1. When an object is immersed in a liquid at rest, why is the net force on the object in the horizontal direction equal to zero?
2. Two thin-walled drinking glasses having equal base areas but different shapes, with very different crosssectional areas above the base, are filled to the same
level with water. According to the expression $P=P_{0}+$ $\rho g h$, the pressure is the same at the bottom of both glasses. In view of this equality, why does one weigh more than the other?
3. Because atmospheric pressure is about $10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and the area of a person's chest is about $0.13 \mathrm{~m}^{2}$, the force of the

atmosphere on one's chest is around 13000 N . In view of

 this enormous force, why don't our bodies collapse?
Problems

WebAssign
The problems found in this chapter may be assigned online in Enhanced WebAssign

1. straightforward; 2. intermediate; 3. challenging
2. full solution available in the Student Solutions Manual/Study Guide

AMT Analysis Model tu Enhanced WebAs
GP Guided Problem
M Master It tutorial WebAssign
W Watch It video so Enhanced WebAs:

Note: In all problems, assume the density of air is the $20^{\circ} \mathrm{C}$ value from Table $14.1,1.20 \mathrm{~kg} / \mathrm{m}^{3}$, unless noted otherwise.

Section 14.1 Pressure

1. A large man sits on a four-legged chair with his feet off the floor. The combined mass of the man and chair is 95.0 kg . If the chair legs are circular and have a radius of 0.500 cm at the bottom, what pressure does each leg exert on the floor?
2. The nucleus of an atom can be modeled as several protons and neutrons closely packed together. Each particle has a mass of $1.67 \times 10^{-27} \mathrm{~kg}$ and radius on the order of $10^{-15} \mathrm{~m}$. (a) Use this model and the data provided to estimate the density of the nucleus of an atom. (b) Compare your result with the density of a material such as iron. What do your result and comparison suggest concerning the structure of matter?
3. A $50.0-\mathrm{kg}$ woman wearing high-heeled shoes is invited W into a home in which the kitchen has vinyl floor covering. The heel on each shoe is circular and has a radius of 0.500 cm . (a) If the woman balances on one heel, what pressure does she exert on the floor? (b) Should the homeowner be concerned? Explain your answer.
4. Estimate the total mass of the Earth's atmosphere. (The radius of the Earth is $6.37 \times 10^{6} \mathrm{~m}$, and atmospheric pressure at the surface is $1.013 \times 10^{5} \mathrm{~Pa}$.)
5. Calculate the mass of a solid gold rectangular bar that

M has dimensions of $4.50 \mathrm{~cm} \times 11.0 \mathrm{~cm} \times 26.0 \mathrm{~cm}$.

