Electricity and Magnetism Using Gauss's Law

Lana Sheridan
De Anza College

Jan 19, 2018

Last time

- Electric flux
- Gauss's law

Warm Up Question

Imagine a Gaussian surface enclosing a dipole.

What is the net flux through the surface?

Overview

- Guass's law applied to various cases

Gauss's Law for a Point Charge

For a point charge, we can imagine a spherical Gaussian surface.
By considering spherical rotational symmetry about the charge, the field will be perpendicular to the surface and equal in magnitude at every point.

Nonconducting sheet of charge

Again, the sides of the cylinder are \|E $\Rightarrow \Phi_{E}=0$.

We only need to consider the ends. Translational and rotational symmetry of the charge sheet $\Rightarrow \mathbf{E} \| \mathbf{A}$, and \mathbf{E} is the same everywhere.

$$
\begin{aligned}
\Phi_{E} & =E A \cos (0)+E A \cos (0) \\
& =2 A E
\end{aligned}
$$

(b)

Nonconducting sheet of charge

Again, the sides of the cylinder are $\| \mathbf{E}$
$\Rightarrow \Phi_{E}=0$.
We only need to consider the ends. Translational and rotational symmetry of the charge sheet $\Rightarrow \mathbf{E} \| \mathbf{A}$, and \mathbf{E} is the same everywhere.

$$
\begin{aligned}
\Phi_{E} & =E A \cos (0)+E A \cos (0) \\
& =2 A E
\end{aligned}
$$

Then, using Gauss's law:

$$
\begin{aligned}
\epsilon_{0}(2 A E) & =\sigma A \\
E & =\frac{\sigma}{2 \epsilon_{0}}
\end{aligned}
$$

as claimed earlier.

Field between conducting plates

From Gauss's Law we can also find the field between conducting plates with an air (or vacuum) gap separating them:

$$
E=\frac{\sigma}{\epsilon_{0}}
$$

Summary

- using Gauss's law

First Test Friday, Jan 26.

Homework

- Collected homework 1, posted online, due on Monday, Jan 22.

Serway \& Jewett:

- Ch 24, Section Qs: 25, 29, 31, 33, 39, 41, 43, 55, 61, 65

