Fluids Liquid Pressure Pascal's Principle Measuring Pressure

Lana Sheridan
De Anza College

April 13, 2020

Covered in "Lecture Module" Videos

- course intro
- definition of fluid
- pressure
- elastic moduli
- course policies

Overview

- remote learning \& technology issues
- pressure and depth

Remote Learning / Technology

- Zoom recordings of lectures - will be loaded to OneDrive, under Office365 app in MyPortal
- WebAssign: you need to go to WebAssign from Canvas to see the materials for this course; there is no course key!
- submitting pdfs to Canvas, you can scan with your phone (AdobeScan, CamScanner, TapScanner, iPhone Notes, or Microsoft Office Lens)
- short Zoom meetings with me
- please read your email \& course announcements

Fluid Statics

We first consider fluid statics: fluids at rest in a container.

Fluids will exert pressure on objects submerged in them and also on the walls of the container.

Pressure in a Liquid in a Gravitational Field

In a uniform gravitational field, liquid pressure depends on depth.

$$
P_{\text {liq }}=\rho g h
$$

where $\rho=m / V$ is the mass density of the liquid and h is the depth.

It does not depend on the total amount of water involved, just the depth of water.

Liquid Pressure

A slice of liquid of cross section A at a depth h must support all the water in a column directly above it.

Pressure at

 depth h :$$
P=\rho g h
$$

The force exerted downward by the column of water is
$F=m g=\rho V g$.

Liquid Pressure

Pressure at depth h:

$$
P=\rho g h
$$

$F=m g=\rho V g=\rho A h g$
${ }^{1}$ Figure from HyperPhysics.

Liquid Pressure

Pressure at depth h :
P = pgh
$F=m g=\rho V g=\rho A h g$
Pressure, $P_{\text {liq }}=\frac{F}{A}=\frac{\rho A h g}{A}=\rho g h$.
${ }^{1}$ Figure from HyperPhysics.

Total Pressure

The liquid pressure only expresses the pressure due to the weight of the fluid above.

However, this is not the total pressure in most circumstances, eg. diving on earth.

Total Pressure

The liquid pressure only expresses the pressure due to the weight of the fluid above.

However, this is not the total pressure in most circumstances, eg. diving on earth.

The total pressure or absolute pressure is the sum of the pressure due to the liquid and the pressure due to the atmosphere.

$$
P_{\text {total }}=P_{0}+\rho g h
$$

where $P_{0}=P_{\mathrm{atm}}=1.013 \times 10^{5} \mathrm{~Pa}$.

Pressure varies with Depth

Copyright © 2006 Paul G. Hewitt, printed courtesy of Pearson Education Inc., publishing as Addison Wesley.

Pascal's Barrel

Fig. 45.-Hydrostatic paradox. Pascal's experiment.

Density of Water

For water:

$$
\rho_{w}=1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
$$

That is $\rho_{w}=1 \mathrm{~g} / \mathrm{cm}^{3}$.

Density of Water

For water:

$$
\rho_{w}=1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
$$

That is $\rho_{w}=1 \mathrm{~g} / \mathrm{cm}^{3}$.
Originally, the gram was defined to be the mass of one cubic centimeter of water at the melting point of water.

Questions

Calculate the water pressure at the base of the Hoover Dam. The depth of water behind the dam is $220 \mathrm{~m} .{ }^{1}$
${ }^{2}$ Question from Hewitt, Conceptual Physics, 11th ed.
${ }^{3}$ See example 14.4, page 422, Serway \& Jewett, 9th ed.

Questions

Calculate the water pressure at the base of the Hoover Dam. The depth of water behind the dam is $220 \mathrm{~m} .{ }^{1}$

Density of water: $\rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
${ }^{2}$ Question from Hewitt, Conceptual Physics, 11th ed.
${ }^{3}$ See example 14.4, page 422, Serway \& Jewett, 9th ed.

Questions

Calculate the water pressure at the base of the Hoover Dam. The depth of water behind the dam is $220 \mathrm{~m} .{ }^{1}$

Density of water: $\rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& P_{\text {liq }}=2.16 \times 10^{6} \mathrm{~Pa} \\
& P_{\text {total }} \approx 2.3 \times 10^{6} \mathrm{~Pa}
\end{aligned}
$$

${ }^{2}$ Question from Hewitt, Conceptual Physics, 11th ed.
${ }^{3}$ See example 14.4, page 422, Serway \& Jewett, 9th ed.

Questions

Calculate the water pressure at the base of the Hoover Dam. The depth of water behind the dam is $220 \mathrm{~m} .{ }^{1}$

Density of water: $\rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& P_{\text {liq }}=2.16 \times 10^{6} \mathrm{~Pa} \\
& P_{\text {total }} \approx 2.3 \times 10^{6} \mathrm{~Pa}
\end{aligned}
$$

Now consider, if the dam is 380 m long, what is the total force exerted by the water on the dam? ${ }^{2}$

[^0]
Questions

Now consider, if the dam is 380 m long, what is the total force exerted by the water on the dam?

${ }^{3}$ See example 14.4, page 422, Serway \& Jewett, 9th ed.

Questions

Now consider, if the dam is 380 m long, what is the total force exerted by the water on the dam?

${ }^{3}$ See example 14.4, page 422, Serway \& Jewett, 9th ed.

Liquid Pressure Question

The figure shows four containers of olive oil. Rank them according to the pressure at depth h, greatest first. ${ }^{3}$

A a, b, c, d
B a, d, c, b
C a, c, d, b
D All the same
${ }^{3}$ Halliday, Resnick, Walker, 9th ed, page 363.

Summary

- pressure and depth

Test Wednesday, April 22, in class. (TBC!)

[^0]: ${ }^{2}$ Question from Hewitt, Conceptual Physics, 11th ed.
 ${ }^{3}$ See example 14.4, page 422, Serway \& Jewett, 9th ed.

