Physics 4C: Collected Homework 4

Solutions are not considered complete without the logical argument and/or full calculation.

1. The diagram shows sunlight being refracted as it shines into a spherical raindrop, being reflected once, and then being refracted again as it leaves the drop. The angle of incidence at the first surface is θ_{1} and the angle of refraction at the first surface is θ_{2}. All of the angles labelled θ_{2} are equal in magnitude (convince yourself using the law of reflection and the fact that the drop is a sphere). Assume that the refractive index of air is exactly 1 . Take the refractive index of water to be n.

(a) Using geometry and a clear diagram, find an expression for β (the rainbow angle) in terms of θ_{1} and θ_{2}.
(b) You can now write β as a function of θ_{1} only, since θ_{2} is a function of θ_{1}. Show

$$
\beta=4 \sin ^{-1}\left(\frac{\sin \theta_{1}}{n}\right)-2 \theta_{1} .
$$

Find an expression for the maximum value of β and find an expression for $\theta_{1, \max }$, the value of θ_{1} that achieves this maximum.
(c) Sketch a plot the function $\beta\left(\theta_{1}\right)$ vs θ_{1}. You should see that for a range of values of θ_{1} near $\theta_{1, \max }$ the rainbow angle is nearly the same. This means that there is a concentration of rays at the rainbow angle for all the incident angles close to $\theta_{1, \text { max }}$.
(d) For red light in water, $n=1.3318$. Find the rainbow angle for red light.
(e) For violet light in water, $n=1.3435$. Find the rainbow angle for violet light.
2. To get full credit your work must include large, clear ray diagrams.
(a) Considering two incident rays, show that a convex spherical mirror has a focal length of $f=\frac{R}{2}$, where R is the radius of curvature.
(b) Prove that the mirror equation

$$
\frac{1}{f}=\frac{1}{p}+\frac{1}{q}
$$

also holds for convex mirrors.

