1. [1 2pts] A sample of a solid substance has a volume V_{0} and a density ρ_{0} at a temperature T_{0}. The specific heat capacity of the sample is c and the coefficient of volume expansion is β. The solid sample is heated at in air at constant pressure P_{0}. If the temperature of the substance is increased by an amount ΔT and it remains a solid,
(a) find and expression for the new density of the substance. [4 pts]
(b) what is the work done on the sample as it is heated? [4 pts]
(c) what is the change in the internal energy of the sample? [4 pts]
a) $\Delta V=\beta V_{0} \Delta T$ and $\rho_{0}=\frac{m}{V_{0}}$

$$
\begin{aligned}
\rho^{\prime} & =\frac{m}{V_{0}+\Delta V} \quad \text { (mass is constant) } \\
& =\frac{m}{V_{0}(1+\beta \Delta T)} \\
\rho & =\frac{\rho_{0}}{(1+\beta \Delta T)}
\end{aligned}
$$

b)

$$
\begin{aligned}
W & =-\int_{V_{0}}^{V_{0}+\Delta V} P_{0} d V \\
& =-P_{0}\left(V / \Delta V-X_{0}\right) \\
W & =-P_{0} \beta V_{0} \Delta T
\end{aligned}
$$

c)

$$
\begin{aligned}
\Delta E_{\text {int }} & =Q+W \quad Q=m c \Delta T \\
& =m c \Delta T-P_{0} V_{0} \beta \Delta T \\
\Delta E_{\text {int }} & =\rho_{0} V_{0} c \Delta T-\rho_{0} V_{0} \beta \Delta T
\end{aligned}
$$

1. The rectangular plate shown has an area A_{i} equal to ℓw. For this plate α is the average coefficient of linear expansion.
(a) If the temperature increases by ΔT, show that the increase in area is $\Delta A=$ $2 \alpha A_{i} \Delta T$. [5 pts]
(b) What approximation does this expression assume? [1 pt]

a) For linear ex pansion:

$$
\Delta L=\alpha L_{i} \Delta T \quad \text { so } \quad \begin{aligned}
& \Delta l=\alpha l \Delta T \\
& \Delta W=\alpha W \Delta T
\end{aligned}
$$

Area increase:

$$
\begin{aligned}
\Delta A & =A_{f}-A_{i} \quad A_{i}=l_{w} \\
& =(l+\Delta l)(w+\Delta w)-l_{w} \\
& =l_{w}+l \Delta w+w \Delta l+\Delta l \Delta l-l w \\
& =l(\alpha w \Delta T)+w(\alpha l \Delta T)+(\alpha l \Delta T)(\alpha w \Delta T) \\
& =2 \alpha(l w) \Delta T+(l w) \alpha^{2} \Delta T^{2} \\
& =2 \alpha A_{i} \Delta T+\alpha^{2} \Delta T^{2} A_{i}
\end{aligned}
$$

assuming $(\alpha \Delta T)^{2} \ll 1$ wecanneglect the second term.

$$
\Delta A=2 \alpha A_{i} \Delta T
$$

b) $(\alpha \Delta T)^{2} \ll 1$ (which means we assume $\Delta l \Delta w_{\lambda}$ is much $\left.w \Delta l+l \Delta w\right)$
2. A copper calorimeter with a mass of 250 g contains 500 g of water. The calorimeter and water are in thermal equilibrium at $15.0^{\circ} \mathrm{C}$. A metallic block is placed into the water, which has a mass of 150.0 g and is originally at a temperature of $125^{\circ} \mathrm{C}$. The entire system stabilizes at a final temperature of $20.0^{\circ} \mathrm{C}$. The specific heat of copper is $387 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$. Determine the specific heat of the unknown sample. [6 pts]

$$
\begin{aligned}
& -Q_{\text {block }}=Q_{H_{2} \mathrm{OFC}} \\
& -Q_{\text {black }}=Q_{H_{3} \mathrm{O}}+Q_{\mathrm{Cu}} \quad \begin{aligned}
C_{\mathrm{H}_{3} \mathrm{O}} & =1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{O} \\
& =4.186 \mathrm{~J}
\end{aligned} \\
& -m_{b} c_{b} \Delta T_{b}=m_{H_{30}} C_{H_{2 O}} \Delta T_{H_{2} O}+m_{c_{b}} C_{C_{b}} \Delta T_{c_{u}} \\
& C_{b}=\left(m_{m_{10}} c_{H_{20}}+m_{c_{1}} c_{c_{0}}\right) \Delta T_{H} \quad \Delta T_{H_{20}}=\Delta T_{c_{0}} \\
& -m_{b} \Delta T_{b} \\
& =\frac{[(0.50 \mathrm{~kg})(4186 \mathrm{~J} / \mathrm{gg} \mathrm{C})+(0.250 \mathrm{~kg})(387 \mathrm{~J} / \mathrm{kg} \mathrm{C})](20-15)^{\circ} \mathrm{C}}{-(0.150 \mathrm{~kg})(20-125)^{\circ} \mathrm{C}} \\
& c_{b}=695 \mathrm{~J} / \lg ^{\circ} \mathrm{C}
\end{aligned}
$$

4. Consider n moles of an ideal monatomic gas being taken once through the Stirling engine cycle shown, consisting of two isothermal processes at temperatures $4 T_{i}$ and T_{i} and two constant-volume processes.

(a) Find an expression for the net work done on the gas in a single complete cycle. [5 pts]
(b) What is the net heat transferred into the gas during a single complete cycle? [2 pts]
a)

$$
\begin{aligned}
& \text { b) Cycle: } \Delta E_{\text {int }}=0 \\
& \Delta E_{\text {int }}=Q+W \\
& W_{\text {eng }}=-W \text { work done on gas } \\
& =-(-(P d N) \\
& O=Q-W_{\text {eng }} \quad \text { energy ton } \\
& Q=\text { Wen } \quad \therefore \begin{array}{c}
\text { more done } \\
\text { byengine }
\end{array} \\
& =\int P d V \quad \text { cost. Volume. } \\
& W_{\text {eng }}=-W_{A B}^{0}-W_{B C}-W_{C D}^{8}-W_{D A}^{0} \\
& =\int_{B C} P d V+\int_{D A} P d V \quad P V=n R T \quad P=\frac{n R T}{V} \\
& =\int_{B C} \frac{n R\left(4 T_{i}\right)}{V} d V+\int_{D A} \frac{n R T_{i}}{V} d V \\
& \text { iso thermal: } \\
& =4 n R T_{i} \ln \left(\frac{2 V_{i}}{V_{i}}\right)+n R T_{i} \ln \left(\frac{V_{i}}{2 V_{i}}\right) \\
& =4 n R T_{i} \ln (2)-n R T \ln (2) \\
& W_{\text {eng }}=3 n R T_{i} \ln 2 \\
& \underline{W}=-3 n R T_{i} \ln 2
\end{aligned}
$$

