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Overview

• Purpose

• Part 3.1: Refraction

• Part 3.2: Total internal reflection

• Part 3.3: Refracting surfaces

• Part 4.4: Light as a wave and dispersion



Purpose of the Lab

To explore basic ray optics including the refraction of beams of
light.

You will use the Bending Light PhET simulation to explore the
behavior of light as it moves from one medium to another. You
will use simulated prims to observe total internal reflection,
refraction at a curved surface, and dispersion.



Theory: Reflection

Specular (mirror-like) reflection:
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is reflected. For waves on a one-dimensional string, the reflected wave must neces-
sarily be restricted to a direction along the string. For light waves traveling in three- 
dimensional space, no such restriction applies and the reflected light waves can be in 
directions different from the direction of the incident waves. Figure 35.5a shows sev-
eral rays of a beam of light incident on a smooth, mirror-like, reflecting surface. The 
reflected rays are parallel to one another as indicated in the figure. The direction of 
a reflected ray is in the plane perpendicular to the reflecting surface that contains 
the incident ray. Reflection of light from such a smooth surface is called specular 
reflection. If the reflecting surface is rough as in Figure 35.5b, the surface reflects 
the rays not as a parallel set but in various directions. Reflection from any rough 
surface is known as diffuse reflection. A surface behaves as a smooth surface as long 
as the surface variations are much smaller than the wavelength of the incident light.
 The difference between these two kinds of reflection explains why it is more dif-
ficult to see while driving on a rainy night than on a dry night. If the road is wet, 
the smooth surface of the water specularly reflects most of your headlight beams 
away from your car (and perhaps into the eyes of oncoming drivers). When the 
road is dry, its rough surface diffusely reflects part of your headlight beam back 
toward you, allowing you to see the road more clearly. Your bathroom mirror exhib-
its specular reflection, whereas light reflecting from this page experiences diffuse 
reflection. In this book, we restrict our study to specular reflection and use the 
term reflection to mean specular reflection.
 Consider a light ray traveling in air and incident at an angle on a flat, smooth 
surface as shown in Figure 35.6. The incident and reflected rays make angles u1 and 
u91, respectively, where the angles are measured between the normal and the rays. 
(The normal is a line drawn perpendicular to the surface at the point where the 
incident ray strikes the surface.) Experiments and theory show that the angle of 
reflection equals the angle of incidence:

 u91 5 u1 (35.2)

This relationship is called the law of reflection. Because reflection of waves from 
an interface between two media is a common phenomenon, we identify an analysis 
model for this situation: the wave under reflection. Equation 35.2 is the mathemat-
ical representation of this model.

Q uick Quiz 35.1  In the movies, you sometimes see an actor looking in a mirror 
and you can see his face in the mirror. It can be said with certainty that during 
the filming of such a scene, the actor sees in the mirror: (a) his face (b) your 
face (c) the director’s face (d) the movie camera (e) impossible to determine

Law of reflection X

a b

c

Co
ur

te
sy

 o
f H

en
ry

 L
ea

p 
an

d 
Ji

m
 L

eh
m

an

d

Co
ur

te
sy

 o
f H

en
ry

 L
ea

p 
an

d 
Ji

m
 L

eh
m

an

Figure 35.5  Schematic repre-
sentation of (a) specular reflec-
tion, where the reflected rays are 
all parallel to one another, and 
(b) diffuse reflection, where the 
reflected rays travel in random 
directions. (c) and (d) Photo-
graphs of specular and diffuse 
reflection using laser light.

u1

Incident
ray

Normal

Reflected
ray

The incident ray, the reflected 
ray, and the normal all lie in 
the same plane, and u! " u1.1

u!1

Figure 35.6 The wave under 
reflection model.

Pitfall Prevention 35.1
Subscript Notation The subscript 
1 refers to parameters for the 
light in the initial medium. When 
light travels from one medium to 
another, we use the subscript 2 for 
the parameters associated with 
the light in the new medium. In 
this discussion, the light stays in 
the same medium, so we only have 
to use the subscript 1.



Law of Reflection

θi = θrefl

1062 Chapter 35 The Nature of Light and the Principles of Ray Optics
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Figure 35.5  Schematic repre-
sentation of (a) specular reflec-
tion, where the reflected rays are 
all parallel to one another, and 
(b) diffuse reflection, where the 
reflected rays travel in random 
directions. (c) and (d) Photo-
graphs of specular and diffuse 
reflection using laser light.
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Figure 35.6 The wave under 
reflection model.

Pitfall Prevention 35.1
Subscript Notation The subscript 
1 refers to parameters for the 
light in the initial medium. When 
light travels from one medium to 
another, we use the subscript 2 for 
the parameters associated with 
the light in the new medium. In 
this discussion, the light stays in 
the same medium, so we only have 
to use the subscript 1.



Refraction
When light rays pass from one medium into another, they are often
observed to bend.

1Image from Wikipedia, by Zátonyi Sándor.



Refraction

When light rays pass from one medium into another, they are often
observed to bend.

 Conceptual Questions 1079

 5. Retroreflection by transparent spheres, mentioned in 
Section 35.4, can be observed with dewdrops. To do so, 
look at your head’s shadow where it falls on dewy grass. 
The optical display around the shadow of your head 
is called heiligen schein, which is German for holy light. 
Renaissance artist Benvenuto Cellini described the 
phenomenon and his reaction in his Autobiography, at 
the end of Part One, and American philosopher Henry 
David Thoreau did the same in Walden, “Baker Farm,” 
second paragraph. Do some Internet research to find 
out more about the heiligenschein.

 6. Sound waves have much in common with light waves, 
including the properties of reflection and refraction. 
Give an example of each of these phenomena for 
sound waves.

 7. Total internal reflection is applied 
in the periscope of a submerged 
submarine to let the user observe 
events above the water surface. In 
this device, two prisms are arranged 
as shown in Figure CQ35.7 so that 
an incident beam of light follows the 
path shown. Parallel tilted, silvered 
mirrors could be used, but glass 
prisms with no silvered surfaces give 
higher light throughput. Propose a 
reason for the higher efficiency.

 8. Explain why a diamond sparkles more than a glass 
crystal of the same shape and size.

 9. A laser beam passing through a nonhomogeneous 
sugar solution follows a curved path. Explain.

 10. The display windows of some department stores are 
slanted slightly inward at the bottom. This tilt is to 
decrease the glare from streetlights and the Sun, which 
would make it difficult for shoppers to see the display 
inside. Sketch a light ray reflecting from such a window 
to show how this design works.

 11. At one restaurant, a worker uses colored chalk to 
write the daily specials on a blackboard illuminated 

45!

45!

45!

45!

Figure CQ35.7

with a spotlight. At 
another restaurant, 
a worker writes with 
colored grease pen-
cils on a flat, smooth 
sheet of transparent 
acrylic plastic with 
an index of refrac-
tion 1.55. The panel 
hangs in front of a 
piece of black felt. 
Small, bright fluores-
cent tube lights are 
installed all along the 
edges of the sheet, 
inside an opaque channel. Figure CQ35.11 shows a cut-
away view of the sign. (a) Explain why viewers at both 
restaurants see the letters shining against a black back-
ground. (b) Explain why the sign at the second restau-
rant may use less energy from the electric company 
than the illuminated blackboard at the first restaurant.  
(c) What would be a good choice for the index of refrac-
tion of the material in the grease pencils?

 12. (a) Under what conditions is a mirage formed? While 
driving on a hot day, sometimes you see what appears 
to be water on the road far ahead. When you arrive 
at the location of the water, however, the road is per-
fectly dry. Explain this phenomenon. (b) The mirage 
called fata morgana often occurs over water or in cold 
regions covered with snow or ice. It can cause islands 
to sometimes become visible, even though they are 
not normally visible because they are below the hori-
zon due to the curvature of the Earth. Explain this 
phenomenon.

 13. Figure CQ35.13 shows a pencil partially immersed in a 
cup of water. Why does the pencil appear to be bent?

Figure CQ35.13
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 14. A scientific supply catalog advertises a material having 
an index of refraction of 0.85. Is that a good product to 
buy? Why or why not?

 15. Why do astronomers looking at distant galaxies talk 
about looking backward in time?
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at top edge of plastic

Figure CQ35.11
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Refraction

 35.5 Analysis Model: Wave Under Refraction 1065

ness of the pixel is determined by the total time interval during which the mirror is 
in the “on” position during the display of one image.
 Digital movie projectors use three micromirror devices, one for each of the pri-
mary colors red, blue, and green, so that movies can be displayed with up to 35 
trillion colors. Because information is stored as binary data, a digital movie does 
not degrade with time as does film. Furthermore, because the movie is entirely in 
the form of computer software, it can be delivered to theaters by means of satellites, 
optical discs, or optical fiber networks.
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All rays and the normal lie in the 
same plane, and the refracted 
ray is bent toward the normal 
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Figure 35.10 (a) The wave under refrac-
tion model. (b) Light incident on the Lucite 
block refracts both when it enters the block 
and when it leaves the block.

Imagine a wave (electromag-
netic or mechanical) travel-
ing through space and strik-
ing a flat surface at an angle 
u1 with respect to the normal 
to the surface. The wave will 
reflect from the surface in 
a direction described by the 
law of reflection—the angle of reflection u91 equals the 
angle of incidence u1:

 u91 5 u1 (35.2)

Analysis Model   Wave Under Reflection

u"
u1

1

Examples: 

-
shell out to the audience

light show
 

face back to you to form an image of your face 
(Chapter 36)

optical pattern that can be used to understand the 
structure of the solid (Chapter 38)

35.5 Analysis Model: Wave Under Refraction
In addition to the phenomenon of reflection discussed for waves on strings 
in Section 16.4, we also found that some of the energy of the incident wave 
transmits into the new medium. For example, consider Figures 16.15 and 
16.16, in which a pulse on a string approaching a junction with another 
string both reflects from and transmits past the junction and into the sec-
ond string. Similarly, when a ray of light traveling through a transparent 
medium encounters a boundary leading into another transparent medium 
as shown in Figure 35.10, part of the energy is reflected and part enters the 
second medium. As with reflection, the direction of the transmitted wave 
exhibits an interesting behavior because of the three-dimensional nature 
of the light waves. The ray that enters the second medium changes its direc-
tion of propagation at the boundary and is said to be refracted. The inci-
dent ray, the reflected ray, and the refracted ray all lie in the same plane. 
The angle of refraction, u2 in Figure 35.10a, depends on the properties of 
the two media and on the angle of incidence u1 through the relationship

 
sin u2

sin u1
5

v2

v1
 (35.3)

where v1 is the speed of light in the first medium and v2 is the speed of 
light in the second medium.
 The path of a light ray through a refracting surface is reversible. For 
example, the ray shown in Figure 35.10a travels from point A to point B. 
If the ray originated at B, it would travel along line BA to reach point A 
and the reflected ray would point downward and to the left in the glass.

Q uick Quiz 35.2  If beam " is the incoming beam in Figure 35.10b, 
which of the other four red lines are reflected beams and which are 
refracted beams?



Refractive Index

Light at a particular frequency moves at different speeds in
different media.

Refractive index of a medium, n

n =
c

v

where v = ω
k is the phase velocity of light with angular frequency

ω in that medium.

The larger the refractive index, n, the slower the speed in that
medium.



Refraction
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 From Equation 35.3, we can infer that when light moves from a material in which 
its speed is high to a material in which its speed is lower as shown in Figure 35.11a, 
the angle of refraction u2 is less than the angle of incidence u1 and the ray is bent 
toward the normal. If the ray moves from a material in which light moves slowly to 
a material in which it moves more rapidly as illustrated in Figure 35.11b, then u2 is 
greater than u1 and the ray is bent away from the normal.
 The behavior of light as it passes from air into another substance and then re-
emerges into air is often a source of confusion to students. When light travels in air, 
its speed is 3.00 3 108 m/s, but this speed is reduced to approximately 2 3 108 m/s 
when the light enters a block of glass. When the light re-emerges into air, its speed 
instantaneously increases to its original value of 3.00 3 108 m/s. This effect is far 
different from what happens, for example, when a bullet is fired through a block of 
wood. In that case, the speed of the bullet decreases as it moves through the wood 
because some of its original energy is used to tear apart the wood fibers. When 
the bullet enters the air once again, it emerges at a speed lower than it had when it 
entered the wood.
 To see why light behaves as it does, consider Figure 35.12, which represents a 
beam of light entering a piece of glass from the left. Once inside the glass, the light 
may encounter an electron bound to an atom, indicated as point A. Let’s assume 
light is absorbed by the atom, which causes the electron to oscillate (a detail repre-
sented by the double-headed vertical arrows). The oscillating electron then acts as 
an antenna and radiates the beam of light toward an atom at B, where the light is 
again absorbed. The details of these absorptions and radiations are best explained 
in terms of quantum mechanics (Chapter 42). For now, it is sufficient to think of 
light passing from one atom to another through the glass. Although light travels 
from one atom to another at 3.00 3 108 m/s, the absorption and radiation that take 
place cause the average light speed through the material to fall to approximately 
2 3 108 m/s. Once the light emerges into the air, absorption and radiation cease 
and the light travels at a constant speed of 3.00 3 108 m/s.
 A mechanical analog of refraction is shown in Figure 35.13. When the left end 
of the rolling barrel reaches the grass, it slows down, whereas the right end remains 
on the concrete and moves at its original speed. This difference in speeds causes 
the barrel to pivot, which changes the direction of travel.

Index of Refraction
In general, the speed of light in any material is less than its speed in vacuum. In 
fact, light travels at its maximum speed c in vacuum. It is convenient to define the index 
of refraction n of a medium to be the ratio

 n ;
speed of light in vacuum

speed of light in a medium
;

c
v  (35.4)Index of refraction X

a b

Glass
Air

v2

v1

Glass
Air

v1
v2

u2

Normal Normal
When the light beam 
moves from air into 
glass, the light slows 
down upon entering the 
glass and its path is bent 
toward the normal.

When the beam 
moves from glass 
into air, the light 
speeds up upon 
entering the air 
and its path is 
bent away from 
the normal.

u1

u2 ! u1

v2 ! v1

u1

u2 " u1

v2 " v1

u2

Figure 35.11 The refraction of 
light as it (a) moves from air into 
glass and (b) moves from glass 
into air.

A B

Figure 35.12  Light passing 
from one atom to another in a 
medium. The blue spheres are 
electrons, and the vertical arrows 
represent their oscillations.

Concrete

Grass

This end slows first; as a 
result, the barrel turns.

v1

v2

v2 ! v1

Figure 35.13 Overhead view 
of a barrel rolling from concrete 
onto grass.

1Serway & Jewett, 9th ed, page 1066.
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1McGraw-Hill Concise Encyclopedia of Physics. c© 2002 by The
McGraw-Hill Companies, Inc.



Refraction: Snell’s Law

Glass
Air

A

B

Incident
ray

Normal Reflected
ray

Refracted
ray

u1

v1

v2

u2

u!1

Snell’s Law:

n1 sin θ1 = n2 sin θ2

1Willebrord Snell discovered this law experimentally.

n1

n2



Intro: Refraction Setup



Total Internal Reflection

The critical angle, θc , is the maximum angle of incidence such
that there could be a refracted ray. The ray would just skim along
the surface between the media.

1074 Chapter 35 The Nature of Light and the Principles of Ray Optics

the raindrop. In the laboratory, rainbows have been observed in which the light 
makes more than 30 reflections before exiting the water drop. Because each reflec-
tion involves some loss of light due to refraction of part of the incident light out of 
the water drop, the intensity of these higher-order rainbows is small compared with 
that of the primary rainbow.

Q uick Quiz 35.4  In photography, lenses in a camera use refraction to form an 
image on a light-sensitive surface. Ideally, you want all the colors in the light from 
the object being photographed to be refracted by the same amount. Of the mate-
rials shown in Figure 35.21, which would you choose for a single- element camera 
lens? (a) crown glass (b) acrylic (c) fused quartz (d) impossible to determine

35.8 Total Internal Reflection
An interesting effect called total internal reflection can occur when light is 
directed from a medium having a given index of refraction toward one having a 
lower index of refraction. Consider Figure 35.26a, in which a light ray travels in 
medium 1 and meets the boundary between medium 1 and medium 2, where n1 
is greater than n2. In the figure, labels 1 through 5 indicate various possible direc-
tions of the ray consistent with the wave under refraction model. The refracted rays 
are bent away from the normal because n1 is greater than n 2. At some particular 
angle of incidence uc , called the critical angle, the refracted light ray moves parallel 
to the boundary so that u2 5 90° (Fig. 35.26b). For angles of incidence greater than 
uc , the ray is entirely reflected at the boundary as shown by ray 5 in Figure 35.26a.
 We can use Snell’s law of refraction to find the critical angle. When u1 5 uc , u2 5 90° 
and Equation 35.8 gives

n1 sin uc 5 n2 sin 90° 5 n2

 sin uc 5
n 2

n 1
  1 for n 1 . n 2 2  (35.10)

This equation can be used only when n1 is greater than n 2. That is, total internal 
reflection occurs only when light is directed from a medium of a given index of 
refraction toward a medium of lower index of refraction. If n1 were less than n2, 

 Critical angle for total X
internal reflection

Figure 35.25  This photograph of 
a rainbow shows a distinct secondary 
rainbow with the colors reversed. 
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Figure 35.26 (a) Rays travel 
from a medium of index of refrac-
tion n1 into a medium of index  
of refraction n2, where n2 , n1.  
(b) Ray 4 is singled out.

As the angle of incidence u1 increases, 
the angle of refraction u2  increases 
until u2 is 90! (ray 4). The dashed line 
indicates that no energy actually 
propagates in this direction.

The angle of incidence producing 
an angle of refraction equal to 90! 
is the critical angle uc . For angles 
greater than uc, all the energy of the 
incident light is reflected.  

For even larger angles of 
incidence, total internal 
reflection occurs (ray 5).

3

Normal Normal

2

4

5

1

u2

u1 uc

n2
n1

n2
n1

n1 " n2 n1 " n2

a b

In this case, the angle of refraction θ2 = 90◦.



Prisms: Total Internal Reflection Setup



Prisms: Total Internal Reflection Setup



Theory: Images Formed by Refraction

When light rays change media they are bent.

This also can form images.



Images Formed by Refraction
We can find the location and size of the image formed by
considering paraxial rays.

1100 Chapter 36 Image Formation

Conceptualize  This situation is depicted in 
Figure 36.13c.

Categorize  Because the mirror is convex, 
we expect it to form an upright, reduced, 
virtual image for any object position.

S O L U T I O N
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Figure 36.15  (Example 36.4) An 
approaching truck is seen in a convex 
mirror on the right side of an auto-
mobile. Notice that the image of the 
truck is in focus, but the frame of the 
mirror is not, which demonstrates 
that the image is not at the same loca-
tion as the mirror surface.

Analyze  Find the image distance by using Equation 36.6:
1
q

5
1
f

2
1
p

1
q

5
1

20.60 m
2

1
10.0 m

q 5 20.57 m

(B)  Find the magnification of the image.

S O L U T I O N

Analyze  Use Equation 36.2: M 5 2
q
p

5 2a20.57 m
10.0 m

b 5 10.057

Finalize  The negative value of q in part (A) indicates that the image is virtual, or behind the mirror, as shown in 
Figure 36.13c. The magnification in part (B) indicates that the image is much smaller than the truck and is upright 
because M is positive. The image is reduced in size, so the truck appears to be farther away than it actually is. Because 
of the image’s small size, these mirrors carry the inscription, “Objects in this mirror are closer than they appear.” Look 
into your rearview mirror or the back side of a shiny spoon to see an image of this type.

36.3 Images Formed by Refraction
In this section, we describe how images are formed when light rays follow the wave 
under refraction model at the boundary between two transparent materials. Con-
sider two transparent media having indices of refraction n1 and n2, where the 
boundary between the two media is a spherical surface of radius R (Fig. 36.16). 
We assume the object at O is in the medium for which the index of refraction is n1. 
Let’s consider the paraxial rays leaving O. As we shall see, all such rays are refracted 
at the spherical surface and focus at a single point I, the image point.
 Figure 36.17 shows a single ray leaving point O and refracting to point I. Snell’s 
law of refraction applied to this ray gives

n1 sin u1 5 n2 sin u2

Because u1 and u2 are assumed to be small, we can use the small-angle approxima-
tion sin u < u (with angles in radians) and write Snell’s law as

n1u1 5 n2u2

We know that an exterior angle of any triangle equals the sum of the two opposite 
interior angles, so applying this rule to triangles OPC and PIC in Figure 36.17 gives

u1 5 a 1 b

b 5 u2 1 g

n1 ! n2

O I

n2n1 R

p q

Rays making small angles with the 
principal axis diverge from a point 
object at O and are refracted 
through the image point I.

Figure 36.16  An image formed 
by refraction at a spherical surface.

 

▸ 36.4 c o n t i n u e d

For paraxial rays:

n1

p
+

n2

q
=

n2 − n1

R



Flat Refracting Surfaces

(Like a rectangular fish tank.)1102 Chapter 36 Image Formation

 

Flat Refracting Surfaces
If a refracting surface is flat, then R is infinite and Equation 36.8 reduces to

n1

p
5 2

n 2

q

 q 5 2
n 2

n1
 p (36.9)

From this expression, we see that the sign of q is opposite that of p. Therefore, 
according to Table 36.2, the image formed by a flat refracting surface is on the 
same side of the surface as the object as illustrated in Figure 36.18 for the situation 
in which the object is in the medium of index n1 and n1 is greater than n2. In this 
case, a virtual image is formed between the object and the surface. If n1 is less than 
n2, the rays on the back side diverge from one another at smaller angles than those 
in Figure 36.18. As a result, the virtual image is formed to the left of the object.

Q uick Quiz 36.4  In Figure 36.16, what happens to the image point I as the object 
point O is moved to the right from very far away to very close to the refracting 
surface? (a) It is always to the right of the surface. (b) It is always to the left of 
the surface. (c) It starts off to the left, and at some position of O, I moves to the 
right of the surface. (d) It starts off to the right, and at some position of O, I 
moves to the left of the surface.

Q uick Quiz 36.5  In Figure 36.18, what happens to the image point I as the object 
point O moves toward the right-hand surface of the material of index of refraction 
n1? (a) It always remains between O and the surface, arriving at the surface just as 
O does. (b) It moves toward the surface more slowly than O so that eventually O 
passes I. (c) It approaches the surface and then moves to the right of the surface.

p

q

O

  

The image is virtual and on 
the same side of the surface 
as the object.

n1 ! n2
n1 n2

Figure 36.18 The image formed 
by a flat refracting surface. All rays 
are assumed to be paraxial.

Conceptual Example 36.5   Let’s Go Scuba Diving!

Objects viewed under water with the naked eye appear blurred and out of focus. A scuba diver using a mask, however, 
has a clear view of underwater objects. Explain how that works, using the information that the indices of refraction of 
the cornea, water, and air are 1.376, 1.333, and 1.000 29, respectively.

Because the cornea and water have almost identical indices of refraction, very little refraction occurs when a person 
under water views objects with the naked eye. In this case, light rays from an object focus behind the retina, resulting 
in a blurred image. When a mask is used, however, the air space between the eye and the mask surface provides the 
normal amount of refraction at the eye–air interface; consequently, the light from the object focuses on the retina.

S O L U T I O N

3.0 cm

2.0 cm

q

n2n1

n1 ! n2

Figure 36.19  (Example 36.6) 
Light rays from a coin embed-
ded in a plastic sphere form a 
virtual image between the sur-
face of the object and the sphere 
surface. Because the object is 
inside the sphere, the front of 
the refracting surface is the  
interior of the sphere.

Example 36.6   Gaze into the Crystal Ball

A set of coins is embedded in a spherical plastic paper-
weight having a radius of 3.0 cm. The index of refrac-
tion of the plastic is n1 5 1.50. One coin is located  
2.0 cm from the edge of the sphere (Fig. 36.19). Find 
the position of the image of the coin.

Conceptualize  Because n1 . n2, where n2 5 1.00 is the index of refraction for air, the rays originating from the coin 
in Figure 36.19 are refracted away from the normal at the surface and diverge outward. Extending the outgoing rays 
backward shows an image point within the sphere.

S O L U T I O N

In this case R →∞.

n1

p
+

n2

q
= 0

And so

q = −
n2

n1
p



Flat Refracting Surfaces Example (Problem 30)

A cubical block of ice 50.0 cm on a side is placed over a speck of
dust on a level floor. Find the location of the image of the speck
as viewed from above. The index of refraction of ice is 1.309.

n1

p
+

n2

q
=

n2 − n1

R
, R →∞

⇒ q = −
n2

n1
p

= −
1

1.309
(50.0 cm)

= 38.2 cm
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Sign Conventions for Refracting Surfaces!

n1

p
+

n2

q
=

n2 − n1

R

Variable is Positive is Negative

p object in front of surface [virtual object]1

q image behind surface image in front of surface
(real) (virtual)

h ′ (and M) image upright image inverted

R object faces convex surf. object faces concave surf.
(C behind surface) (C in front of surface)

C is the center of curvature.
M = h ′

h = −n1q
n2p

1Will be useful in derivations.



Prisms: Refracting Surfaces Setup



More Tools: Light as a wave




