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Last time

• Electric flux

• Gauss’s law



Warm Up Question

Imagine a Gaussian surface enclosing a dipole.

What is the net flux through the surface?



Overview

• Guass’s law applied to various cases



Gauss’s Law for a Point Charge
For a point charge, we can imagine a spherical Gaussian surface.

By considering spherical rotational symmetry about the charge, the
field will be perpendicular to the surface and equal in magnitude at
every point.
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CHECKPOINT 3

There is a certain net flux !i through a Gaussian sphere of radius r enclosing an iso-
lated charged particle. Suppose the enclosing Gaussian surface is changed to (a) a
larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r, and (c) a
Gaussian cube with edge length equal to 2r. In each case, is the net flux through the new
Gaussian surface greater than, less than, or equal to !i?

If an excess charge is placed on an isolated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be found
within the body of the conductor.

23-6 A Charged Isolated Conductor
Gauss’ law permits us to prove an important theorem about conductors:

This might seem reasonable, considering that charges with the same sign repel
one another.You might imagine that, by moving to the surface, the added charges
are getting as far away from one another as they can. We turn to Gauss’ law for
verification of this speculation.

Figure 23-9a shows, in cross section, an isolated lump of copper hanging from
an insulating thread and having an excess charge q. We place a Gaussian surface
just inside the actual surface of the conductor.

23-5 Gauss’ Law and Coulomb’s Law
Because Gauss’ law and Coulomb’s law are different ways of describing the rela-
tion between electric charge and electric field in static situations, we should be
able to derive each from the other. Here we derive Coulomb’s law from Gauss’
law and some symmetry considerations.

Figure 23-8 shows a positive point charge q, around which we have drawn a
concentric spherical Gaussian surface of radius r. Let us divide this surface into
differential areas dA. By definition, the area vector at any point is perpendic-
ular to the surface and directed outward from the interior. From the symmetry of
the situation, we know that at any point the electric field is also perpendicular
to the surface and directed outward from the interior. Thus, since the angle u
between and is zero, we can rewrite Eq. 23-7 for Gauss’ law as

(23-8)

Here qenc " q. Although E varies radially with distance from q, it has the same
value everywhere on the spherical surface. Since the integral in Eq. 23-8 is taken
over that surface, E is a constant in the integration and can be brought out in
front of the integral sign.That gives us

(23-9)

The integral is now merely the sum of all the differential areas dA on the sphere
and thus is just the surface area, 4pr 2. Substituting this, we have

#0E(4pr 2) " q

or (23-10)

This is exactly Eq. 22-3, which we found using Coulomb’s law.
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Fig. 23-9 (a) A lump of copper with a
charge q hangs from an insulating thread.
A Gaussian surface is placed within the
metal, just inside the actual surface. (b) The
lump of copper now has a cavity within it.
A Gaussian surface lies within the metal,
close to the cavity surface.
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Fig. 23-8 A spherical Gaussian 
surface centered on a point charge q.
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ΦE =

∮
E ·dA = E

∮
dA = 4πr2E

Gauss’s law:

ε0ΦE = 4πr2E = q

so,

E =
1

4πε0

q

r2
=

keq

r2

Same as from Coulomb’s law!
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0. Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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Again, the sides of the cylinder are ‖ E
⇒ ΦE = 0.

We only need to consider the ends.
Translational and rotational symmetry
of the charge sheet ⇒ E ‖ A, and E is
the same everywhere.

ΦE = EA cos(0) + EA cos(0)

= 2AE

Then, using Gauss’s law:

ε0(2AE ) = σA

E =
σ

2ε0

as claimed earlier.
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0. Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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Again, the sides of the cylinder are ‖ E
⇒ ΦE = 0.

We only need to consider the ends.
Translational and rotational symmetry
of the charge sheet ⇒ E ‖ A, and E is
the same everywhere.

ΦE = EA cos(0) + EA cos(0)

= 2AE

Then, using Gauss’s law:

ε0(2AE ) = σA

E =
σ

2ε0

as claimed earlier.



Field between conducting plates
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0. Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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From Gauss’s Law we can also find the field between conducting
plates with an air (or vacuum) gap separating them:

E =
σ

ε0



Summary

• using Gauss’s law

First Test Friday, Jan 26.

Homework
• Collected homework 1, posted online, due on Monday, Jan 22.

Serway & Jewett:

• Ch 24, Section Qs: 25, 29, 31, 33, 39, 41, 43, 55, 61, 65


