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Purpose of the Lab

To explore the behavior of standing waves on a string.

You will set up a string under tension, then drive an oscillations in
the string and measure the frequency and wavelengths that result.

From these measurements you will determine the speed of the
waves on the string.

You will compare your result to the speed expected for a string of
linear density µ under tension T .



Equipment



Theory: Standing Waves

Standing waves are formed from sine waves that are traveling in
opposite directions.

Notice that there are a whole number of half wavelengths between
the child and the tree.



Standing Waves

The incoming wave:

y1(x , t) = A sin(kx −ωt)

Reflected wave:
y2(x , t) = A sin(kx +ωt)

Using the trig identity:

sin(θ±ψ) = sin θ cosψ± cos θ sinψ

The resultant wave is:

y = [2A sin(kx)] cos(ωt)

↑ ↑
Amplitude at x SHM oscillation



Standing Waves

y = [2A sin(kx)] cos(ωt)

This does not correspond to a traveling wave!

It is a standing wave.

Points where sin kx = 0 are called nodes. At these points the
medium does not move.

Points where sin kx = ±1 are called antinodes. At these points
particles in the medium undergo their largest displacement.



Nodes and Antinodes
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 Notice that Equation 18.1 does not contain a function of kx 2 vt. Therefore, it 
is not an expression for a single traveling wave. When you observe a standing wave, 
there is no sense of motion in the direction of propagation of either original wave. 
Comparing Equation 18.1 with Equation 15.6, we see that it describes a special kind 
of simple harmonic motion. Every element of the medium oscillates in simple har-
monic motion with the same angular frequency v (according to the cos vt factor 
in the equation). The amplitude of the simple harmonic motion of a given element 
(given by the factor 2A sin kx, the coefficient of the cosine function) depends on 
the location x of the element in the medium, however.
 If you can find a noncordless telephone with a coiled cord connecting the hand-
set to the base unit, you can see the difference between a standing wave and a trav-
eling wave. Stretch the coiled cord out and flick it with a finger. You will see a pulse 
traveling along the cord. Now shake the handset up and down and adjust your shak-
ing frequency until every coil on the cord is moving up at the same time and then 
down. That is a standing wave, formed from the combination of waves moving away 
from your hand and reflected from the base unit toward your hand. Notice that 
there is no sense of traveling along the cord like there was for the pulse. You only 
see up-and-down motion of the elements of the cord. 
 Equation 18.1 shows that the amplitude of the simple harmonic motion of an 
element of the medium has a minimum value of zero when x satisfies the condition 
sin kx 5 0, that is, when

kx 5 0, p, 2p, 3p, . . .

Because k 5 2p/l, these values for kx give

 x 5 0, 
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These points of zero amplitude are called nodes.
 The element of the medium with the greatest possible displacement from equi-
librium has an amplitude of 2A, which we define as the amplitude of the standing 
wave. The positions in the medium at which this maximum displacement occurs 
are called antinodes. The antinodes are located at positions for which the coordi-
nate x satisfies the condition sin kx 5 61, that is, when
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Therefore, the positions of the antinodes are given by
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Figure 18.7  Multiflash pho-
tograph of a standing wave on a 
string. The time behavior of the 
vertical displacement from equi-
librium of an individual element 
of the string is given by cos vt. 
That is, each element vibrates at 
an angular frequency v.Antinode Antinode

Node

2A sin kx

Node

The amplitude of the vertical oscillation of any element of the string 
depends on the horizontal position of the element. Each element 
vibrates within the confines of the envelope function 2A sin kx.
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Pitfall Prevention 18.2
Three Types of Amplitude We 
need to distinguish carefully here 
between the amplitude of the 
individual waves, which is A, and 
the amplitude of the simple har-
monic motion of the elements of 
the medium, which is 2A sin kx. A 
given element in a standing wave 
vibrates within the constraints of 
the envelope function 2A sin kx, 
where x is that element’s position 
in the medium. Such vibration is 
in contrast to traveling sinusoidal 
waves, in which all elements oscil-
late with the same amplitude and 
the same frequency and the ampli-
tude A of the wave is the same 
as the amplitude A of the simple 
harmonic motion of the elements. 
Furthermore, we can identify the 
amplitude of the standing wave 
as 2A.



Nodes and Antinodes
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 Two nodes and two antinodes are labeled in the standing wave in Figure 18.7. 
The light blue curve labeled 2A sin kx in Figure 18.7 represents one wavelength of 
the traveling waves that combine to form the standing wave. Figure 18.7 and Equa-
tions 18.2 and 18.3 provide the following important features of the locations of 
nodes and antinodes:

The distance between adjacent antinodes is equal to l/2.
The distance between adjacent nodes is equal to l/2.
The distance between a node and an adjacent antinode is l/4.

 Wave patterns of the elements of the medium produced at various times by two 
transverse traveling waves moving in opposite directions are shown in Figure 18.8. 
The blue and green curves are the wave patterns for the individual traveling waves, 
and the red-brown curves are the wave patterns for the resultant standing wave. At  
t 5 0 (Fig. 18.8a), the two traveling waves are in phase, giving a wave pattern in 
which each element of the medium is at rest and experiencing its maximum dis-
placement from equilibrium. One-quarter of a period later, at t 5 T/4 (Fig. 18.8b), 
the traveling waves have moved one-fourth of a wavelength (one to the right and 
the other to the left). At this time, the traveling waves are out of phase, and each 
element of the medium is passing through the equilibrium position in its simple 
harmonic motion. The result is zero displacement for elements at all values of x; 
that is, the wave pattern is a straight line. At t 5 T/2 (Fig. 18.8c), the traveling 
waves are again in phase, producing a wave pattern that is inverted relative to the 
t 5 0 pattern. In the standing wave, the elements of the medium alternate in time 
between the extremes shown in Figures 18.8a and 18.8c.

Q uick Quiz 18.2  Consider the waves in Figure 18.8 to be waves on a stretched 
string. Define the velocity of elements of the string as positive if they are moving 
upward in the figure. (i) At the moment the string has the shape shown by the 
red-brown curve in Figure 18.8a, what is the instantaneous velocity of elements 
along the string? (a) zero for all elements (b) positive for all elements (c) nega-
tive for all elements (d) varies with the position of the element (ii) From the same 
choices, at the moment the string has the shape shown by the red-brown curve in 
Figure 18.8b, what is the instantaneous velocity of elements along the string?
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Figure 18.8 Standing-wave  
patterns produced at various times 
by two waves of equal amplitude 
traveling in opposite directions. 
For the resultant wave y, the nodes 
(N) are points of zero displace-
ment and the antinodes (A) are 
points of maximum displacement.

Example 18.2   Formation of a Standing Wave

Two waves traveling in opposite directions produce a standing wave. The individual wave functions are

y1 5 4.0 sin (3.0x 2 2.0t)

y2 5 4.0 sin (3.0x 1 2.0t)

where x and y are measured in centimeters and t is in seconds.

(A)  Find the amplitude of the simple harmonic motion of the element of the medium located at x 5 2.3 cm.
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Standing Waves and Resonance on a String

For a given string, fixed at both ends, only some wavelengths can
correspond to standing waves.

 18.3 Analysis Model: Waves Under Boundary Conditions 541

18.3  Analysis Model: Waves Under  
Boundary Conditions

Consider a string of length L fixed at both ends as shown in Figure 18.9. We will use 
this system as a model for a guitar string or piano string. Waves can travel in both 
directions on the string. Therefore, standing waves can be set up in the string by a 
continuous superposition of waves incident on and reflected from the ends. Notice 
that there is a boundary condition for the waves on the string: because the ends of 
the string are fixed, they must necessarily have zero displacement and are there-
fore nodes by definition. The condition that both ends of the string must be nodes 
fixes the wavelength of the standing wave on the string according to Equation 18.2, 
which, in turn, determines the frequency of the wave. The boundary condition 
results in the string having a number of discrete natural patterns of oscillation, 
called normal modes, each of which has a characteristic frequency that is easily cal-
culated. This situation in which only certain frequencies of oscillation are allowed 
is called quantization. Quantization is a common occurrence when waves are sub-
ject to boundary conditions and is a central feature in our discussions of quantum 
physics in the extended version of this text. Notice in Figure 18.8 that there are 
no boundary conditions, so standing waves of any frequency can be established; 
there is no quantization without boundary conditions. Because boundary condi-
tions occur so often for waves, we identify an analysis model called waves under 
boundary conditions for the discussion that follows.
 The normal modes of oscillation for the string in Figure 18.9 can be described 
by imposing the boundary conditions that the ends be nodes and that the nodes be 
separated by one-half of a wavelength with antinodes halfway between the nodes. 
The first normal mode that is consistent with these requirements, shown in Figure 
18.10a (page 542), has nodes at its ends and one antinode in the middle. This normal  

From the equations for the waves, we see that A 5 4.0 cm, 
k 5 3.0 rad/cm, and v 5 2.0 rad/s. Use Equation 18.1 to 
write an expression for the standing wave:

y 5 (2A sin kx) cos vt 5 8.0 sin 3.0x cos 2.0t

Find the amplitude of the simple harmonic motion of 
the element at the position x 5 2.3 cm by evaluating the 
sine function at this position:

ymax 5 (8.0 cm) sin 3.0x |x 5 2.3

5 (8.0 cm) sin (6.9 rad) 5   4.6 cm

Find the wavelength of the traveling waves: k 5
2p

l
5 3.0 rad/cm S l 5

2p

3.0
 cm

Use Equation 18.2 to find the locations of the nodes: x 5 n 
l

2
5 n a p

3.0
b cm n 5 0, 1, 2, 3, c

Use Equation 18.3 to find the locations of the antinodes: x 5 n 
l

4
5 n a p

6.0
b cm n 5 1, 3, 5, 7, c

(B)  Find the positions of the nodes and antinodes if one end of the string is at x 5 0.

S O L U T I O N

L

Figure 18.9  A string of length L 
fixed at both ends.

Conceptualize  The waves described by the given equations are identical except for their directions of travel, so they 
indeed combine to form a standing wave as discussed in this section. We can represent the waves graphically by the 
blue and green curves in Figure 18.8.

Categorize  We will substitute values into equations developed in this section, so we categorize this example as a sub-
stitution problem.

S O L U T I O N

 

▸ 18.2 c o n t i n u e d

The boundary conditions are now

y(x = 0, t) = y(x = L, t) = 0

x = 0 and x = L must be the positions of nodes.



Standing Waves and Resonance on a String

The wavelengths of these normal modes are given by the
constraint sin(0) = sin(kL) = 0:

λn =
2L

n

where n is a positive natural number (1, 2, 3...).

542 Chapter 18 Superposition and Standing Waves

mode is the longest-wavelength mode that is consistent with our boundary condi-
tions. The first normal mode occurs when the wavelength l1 is equal to twice the 
length of the string, or l1 5 2L. The section of a standing wave from one node to 
the next node is called a loop. In the first normal mode, the string is vibrating in 
one loop. In the second normal mode (see Fig. 18.10b), the string vibrates in two 
loops. When the left half of the string is moving upward, the right half is moving 
downward. In this case, the wavelength l2 is equal to the length of the string, as 
expressed by l2 5 L. The third normal mode (see Fig. 18.10c) corresponds to the 
case in which l3 5 2L/3, and the string vibrates in three loops. In general, the wave-
lengths of the various normal modes for a string of length L fixed at both ends are

 ln 5
2L
n  n 5 1, 2, 3, c (18.4)

where the index n refers to the nth normal mode of oscillation. These modes are 
possible. The actual modes that are excited on a string are discussed shortly.
 The natural frequencies associated with the modes of oscillation are obtained 
from the relationship f 5 v/l, where the wave speed v is the same for all frequen-
cies. Using Equation 18.4, we find that the natural frequencies fn of the normal 
modes are

 fn 5
v
ln

5 n 
v

2L
 n 5 1, 2, 3, c (18.5)

These natural frequencies are also called the quantized frequencies associated with the  
vibrating string fixed at both ends.
 Because v 5 !T/m (see Eq. 16.18) for waves on a string, where T is the tension 
in the string and m is its linear mass density, we can also express the natural fre-
quencies of a taut string as

 fn 5
n

2L
 ÅT

m
 n 5 1, 2, 3, c (18.6)

The lowest frequency f1, which corresponds to n 5 1, is called either the fundamen-
tal or the fundamental frequency and is given by

 f1 5
1

2L
 ÅT

m
 (18.7)

 The frequencies of the remaining normal modes are integer multiples of the 
fundamental frequency (Eq. 18.5). Frequencies of normal modes that exhibit such 
an integer- multiple relationship form a harmonic series, and the normal modes 
are called harmonics. The fundamental frequency f1 is the frequency of the first 
harmonic, the frequency f2 5 2f1 is that of the second harmonic, and the frequency 
fn 5 nf1 is that of the nth harmonic. Other oscillating systems, such as a drumhead, 
exhibit normal modes, but the frequencies are not related as integer multiples of 
a fundamental (see Section 18.6). Therefore, we do not use the term harmonic in 
association with those types of systems.

Wavelengths of X
normal modes

Natural frequencies of X
normal modes as functions 
of wave speed and length 

of string

Natural frequencies of X 
normal modes as functions 

of string tension and 
linear mass density

Fundamental frequency
of a taut string X

n ! 1

N
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N

L ! – 1
1
2
l

f1

a
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N NA A N

n ! 2 L ! 2l
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Figure 18.10 The normal modes of vibration of the string in Figure 18.9 form a harmonic series. 
The string vibrates between the extremes shown.λ1 = 2L λ2 = L λ3 =

2L
3



Standing Waves and Resonance on a String

v = f λ ; λn =
2L

n

The frequencies that correspond to these wavelengths are called
the natural frequencies:

fn =
nv

2L
= n f1

where n is a positive natural number.

where v is the speed of the wave.



Theory

For a string of density µ under tension T , the wave speed is
constant

v =

√
T

µ

This should equal to the product of the measured frequency and
wavelength.

v = f λ



Theory



Equipment



Setting Up the String: Tensioning Lever



Function Generator



Using the Oscilloscope



Using the Oscilloscope
Turning on the cursors.



Using the Oscilloscope
Displaying the frequency (as measured by the time period between
the cursors).



Using the Oscilloscope
Displaying the frequency (as measured by the time period between
the cursors).



Using the Oscilloscope
Adjusting the cursor locations.



Using the Oscilloscope
Adjusting the time base.



Lab Activity

First, characterize the string.

1 Pick a string. Using masking tape, but a label with your
names on it on the bag. You will use this string next week
also.

2 Use the micrometer to measure the diameter of the string and
confirm that the bag reflected the correct value.

3 Weigh the string and record the uncertainty.

4 Weigh the sample washer and nut (connectors) at the front of
the lab room. Subtract these from the total weight of the
string and calculate the uncertainty.

5 Measure the length of the string and calculate µ with
uncertainty.



Lab Activity

1 Set up the equipment. Have the bridges set 60 cm apart.

2 Slowly increase the frequency on the function generator and
watch the oscilloscope for a resonance. (You may also be able
to hear the resonance.)

3 Record the frequency of the string’s oscillation, fn, as shown
on the oscilloscope.

4 Move the detector along the string starting from the bridge
opposite the oscillation driver and find the location of the
next node. Record this distance.

5 Use that distance measurement, plus your knowledge of the
resonant wavelengths to determine λn.



Lab Activity

1 Repeat: slowly increase the frequency and find the next
resonance.

2 Try to record λn, fn for n ∈ {1, 2, 3, 4, 5}. You may find higher
modes first; you can record those also.

3 Find v = f λ for each pair of λ, f values. (You should have at
least 5 values.)

4 Calculate the average wave speed, v̄ .

5 Calculate the standard error of the sample mean using this
formula:

s.e.(v) =

√∑N
i=1(vi − v̄)2

N(N − 1)



Lab Activity

Does the uncertainty range for the value for the speed from the
tension overlap with the uncertainty for the speed from the
frequency and wavelength measurements?




