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Purpose of the Lab

To explore the behavior of standing waves on a string.

You will use the “Wave on a String” PhET simulation to explore
wave reflection and to experimentally determine the speed of a
wave in two ways and check for agreement.

You will repeat this process with the string set to a different
tension.



Theory: Sine Waves
An important form of propagating function f is a sine or cosine
wave. (All called “sine waves”). y(x , t) = A sin

(
B(x − vt) + C

)
This is the simplest periodic, continuous wave.

It is the wave that is formed by a (driven) simple harmonic
oscillator connected to the medium.
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16.2 Analysis Model: Traveling Wave 
In this section, we introduce an important wave function whose shape is shown in 
Figure 16.7. The wave represented by this curve is called a sinusoidal wave because 
the curve is the same as that of the function sin u plotted against u. A sinusoidal 
wave could be established on the rope in Figure 16.1 by shaking the end of the rope 
up and down in simple harmonic motion.
 The sinusoidal wave is the simplest example of a periodic continuous wave and 
can be used to build more complex waves (see Section 18.8). The brown curve in 
Figure 16.7 represents a snapshot of a traveling sinusoidal wave at t 5 0, and the 
blue curve represents a snapshot of the wave at some later time t. Imagine two types 
of motion that can occur. First, the entire waveform in Figure 16.7 moves to the 
right so that the brown curve moves toward the right and eventually reaches the 
position of the blue curve. This movement is the motion of the wave. If we focus on 
one element of the medium, such as the element at x 5 0, we see that each element 
moves up and down along the y axis in simple harmonic motion. This movement is 
the motion of the elements of the medium. It is important to differentiate between the 
motion of the wave and the motion of the elements of the medium.
 In the early chapters of this book, we developed several analysis models based on 
three simplification models: the particle, the system, and the rigid object. With our 
introduction to waves, we can develop a new simplification model, the wave, that 
will allow us to explore more analysis models for solving problems. An ideal particle 
has zero size. We can build physical objects with nonzero size as combinations of 
particles. Therefore, the particle can be considered a basic building block. An ideal 
wave has a single frequency and is infinitely long; that is, the wave exists throughout 
the Universe. (A wave of finite length must necessarily have a mixture of frequen-
cies.) When this concept is explored in Section 18.8, we will find that ideal waves 
can be combined to build complex waves, just as we combined particles.
 In what follows, we will develop the principal features and mathematical represen-
tations of the analysis model of a traveling wave. This model is used in situations in 
which a wave moves through space without interacting with other waves or particles.
 Figure 16.8a shows a snapshot of a traveling wave moving through a medium. 
Figure 16.8b shows a graph of the position of one element of the medium as a func-
tion of time. A point in Figure 16.8a at which the displacement of the element from 
its normal position is highest is called the crest of the wave. The lowest point is 
called the trough. The distance from one crest to the next is called the wavelength 
l (Greek letter lambda). More generally, the wavelength is the minimum distance 
between any two identical points on adjacent waves as shown in Figure 16.8a.
 If you count the number of seconds between the arrivals of two adjacent crests 
at a given point in space, you measure the period T of the waves. In general, the 
period is the time interval required for two identical points of adjacent waves to 
pass by a point as shown in Figure 16.8b. The period of the wave is the same as the 
period of the simple harmonic oscillation of one element of the medium.
 The same information is more often given by the inverse of the period, which is 
called the frequency f. In general, the frequency of a periodic wave is the number 
of crests (or troughs, or any other point on the wave) that pass a given point in a 
unit time interval. The frequency of a sinusoidal wave is related to the period by the 
expression

 f 5
1
T

 (16.3)
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Figure 16.7 A one-dimensional 
sinusoidal wave traveling to the 
right with a speed v. The brown 
curve represents a snapshot of the 
wave at t 5 0, and the blue curve 
represents a snapshot at some 
later time t.

 

▸ 16.1 c o n t i n u e d

Another new feature here is the numerator of 4 rather than 2. Therefore, the new expression represents a pulse with 
twice the height of that in Figure 16.6.
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The wavelength l of a wave is 
the distance between adjacent 
crests or adjacent troughs.

The period T of a wave is the 
time interval required for the 
element to complete one cycle 
of its oscillation and for the 
wave to travel one wavelength.
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Figure 16.8 (a) A snapshot of a 
sinusoidal wave. (b) The position 
of one element of the medium as a 
function of time.



Wave Quantities



Wave Quantities

wavelength, λ

the distance from one crest of the wave to the next, or the
distance covered by one cycle.
units: length (m)

time period, T

the time for one complete oscillation.
units: time (s)



Sine Waves

Recall, the definition of frequency, from period T :

f =
1

T

and

ω =
2π

T
= 2πf

We also define a new quantity.

Wave number, k

k =
2π

λ

units: m−1



Wave speed

How fast does a wave travel?

speed = distance
time

It travels the distance of one complete cycle in the time for one
complete cycle.

v =
λ

T

But since frequency is the inverse of the time period, we can relate
speed to frequency and wavelength:

v = f λ



Wave speed

v = f λ

Since ω = 2πf and k = 2π
λ :

v =
ω

k



Sine Waves
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y(x , t) = A sin

(
2π

λ
(x − vt) + φ

)
This is usually written in a slightly different form...



Sine Waves
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y(x , t) = A sin (kx −ωt + φ)

where φ is a phase constant.



Theory: Interference of Waves

When two wave disturbances interact with one another they can
amplify or cancel out.

Waves of the same frequency that are “in phase” will reinforce,
amplitude will increase; waves that are “out of phase” will cancel
out.



Interference of Waves



Interference of Waves

Waves that exist at the same time in the same position in space
add together.

superposition principle

If two or more traveling waves are moving through a medium, the
resultant value of the wave function at any point is the algebraic
sum of the values of the wave functions of the individual waves.

This works because the wave equation we will be studying is linear.

This means solutions to the wave equations can be added:

y(x , t) = y1(x , t) + y2(x , t)

y is the resultant wave function.



Theory: Standing Waves

Standing waves are formed from sine waves that are traveling in
opposite directions.

Notice that there are a whole number of half wavelengths between
the child and the tree.



Standing Waves

The incoming wave:

y1(x , t) = A sin(kx −ωt)

Reflected wave:
y2(x , t) = A sin(kx +ωt)

Using the trig identity:

sin(θ±ψ) = sin θ cosψ± cos θ sinψ

The resultant wave is:

y = [2A sin(kx)] cos(ωt)

↑ ↑
Amplitude at x SHM oscillation



Standing Waves

y = [2A sin(kx)] cos(ωt)

This does not correspond to a traveling wave!

It is a standing wave.

Points where sin kx = 0 are called nodes. At these points the
medium does not move.

Points where sin kx = ±1 are called antinodes. At these points
particles in the medium undergo their largest displacement.



Nodes and Antinodes
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 Notice that Equation 18.1 does not contain a function of kx 2 vt. Therefore, it 
is not an expression for a single traveling wave. When you observe a standing wave, 
there is no sense of motion in the direction of propagation of either original wave. 
Comparing Equation 18.1 with Equation 15.6, we see that it describes a special kind 
of simple harmonic motion. Every element of the medium oscillates in simple har-
monic motion with the same angular frequency v (according to the cos vt factor 
in the equation). The amplitude of the simple harmonic motion of a given element 
(given by the factor 2A sin kx, the coefficient of the cosine function) depends on 
the location x of the element in the medium, however.
 If you can find a noncordless telephone with a coiled cord connecting the hand-
set to the base unit, you can see the difference between a standing wave and a trav-
eling wave. Stretch the coiled cord out and flick it with a finger. You will see a pulse 
traveling along the cord. Now shake the handset up and down and adjust your shak-
ing frequency until every coil on the cord is moving up at the same time and then 
down. That is a standing wave, formed from the combination of waves moving away 
from your hand and reflected from the base unit toward your hand. Notice that 
there is no sense of traveling along the cord like there was for the pulse. You only 
see up-and-down motion of the elements of the cord. 
 Equation 18.1 shows that the amplitude of the simple harmonic motion of an 
element of the medium has a minimum value of zero when x satisfies the condition 
sin kx 5 0, that is, when

kx 5 0, p, 2p, 3p, . . .

Because k 5 2p/l, these values for kx give

 x 5 0, 
l

2
, l, 

3l

2
, c 5

nl

2
  n 5 0, 1, 2, 3, c (18.2)

These points of zero amplitude are called nodes.
 The element of the medium with the greatest possible displacement from equi-
librium has an amplitude of 2A, which we define as the amplitude of the standing 
wave. The positions in the medium at which this maximum displacement occurs 
are called antinodes. The antinodes are located at positions for which the coordi-
nate x satisfies the condition sin kx 5 61, that is, when

kx 5
p

2
, 

3p

2
, 

5p

2
, c

Therefore, the positions of the antinodes are given by

 x 5
l

4
, 

3l

4
, 

5l

4
, c 5

nl

4
 n 5 1, 3, 5, c (18.3)
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Figure 18.7  Multiflash pho-
tograph of a standing wave on a 
string. The time behavior of the 
vertical displacement from equi-
librium of an individual element 
of the string is given by cos vt. 
That is, each element vibrates at 
an angular frequency v.Antinode Antinode
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The amplitude of the vertical oscillation of any element of the string 
depends on the horizontal position of the element. Each element 
vibrates within the confines of the envelope function 2A sin kx.
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Pitfall Prevention 18.2
Three Types of Amplitude We 
need to distinguish carefully here 
between the amplitude of the 
individual waves, which is A, and 
the amplitude of the simple har-
monic motion of the elements of 
the medium, which is 2A sin kx. A 
given element in a standing wave 
vibrates within the constraints of 
the envelope function 2A sin kx, 
where x is that element’s position 
in the medium. Such vibration is 
in contrast to traveling sinusoidal 
waves, in which all elements oscil-
late with the same amplitude and 
the same frequency and the ampli-
tude A of the wave is the same 
as the amplitude A of the simple 
harmonic motion of the elements. 
Furthermore, we can identify the 
amplitude of the standing wave 
as 2A.



Nodes and Antinodes

540 Chapter 18 Superposition and Standing Waves

 Two nodes and two antinodes are labeled in the standing wave in Figure 18.7. 
The light blue curve labeled 2A sin kx in Figure 18.7 represents one wavelength of 
the traveling waves that combine to form the standing wave. Figure 18.7 and Equa-
tions 18.2 and 18.3 provide the following important features of the locations of 
nodes and antinodes:

The distance between adjacent antinodes is equal to l/2.
The distance between adjacent nodes is equal to l/2.
The distance between a node and an adjacent antinode is l/4.

 Wave patterns of the elements of the medium produced at various times by two 
transverse traveling waves moving in opposite directions are shown in Figure 18.8. 
The blue and green curves are the wave patterns for the individual traveling waves, 
and the red-brown curves are the wave patterns for the resultant standing wave. At  
t 5 0 (Fig. 18.8a), the two traveling waves are in phase, giving a wave pattern in 
which each element of the medium is at rest and experiencing its maximum dis-
placement from equilibrium. One-quarter of a period later, at t 5 T/4 (Fig. 18.8b), 
the traveling waves have moved one-fourth of a wavelength (one to the right and 
the other to the left). At this time, the traveling waves are out of phase, and each 
element of the medium is passing through the equilibrium position in its simple 
harmonic motion. The result is zero displacement for elements at all values of x; 
that is, the wave pattern is a straight line. At t 5 T/2 (Fig. 18.8c), the traveling 
waves are again in phase, producing a wave pattern that is inverted relative to the 
t 5 0 pattern. In the standing wave, the elements of the medium alternate in time 
between the extremes shown in Figures 18.8a and 18.8c.

Q uick Quiz 18.2  Consider the waves in Figure 18.8 to be waves on a stretched 
string. Define the velocity of elements of the string as positive if they are moving 
upward in the figure. (i) At the moment the string has the shape shown by the 
red-brown curve in Figure 18.8a, what is the instantaneous velocity of elements 
along the string? (a) zero for all elements (b) positive for all elements (c) nega-
tive for all elements (d) varies with the position of the element (ii) From the same 
choices, at the moment the string has the shape shown by the red-brown curve in 
Figure 18.8b, what is the instantaneous velocity of elements along the string?
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Figure 18.8 Standing-wave  
patterns produced at various times 
by two waves of equal amplitude 
traveling in opposite directions. 
For the resultant wave y, the nodes 
(N) are points of zero displace-
ment and the antinodes (A) are 
points of maximum displacement.

Example 18.2   Formation of a Standing Wave

Two waves traveling in opposite directions produce a standing wave. The individual wave functions are

y1 5 4.0 sin (3.0x 2 2.0t)

y2 5 4.0 sin (3.0x 1 2.0t)

where x and y are measured in centimeters and t is in seconds.

(A)  Find the amplitude of the simple harmonic motion of the element of the medium located at x 5 2.3 cm.
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Figure 18.8b, what is the instantaneous velocity of elements along the string?

 t = 0

y1

y2

y
N N N N N

AA

 t = T/4

y2

y1

y

t = T/2

y1

A A

y2

y
N N N N N

A A

A A

a b c

Figure 18.8 Standing-wave  
patterns produced at various times 
by two waves of equal amplitude 
traveling in opposite directions. 
For the resultant wave y, the nodes 
(N) are points of zero displace-
ment and the antinodes (A) are 
points of maximum displacement.

Example 18.2   Formation of a Standing Wave

Two waves traveling in opposite directions produce a standing wave. The individual wave functions are

y1 5 4.0 sin (3.0x 2 2.0t)

y2 5 4.0 sin (3.0x 1 2.0t)

where x and y are measured in centimeters and t is in seconds.

(A)  Find the amplitude of the simple harmonic motion of the element of the medium located at x 5 2.3 cm.
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For a given string, fixed at both ends, only some wavelengths can
correspond to standing waves.
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18.3  Analysis Model: Waves Under  
Boundary Conditions

Consider a string of length L fixed at both ends as shown in Figure 18.9. We will use 
this system as a model for a guitar string or piano string. Waves can travel in both 
directions on the string. Therefore, standing waves can be set up in the string by a 
continuous superposition of waves incident on and reflected from the ends. Notice 
that there is a boundary condition for the waves on the string: because the ends of 
the string are fixed, they must necessarily have zero displacement and are there-
fore nodes by definition. The condition that both ends of the string must be nodes 
fixes the wavelength of the standing wave on the string according to Equation 18.2, 
which, in turn, determines the frequency of the wave. The boundary condition 
results in the string having a number of discrete natural patterns of oscillation, 
called normal modes, each of which has a characteristic frequency that is easily cal-
culated. This situation in which only certain frequencies of oscillation are allowed 
is called quantization. Quantization is a common occurrence when waves are sub-
ject to boundary conditions and is a central feature in our discussions of quantum 
physics in the extended version of this text. Notice in Figure 18.8 that there are 
no boundary conditions, so standing waves of any frequency can be established; 
there is no quantization without boundary conditions. Because boundary condi-
tions occur so often for waves, we identify an analysis model called waves under 
boundary conditions for the discussion that follows.
 The normal modes of oscillation for the string in Figure 18.9 can be described 
by imposing the boundary conditions that the ends be nodes and that the nodes be 
separated by one-half of a wavelength with antinodes halfway between the nodes. 
The first normal mode that is consistent with these requirements, shown in Figure 
18.10a (page 542), has nodes at its ends and one antinode in the middle. This normal  

From the equations for the waves, we see that A 5 4.0 cm, 
k 5 3.0 rad/cm, and v 5 2.0 rad/s. Use Equation 18.1 to 
write an expression for the standing wave:

y 5 (2A sin kx) cos vt 5 8.0 sin 3.0x cos 2.0t

Find the amplitude of the simple harmonic motion of 
the element at the position x 5 2.3 cm by evaluating the 
sine function at this position:

ymax 5 (8.0 cm) sin 3.0x |x 5 2.3

5 (8.0 cm) sin (6.9 rad) 5   4.6 cm

Find the wavelength of the traveling waves: k 5
2p

l
5 3.0 rad/cm S l 5

2p

3.0
 cm

Use Equation 18.2 to find the locations of the nodes: x 5 n 
l

2
5 n a p

3.0
b cm n 5 0, 1, 2, 3, c

Use Equation 18.3 to find the locations of the antinodes: x 5 n 
l

4
5 n a p

6.0
b cm n 5 1, 3, 5, 7, c

(B)  Find the positions of the nodes and antinodes if one end of the string is at x 5 0.

S O L U T I O N

L

Figure 18.9  A string of length L 
fixed at both ends.

Conceptualize  The waves described by the given equations are identical except for their directions of travel, so they 
indeed combine to form a standing wave as discussed in this section. We can represent the waves graphically by the 
blue and green curves in Figure 18.8.

Categorize  We will substitute values into equations developed in this section, so we categorize this example as a sub-
stitution problem.

S O L U T I O N

 

▸ 18.2 c o n t i n u e d

The boundary conditions are now

y(x = 0, t) = y(x = L, t) = 0

x = 0 and x = L must be the positions of nodes.
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The wavelengths of these normal modes are given by the
constraint sin(0) = sin(kL) = 0:

λn =
2L

n

where n is a positive natural number (1, 2, 3...).
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mode is the longest-wavelength mode that is consistent with our boundary condi-
tions. The first normal mode occurs when the wavelength l1 is equal to twice the 
length of the string, or l1 5 2L. The section of a standing wave from one node to 
the next node is called a loop. In the first normal mode, the string is vibrating in 
one loop. In the second normal mode (see Fig. 18.10b), the string vibrates in two 
loops. When the left half of the string is moving upward, the right half is moving 
downward. In this case, the wavelength l2 is equal to the length of the string, as 
expressed by l2 5 L. The third normal mode (see Fig. 18.10c) corresponds to the 
case in which l3 5 2L/3, and the string vibrates in three loops. In general, the wave-
lengths of the various normal modes for a string of length L fixed at both ends are

 ln 5
2L
n  n 5 1, 2, 3, c (18.4)

where the index n refers to the nth normal mode of oscillation. These modes are 
possible. The actual modes that are excited on a string are discussed shortly.
 The natural frequencies associated with the modes of oscillation are obtained 
from the relationship f 5 v/l, where the wave speed v is the same for all frequen-
cies. Using Equation 18.4, we find that the natural frequencies fn of the normal 
modes are

 fn 5
v
ln

5 n 
v

2L
 n 5 1, 2, 3, c (18.5)

These natural frequencies are also called the quantized frequencies associated with the  
vibrating string fixed at both ends.
 Because v 5 !T/m (see Eq. 16.18) for waves on a string, where T is the tension 
in the string and m is its linear mass density, we can also express the natural fre-
quencies of a taut string as

 fn 5
n

2L
 ÅT

m
 n 5 1, 2, 3, c (18.6)

The lowest frequency f1, which corresponds to n 5 1, is called either the fundamen-
tal or the fundamental frequency and is given by

 f1 5
1

2L
 ÅT

m
 (18.7)

 The frequencies of the remaining normal modes are integer multiples of the 
fundamental frequency (Eq. 18.5). Frequencies of normal modes that exhibit such 
an integer- multiple relationship form a harmonic series, and the normal modes 
are called harmonics. The fundamental frequency f1 is the frequency of the first 
harmonic, the frequency f2 5 2f1 is that of the second harmonic, and the frequency 
fn 5 nf1 is that of the nth harmonic. Other oscillating systems, such as a drumhead, 
exhibit normal modes, but the frequencies are not related as integer multiples of 
a fundamental (see Section 18.6). Therefore, we do not use the term harmonic in 
association with those types of systems.

Wavelengths of X
normal modes

Natural frequencies of X
normal modes as functions 
of wave speed and length 

of string

Natural frequencies of X 
normal modes as functions 

of string tension and 
linear mass density

Fundamental frequency
of a taut string X

n ! 1

N
A

N

L ! – 1
1
2
l

f1

a

Fundamental, or first harmonic

N NA A N

n ! 2 L ! 2l

f2

b

Second harmonic

n  ! 3

N N N NA A A

L  ! – 3
3
2
l

f3

c

Third harmonic

Figure 18.10 The normal modes of vibration of the string in Figure 18.9 form a harmonic series. 
The string vibrates between the extremes shown.λ1 = 2L λ2 = L λ3 =

2L
3
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v = f λ ; λn =
2L

n

The frequencies that correspond to these wavelengths are called
the natural frequencies:

fn =
nv

2L
= n f1

where n is a positive natural number.

where v is the speed of the wave.



Theory

A constant speed can be found by taking the distance traveled by
a disturbance over the time taken:

v =
∆x

∆t

For a string of density µ under tension T , the wave speed is
constant

v =

√
T

µ

This should equal to the product of the measured frequency and
wavelength.

v = f λ



Lab Activity

First, explore wave reflections on the string.

Then, measure the speed of the wave on the string.



Simulation: Pulse Mode

Use the Pulse setting to measure the wave speed using
distance-over-time.



Lab Activity

Use the Oscillation setting to find the resonant (natural)
frequencies.



Simulation: Oscillation Mode



Lab Activity

1 Repeat: slowly increase / change the frequency and find the
next resonance.

2 Try to record λn, fn for n ∈ {1, 2, 3, 4, 5, 6}. You may find
higher modes first; you can record those also.

3 Find v = f λ for each pair of λ, f values. (You should have at
least 6 values.)

4 Calculate the average wave speed, v̄ .

5 Calculate the standard error of the sample mean using this
formula:

s.e.(v) =

√∑N
i=1(vi − v̄)2

N(N − 1)



Lab Activity

Does the uncertainty range for the value for the speed from
distance-over-time overlap with the uncertainty for the speed from
the frequency and wavelength measurements?

Repeat for a different tension. Can you find a relationship between
the tensions (high and medium)?




