Conceptual Questions

1. denotes answer available in *Student Solutions Manual/Study Guide*

- **1.** When an object is immersed in a liquid at rest, why is the net force on the object in the horizontal direction equal to zero?
- **2.** Two thin-walled drinking glasses having equal base areas but different shapes, with very different cross-sectional areas above the base, are filled to the same

level with water. According to the expression $P = P_0 + \rho gh$, the pressure is the same at the bottom of both glasses. In view of this equality, why does one weigh more than the other?

3. Because atmospheric pressure is about 10^5 N/m² and the area of a person's chest is about 0.13 m², the force of the

this enormous force, why don't our bodies collapse?

atmosphere on one's chest is around 13 000 N. In view of

Problems

 WebAssign
 The problems found in this chapter may be assigned online in Enhanced WebAssign

 1. straightforward; 2. intermediate;

 3. challenging

 1. full solution available in the Student

Solutions Manual/Study Guide

- AMT Analysis Model tu Enhanced WebAs
 - GP Guided Problem
 - M Master It tutorial WebAssign
 - W Watch It video so Enhanced WebAss

Note: In all problems, assume the density of air is the 20° C value from Table 14.1, 1.20 kg/m³, unless noted otherwise.

Section 14.1 Pressure

- 1. A large man sits on a four-legged chair with his feet off the floor. The combined mass of the man and chair is 95.0 kg. If the chair legs are circular and have a radius of 0.500 cm at the bottom, what pressure does each leg exert on the floor?
- The nucleus of an atom can be modeled as several protons and neutrons closely packed together. Each particle has a mass of 1.67 × 10⁻²⁷ kg and radius on the order of 10⁻¹⁵ m. (a) Use this model and the data provided to estimate the density of the nucleus of an atom. (b) Compare your result with the density of a material such as iron. What do your result and comparison suggest concerning the structure of matter?
- 3. A 50.0-kg woman wearing high-heeled shoes is invited into a home in which the kitchen has vinyl floor covering. The heel on each shoe is circular and has a radius of 0.500 cm. (a) If the woman balances on one heel, what pressure does she exert on the floor? (b) Should the homeowner be concerned? Explain your answer.
- **4.** Estimate the total mass of the Earth's atmosphere. (The radius of the Earth is 6.37×10^6 m, and atmospheric pressure at the surface is 1.013×10^5 Pa.)
- **5.** Calculate the mass of a solid gold rectangular bar that M has dimensions of $4.50 \text{ cm} \times 11.0 \text{ cm} \times 26.0 \text{ cm}$.