enclose (a) a positive net charge, (b) a
negative net charge, and (c) zero net charge?
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matter on the right side of Eqs. 23-6 and 23-7 are the magnitude and sign of the
net enclosed charge. The quantity on the left side of Eq. 23-7, however, is the
electric field resulting from all charges, both those inside and those outside the
Gaussian surface. This statement may seem to be inconsistent, but keep this in
mind: The electric field due to a charge outside the Gaussian surface contributes
zero net flux through the surface, because as many field lines due to that charge
enter the surface as leave it.

Let us apply these ideas to Fig. 23-6, which shows two point charges, equal in
magnitude but opposite in sign, and the field lines describing the electric fields
the charges set up in the surrounding space. Four Gaussian surfaces are also
shown, in cross section. Let us consider each in turn.

Surface S1. The electric field is outward for all points on this surface. Thus, the
flux of the electric field through this surface is positive, and so is the net
charge within the surface, as Gauss’ law requires. (That is, in Eq. 23-6, if " is
positive, qenc must be also.)

Surface S2. The electric field is inward for all points on this surface.Thus, the flux of
the electric field through this surface is negative and so is the enclosed charge, as
Gauss’ law requires.

Surface S3. This surface encloses no charge, and thus qenc # 0. Gauss’ law (Eq.
23-6) requires that the net flux of the electric field through this surface be
zero. That is reasonable because all the field lines pass entirely through the
surface, entering it at the top and leaving at the bottom.

Surface S4. This surface encloses no net charge, because the enclosed posi-
tive and negative charges have equal magnitudes. Gauss’ law requires
that the net flux of the electric field through this surface be zero. That is
reasonable because there are as many field lines leaving surface S4 as en-
tering it.

What would happen if we were to bring an enormous charge Q up close to sur-
face S4 in Fig. 23-6? The pattern of the field lines would certainly change, but
the net flux for each of the four Gaussian surfaces would not change. We can
understand this because the field lines associated with the added Q would pass
entirely through each of the four Gaussian surfaces, making no contribution to
the net flux through any of them. The value of Q would not enter Gauss’ law in
any way, because Q lies outside all four of the Gaussian surfaces that we are
considering.
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in magnitude but opposite in sign, and
the field lines that represent their net
electric field. Four Gaussian surfaces
are shown in cross section. Surface S1

encloses the positive charge. Surface
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Example: uniform field

Return to this example:

Consider a uniform electric field E = E i in empty space. A cube of
edge length `, is placed in the field, oriented as shown. Find the
net electric flux through the surface of the cube.
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24.2 Gauss’s Law
In this section, we describe a general relationship between the net electric flux 
through a closed surface (often called a gaussian surface) and the charge enclosed 
by the surface. This relationship, known as Gauss’s law, is of fundamental impor-
tance in the study of electric fields.
 Consider a positive point charge q located at the center of a sphere of radius r as 
shown in Figure 24.6. From Equation 23.9, we know that the magnitude of the elec-
tric field everywhere on the surface of the sphere is E 5 keq/r 2. The field lines are 
directed radially outward and hence are perpendicular to the surface at every point 
on the surface. That is, at each surface point, E

S
 is parallel to the  vector D A

S
i repre-

senting a local element of area DAi surrounding the surface point. Therefore,

 E
S

? D A
S

i 5 E DAi  

and, from Equation 24.4, we find that the net flux through the gaussian surface is

 FE 5 C E
S

? d A
S

5 C E dA 5 E C dA  

What happens to the flux through the sphere and the magnitude of the elec-
tric field at the surface of the sphere? (a) The flux and field both increase. 
(b) The flux and field both decrease. (c) The flux increases, and the field 
decreases. (d) The flux decreases, and the field increases. (e) The flux remains 
the same, and the field increases. (f) The flux decreases, and the field remains 
the same.

Write the integrals for the net flux through faces !  
and ":

FE 5 3
1
  E
S

? d A
S

1 3
2
  E
S

? d A
S

For face !, E
S

 is constant and directed inward but d A
S

1 
is directed outward (u 5 1808). Find the flux through 
this face:

3
1
  E
S

? d A
S

5 3
1
 E 1cos 1808 2  dA 5 2E 3

1
 dA 5 2EA 5 2E,2

For face ", E
S

 is constant and outward and in the same 
direction as d A

S
2 (u 5 08). Find the flux through this face:

3
2
  E
S

? d A
S

5 3
2
 E 1cos 08 2  dA 5 E 3

2
 dA 5 1EA 5 E,2

Find the net flux by adding the flux over all six faces: FE 5 2E,2 1 E,2 1 0 1 0 1 0 1 0 5 0

When the charge is at the center 
of the sphere, the electric field is 
everywhere normal to the surface 
and constant in magnitude.

Spherical
gaussian
surface

E
S

 

!A i
S

r

q
"

Figure 24.6  A spherical gauss-
ian surface of radius r surround-
ing a positive point charge q. 

 

Example 24.1   Flux Through a Cube

Consider a uniform electric field E
S

 oriented in the x direction in empty 
space. A cube of edge length , is placed in the field, oriented as shown in 
Figure 24.5. Find the net electric flux through the surface of the cube.

Conceptualize  Examine Figure 24.5 carefully. Notice that the electric 
field lines pass through two faces perpendicularly and are parallel to 
four other faces of the cube.

Categorize  We evaluate the flux from its definition, so we categorize 
this example as a substitution problem.
 The flux through four of the faces (#, $, and the unnumbered 
faces) is zero because E

S
 is parallel to the four faces and therefore per-

pendicular to d A
S

 on these faces.
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Figure 24.5  (Example 24.1) A closed surface in 
the shape of a cube in a uniform electric field ori-
ented parallel to the x axis. Side $ is the bottom of 
the cube, and side ! is opposite side ".



Electric Flux through Gaussian Surface Example
We found the net electric flux through the surface of the cube:

ΦE =
∑
i

ΦE ,i = 0
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24.2 Gauss’s Law
In this section, we describe a general relationship between the net electric flux 
through a closed surface (often called a gaussian surface) and the charge enclosed 
by the surface. This relationship, known as Gauss’s law, is of fundamental impor-
tance in the study of electric fields.
 Consider a positive point charge q located at the center of a sphere of radius r as 
shown in Figure 24.6. From Equation 23.9, we know that the magnitude of the elec-
tric field everywhere on the surface of the sphere is E 5 keq/r 2. The field lines are 
directed radially outward and hence are perpendicular to the surface at every point 
on the surface. That is, at each surface point, E

S
 is parallel to the  vector D A

S
i repre-

senting a local element of area DAi surrounding the surface point. Therefore,

 E
S

? D A
S

i 5 E DAi  

and, from Equation 24.4, we find that the net flux through the gaussian surface is

 FE 5 C E
S

? d A
S

5 C E dA 5 E C dA  

What happens to the flux through the sphere and the magnitude of the elec-
tric field at the surface of the sphere? (a) The flux and field both increase. 
(b) The flux and field both decrease. (c) The flux increases, and the field 
decreases. (d) The flux decreases, and the field increases. (e) The flux remains 
the same, and the field increases. (f) The flux decreases, and the field remains 
the same.

Write the integrals for the net flux through faces !  
and ":

FE 5 3
1
  E
S

? d A
S

1 3
2
  E
S

? d A
S

For face !, E
S

 is constant and directed inward but d A
S

1 
is directed outward (u 5 1808). Find the flux through 
this face:
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 dA 5 2EA 5 2E,2

For face ", E
S

 is constant and outward and in the same 
direction as d A

S
2 (u 5 08). Find the flux through this face:
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 E 1cos 08 2  dA 5 E 3
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 dA 5 1EA 5 E,2

Find the net flux by adding the flux over all six faces: FE 5 2E,2 1 E,2 1 0 1 0 1 0 1 0 5 0

When the charge is at the center 
of the sphere, the electric field is 
everywhere normal to the surface 
and constant in magnitude.
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gaussian
surface

E
S

 

!A i
S

r

q
"

Figure 24.6  A spherical gauss-
ian surface of radius r surround-
ing a positive point charge q. 

 

Example 24.1   Flux Through a Cube

Consider a uniform electric field E
S

 oriented in the x direction in empty 
space. A cube of edge length , is placed in the field, oriented as shown in 
Figure 24.5. Find the net electric flux through the surface of the cube.

Conceptualize  Examine Figure 24.5 carefully. Notice that the electric 
field lines pass through two faces perpendicularly and are parallel to 
four other faces of the cube.

Categorize  We evaluate the flux from its definition, so we categorize 
this example as a substitution problem.
 The flux through four of the faces (#, $, and the unnumbered 
faces) is zero because E

S
 is parallel to the four faces and therefore per-

pendicular to d A
S

 on these faces.
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Figure 24.5  (Example 24.1) A closed surface in 
the shape of a cube in a uniform electric field ori-
ented parallel to the x axis. Side $ is the bottom of 
the cube, and side ! is opposite side ".

From Gauss’s Law ε0ΦE = qenc, we know:

qenc = 0

This is always true for any Gaussian surface in a uniform electric
field.



Summary

• electric flux

• Gauss’s law

Quiz tomorrow.

Homework
• Collected homework 1, posted online, due on Monday, Jan 22.

Serway & Jewett:

• Ch 24, Obj Qs: 3; Conc. Qs: 1, 5; Probs: 3, 7, 17, 21


