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Last time

• more about phase changes



Overview

• work, heat, and the first law of thermodynamics

• P-V diagrams



Heat and Work

We now take a closer look at the first law of thermodynamics.

To do this, we will take a deeper look at work and heat.

We also need to consider our system more carefully.



Thermodynamic Equilibrium States

We will study thermodynamic systems.

These systems are in thermodynamic equilibrium internally.

Thermodynamic equilibrium state

a state of a system in which every part of the system will be at the
same temperature, T , and if the system is a gas, at the same
pressure, P.

In classical thermodynamics, it is a postulate that any system left
isolated will come to a thermal equilibrium state given enough
time, and then remain in that state.

In particular, for our present discussion we will be considering an
ideal gas. (Can use PV = nRT .)
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Ideal Gases

Ideal gas assumptions (kinetic theory model).

We make the following assumptions in the ideal gas model:

• the volume of the gas particles is negligible compared to the
total gas volume

• molecules are identical hard spheres (will relax this later)

• collisions between molecules are elastic

• there are no intermolecular forces (aside from hard-sphere
collisions)

• there are no long-range forces from the environment (can be
relaxed)

A real gas is behaves as an idea gas when it is at high temperature
and low density (far from condensation).



Variables

The variables we will use can be broken into types:

state variables – describe system’s state / properties – T , P, V ,
and Eint.

transfer variables – describing energy transferred into our out of
the system – Q, W

intensive variables – variables that don’t change value when the
system is doubled in size – P, T , ρ, c

extensive variables – variables that double their value when the
system is doubled in size – V , Eint, m, C
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Work done on a gas

Imagine compressing or expanding a gas in a piston
quasi-statically (meaning slowly enough so the gas remains in
thermal equilibrium).
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Figure 20.4  Work is done on 
a gas contained in a cylinder at a 
pressure P as the piston is  
pushed downward so that the gas 
is compressed.

 What if the final state of the system is water at 100°C? Would we need more steam or less steam? How 
would the analysis above change?

Answer  More steam would be needed to raise the temperature of the water and glass to 100°C instead of 50.0°C. 
There would be two major changes in the analysis. First, we would not have a term Q 3 for the steam because the water 
that condenses from the steam does not cool below 100°C. Second, in Q cold, the temperature change would be 80.0°C 
instead of 30.0°C. For practice, show that the result is a required mass of steam of 31.8 g.

WHAT IF ?

Substitute 
numerical 
values:

ms 5 2
10.200 kg 2 14 186 J/kg # 8C 2 150.08C 2 20.08C 2 1 10.100 kg 2 1837 J/kg # 8C 2 150.08C 2 20.08C 212 010 J/kg # 8C 2 11008C 2 1308C 2 2 12.26 3 106 J/kg 2 1 14 186 J/kg # 8C 2 150.08C 2 1008C 2

5 1.09 3 1022 kg 5   10.9 g

 

▸ 20.4 c o n t i n u e d

20.4 Work and Heat in Thermodynamic Processes
In thermodynamics, we describe the state of a system using such variables as pres-
sure, volume, temperature, and internal energy. As a result, these quantities belong 
to a category called state variables. For any given configuration of the system, we 
can identify values of the state variables. (For mechanical systems, the state vari-
ables include kinetic energy K and potential energy U.) A state of a system can be 
specified only if the system is in thermal equilibrium internally. In the case of a gas 
in a container, internal thermal equilibrium requires that every part of the gas be 
at the same pressure and temperature.
 A second category of variables in situations involving energy is transfer vari-
ables. These variables are those that appear on the right side of the conservation 
of energy equation, Equation 8.2. Such a variable has a nonzero value if a process 
occurs in which energy is transferred across the system’s boundary. The transfer 
variable is positive or negative, depending on whether energy is entering or leaving 
the system. Because a transfer of energy across the boundary represents a change 
in the system, transfer variables are not associated with a given state of the system, 
but rather with a change in the state of the system.
 In the previous sections, we discussed heat as a transfer variable. In this section, 
we study another important transfer variable for thermodynamic systems, work. Work 
performed on particles was studied extensively in Chapter 7, and here we investigate 
the work done on a deformable system, a gas. Consider a gas contained in a cylinder 
fitted with a movable piston (Fig. 20.4). At equilibrium, the gas occupies a volume V 
and exerts a uniform pressure P on the cylinder’s walls and on the piston. If the pis-
ton has a cross-sectional area A, the magnitude of the force exerted by the gas on the 
piston is F 5 PA. By Newton’s third law, the magnitude of the force exerted by the pis-
ton on the gas is also PA. Now let’s assume we push the piston inward and compress 
the gas quasi-statically, that is, slowly enough to allow the system to remain essen-
tially in internal thermal equilibrium at all times. The point of application of the 
force on the gas is the bottom face of the piston. As the piston is pushed downward 
by an external force F

S
 5 2F ĵ through a displacement of d rS 5 dy ĵ (Fig. 20.4b), the 

work done on the gas is, according to our definition of work in Chapter 7,

 dW 5 F
S

?d rS 5 2F ĵ ?dy ĵ 5 2F dy 5 2PA dy 

The mass of the piston is assumed to be negligible in this discussion. Because A  dy 
is the change in volume of the gas dV, we can express the work done on the gas as

 dW 5 2P dV (20.8)

 If the gas is compressed, dV is negative and the work done on the gas is positive. 
If the gas expands, dV is positive and the work done on the gas is negative. If the 

How much work is done on the gas?

1Figure form Serway & Jewett.



Work done on a gas
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 5 2F ĵ through a displacement of d rS 5 dy ĵ (Fig. 20.4b), the 
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Definition of work:

W =

∫
F · dr

For this system:

W =

∫
(−F j) · dy j

= −

∫
F dy

= −

∫
P A dy

= −

∫
P dV

W = −

∫Vf

Vi

P dV



Work done on a gas

Here, the volume decreases,
so the work done on the gas
is positive.
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W = −

∫Vf

Vi

P dV

The work done is the area under the
P-V curve (with the appropriate
sign).
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volume remains constant, the work done on the gas is zero. The total work done on 
the gas as its volume changes from Vi to Vf is given by the integral of Equation 20.8:

 W 5  23
Vf

Vi

 P dV  (20.9)

To evaluate this integral, you must know how the pressure varies with volume dur-
ing the process.
 In general, the pressure is not constant during a process followed by a gas, but 
depends on the volume and temperature. If the pressure and volume are known 
at each step of the process, the state of the gas at each step can be plotted on an 
important graphical representation called a PV diagram as in Figure 20.5. This type 
of diagram allows us to visualize a process through which a gas is progressing. The 
curve on a PV diagram is called the path taken between the initial and final states.
 Notice that the integral in Equation 20.9 is equal to the area under a curve on a 
PV diagram. Therefore, we can identify an important use for PV diagrams:

The work done on a gas in a quasi-static process that takes the gas from an 
initial state to a final state is the negative of the area under the curve on a PV 
diagram, evaluated between the initial and final states.

 For the process of compressing a gas in a cylinder, the work done depends on the 
particular path taken between the initial and final states as Figure 20.5 suggests. To 
illustrate this important point, consider several different paths connecting i and f 
(Fig. 20.6). In the process depicted in Figure 20.6a, the volume of the gas is first 
reduced from Vi to Vf at constant pressure Pi and the pressure of the gas then 
increases from Pi to Pf by heating at constant volume Vf . The work done on the gas 
along this path is 2Pi(Vf 2 Vi). In Figure 20.6b, the pressure of the gas is increased 
from Pi to Pf at constant volume Vi and then the volume of the gas is reduced from 
Vi to Vf at constant pressure Pf . The work done on the gas is 2Pf(Vf 2 Vi). This value 
is greater than that for the process described in Figure 20.6a because the piston is 
moved through the same displacement by a larger force. Finally, for the process 
described in Figure 20.6c, where both P and V change continuously, the work done 
on the gas has some value between the values obtained in the first two processes. 
To evaluate the work in this case, the function P(V ) must be known so that we can 
evaluate the integral in Equation 20.9.
 The energy transfer Q into or out of a system by heat also depends on the pro-
cess. Consider the situations depicted in Figure 20.7. In each case, the gas has the 
same initial volume, temperature, and pressure, and is assumed to be ideal. In Figure 
20.7a, the gas is thermally insulated from its surroundings except at the bottom of 
the gas-filled region, where it is in thermal contact with an energy reservoir. An energy 
reservoir is a source of energy that is considered to be so great that a finite transfer of 
energy to or from the reservoir does not change its temperature. The piston is held 
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Figure 20.6 The work done on 
a gas as it is taken from an initial 
state to a final state depends on 
the path between these states.

Figure 20.5 A gas is compressed 
quasi-statically (slowly) from state 
i to state f. An outside agent must 
do positive work on the gas to 
compress it.
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The work done on a gas 
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under the PV curve. The area 
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volume is decreasing, resulting 
in positive work.

In this picture the area
is −ve (Vi > Vf )
so the Work is +ve.



Aside: P-V Diagrams

P-V diagrams are very useful in thermodynamics.

Example of a P-V diagram:
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1Figure form Serway & Jewett, 9th ed, page 602.



Aside: P-V Diagrams

Example of a P-V diagram:

53720-3 CHANG E I N E NTROPY
PART 2

Entropy differs from energy in that entropy does not obey a conservation law.
The energy of a closed system is conserved; it always remains constant. For
irreversible processes, the entropy of a closed system always increases. Because of
this property, the change in entropy is sometimes called “the arrow of time.” For
example, we associate the explosion of a popcorn kernel with the forward
direction of time and with an increase in entropy. The backward direction of time
(a videotape run backwards) would correspond to the exploded popcorn re-
forming the original kernel. Because this backward process would result in an
entropy decrease, it never happens.

There are two equivalent ways to define the change in entropy of a system:
(1) in terms of the system’s temperature and the energy the system gains or loses
as heat, and (2) by counting the ways in which the atoms or molecules that make
up the system can be arranged. We use the first approach in the next section and
the second in Section 20-8.

20-3 Change in Entropy
Let’s approach this definition of change in entropy by looking again at a process
that we described in Sections 18-11 and 19-11: the free expansion of an ideal gas.
Figure 20-1a shows the gas in its initial equilibrium state i, confined by a closed
stopcock to the left half of a thermally insulated container. If we open the
stopcock, the gas rushes to fill the entire container, eventually reaching the final
equilibrium state f shown in Fig. 20-1b. This is an irreversible process; all the
molecules of the gas will never return to the left half of the container.

The p-V plot of the process, in Fig. 20-2, shows the pressure and volume
of the gas in its initial state i and final state f. Pressure and volume are state
properties, properties that depend only on the state of the gas and not on how it
reached that state. Other state properties are temperature and energy. We now
assume that the gas has still another state property—its entropy. Furthermore,
we define the change in entropy Sf ! Si of a system during a process that takes
the system from an initial state i to a final state f as

(change in entropy defined). (20-1)

Here Q is the energy transferred as heat to or from the system during the process,
and T is the temperature of the system in kelvins. Thus, an entropy change
depends not only on the energy transferred as heat but also on the temperature
at which the transfer takes place. Because T is always positive, the sign of "S is
the same as that of Q. We see from Eq. 20-1 that the SI unit for entropy and
entropy change is the joule per kelvin.

There is a problem, however, in applying Eq. 20-1 to the free expansion of
Fig. 20-1. As the gas rushes to fill the entire container, the pressure, temperature,
and volume of the gas fluctuate unpredictably. In other words, they do not have a
sequence of well-defined equilibrium values during the intermediate stages of the
change from initial state i to final state f. Thus, we cannot trace a pressure–vol-
ume path for the free expansion on the p-V plot of Fig. 20-2, and we cannot find a
relation between Q and T that allows us to integrate as Eq. 20-1 requires.

However, if entropy is truly a state property, the difference in entropy
between states i and f must depend only on those states and not at all on the way
the system went from one state to the other. Suppose, then, that we replace the
irreversible free expansion of Fig. 20-1 with a reversible process that connects
states i and f. With a reversible process we can trace a pressure–volume path on
a p-V plot, and we can find a relation between Q and T that allows us to use
Eq. 20-1 to obtain the entropy change.

"S # Sf ! Si # !f

i

dQ
T

Fig. 20-1 The free expansion of an
ideal gas. (a) The gas is confined to the left
half of an insulated container by a closed
stopcock. (b) When the stopcock is
opened, the gas rushes to fill the entire
container.This process is irreversible; that
is, it does not occur in reverse, with the gas
spontaneously collecting itself in the left
half of the container.

Vacuum

Insulation

System

(a) Initial state i

(b) Final state f

Irreversible
process

Stopcock open

Stopcock closed

Pr
es

su
re

Volume

i

f

Fig. 20-2 A p-V diagram showing the
initial state i and the final state f of the free
expansion of Fig. 20-1.The intermediate
states of the gas cannot be shown because
they are not equilibrium states.

halliday_c20_536-560hr.qxd  4-11-2009  16:08  Page 537

These diagrams

• represent the (thermodynamic)
equilibrium states of the ideal
gas sample,

• each point is a state,

• imply the temperature of a
known sample, and

• show the internal energy of the
gas. (Eint ∝ T )

PV = nRT

1Figure (modified) from Halliday, Resnick, and Walker, page 537.
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Example of a P-V diagram:
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volume remains constant, the work done on the gas is zero. The total work done on 
the gas as its volume changes from Vi to Vf is given by the integral of Equation 20.8:
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important graphical representation called a PV diagram as in Figure 20.5. This type 
of diagram allows us to visualize a process through which a gas is progressing. The 
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PV diagram. Therefore, we can identify an important use for PV diagrams:

The work done on a gas in a quasi-static process that takes the gas from an 
initial state to a final state is the negative of the area under the curve on a PV 
diagram, evaluated between the initial and final states.

 For the process of compressing a gas in a cylinder, the work done depends on the 
particular path taken between the initial and final states as Figure 20.5 suggests. To 
illustrate this important point, consider several different paths connecting i and f 
(Fig. 20.6). In the process depicted in Figure 20.6a, the volume of the gas is first 
reduced from Vi to Vf at constant pressure Pi and the pressure of the gas then 
increases from Pi to Pf by heating at constant volume Vf . The work done on the gas 
along this path is 2Pi(Vf 2 Vi). In Figure 20.6b, the pressure of the gas is increased 
from Pi to Pf at constant volume Vi and then the volume of the gas is reduced from 
Vi to Vf at constant pressure Pf . The work done on the gas is 2Pf(Vf 2 Vi). This value 
is greater than that for the process described in Figure 20.6a because the piston is 
moved through the same displacement by a larger force. Finally, for the process 
described in Figure 20.6c, where both P and V change continuously, the work done 
on the gas has some value between the values obtained in the first two processes. 
To evaluate the work in this case, the function P(V ) must be known so that we can 
evaluate the integral in Equation 20.9.
 The energy transfer Q into or out of a system by heat also depends on the pro-
cess. Consider the situations depicted in Figure 20.7. In each case, the gas has the 
same initial volume, temperature, and pressure, and is assumed to be ideal. In Figure 
20.7a, the gas is thermally insulated from its surroundings except at the bottom of 
the gas-filled region, where it is in thermal contact with an energy reservoir. An energy 
reservoir is a source of energy that is considered to be so great that a finite transfer of 
energy to or from the reservoir does not change its temperature. The piston is held 
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When these diagrams include a path,
they

• show reversible processes,
eg. compression of gas,

• show all the intermediate
thermal states passed through,

• show the work done on the gas,

• indicate the heat transferred to
the gas.

∆Eint = W + Q



Work done depends on the process

Different paths or processes to go from (Vi ,Pi ) to (Vf ,Pf ) require
different amounts of work.

602 Chapter 20 The First Law of Thermodynamics

volume remains constant, the work done on the gas is zero. The total work done on 
the gas as its volume changes from Vi to Vf is given by the integral of Equation 20.8:

 W 5  23
Vf

Vi

 P dV  (20.9)

To evaluate this integral, you must know how the pressure varies with volume dur-
ing the process.
 In general, the pressure is not constant during a process followed by a gas, but 
depends on the volume and temperature. If the pressure and volume are known 
at each step of the process, the state of the gas at each step can be plotted on an 
important graphical representation called a PV diagram as in Figure 20.5. This type 
of diagram allows us to visualize a process through which a gas is progressing. The 
curve on a PV diagram is called the path taken between the initial and final states.
 Notice that the integral in Equation 20.9 is equal to the area under a curve on a 
PV diagram. Therefore, we can identify an important use for PV diagrams:

The work done on a gas in a quasi-static process that takes the gas from an 
initial state to a final state is the negative of the area under the curve on a PV 
diagram, evaluated between the initial and final states.

 For the process of compressing a gas in a cylinder, the work done depends on the 
particular path taken between the initial and final states as Figure 20.5 suggests. To 
illustrate this important point, consider several different paths connecting i and f 
(Fig. 20.6). In the process depicted in Figure 20.6a, the volume of the gas is first 
reduced from Vi to Vf at constant pressure Pi and the pressure of the gas then 
increases from Pi to Pf by heating at constant volume Vf . The work done on the gas 
along this path is 2Pi(Vf 2 Vi). In Figure 20.6b, the pressure of the gas is increased 
from Pi to Pf at constant volume Vi and then the volume of the gas is reduced from 
Vi to Vf at constant pressure Pf . The work done on the gas is 2Pf(Vf 2 Vi). This value 
is greater than that for the process described in Figure 20.6a because the piston is 
moved through the same displacement by a larger force. Finally, for the process 
described in Figure 20.6c, where both P and V change continuously, the work done 
on the gas has some value between the values obtained in the first two processes. 
To evaluate the work in this case, the function P(V ) must be known so that we can 
evaluate the integral in Equation 20.9.
 The energy transfer Q into or out of a system by heat also depends on the pro-
cess. Consider the situations depicted in Figure 20.7. In each case, the gas has the 
same initial volume, temperature, and pressure, and is assumed to be ideal. In Figure 
20.7a, the gas is thermally insulated from its surroundings except at the bottom of 
the gas-filled region, where it is in thermal contact with an energy reservoir. An energy 
reservoir is a source of energy that is considered to be so great that a finite transfer of 
energy to or from the reservoir does not change its temperature. The piston is held 
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In all of the processes shown above, there are temperature changes
during the process.

1Figure form Serway & Jewett.



Heat transfer also depends on the process
This process (shown) happens at constant temperature: 20.5 The First Law of Thermodynamics 603

Figure 20.7  Gas in a cylinder. (a) The gas is in contact with an energy reservoir. The walls of the cylinder are perfectly insulating, but the 
base in contact with the reservoir is conducting. (b) The gas expands slowly to a larger volume. (c) The gas is contained by a membrane in 
half of a volume, with vacuum in the other half. The entire cylinder is perfectly insulating. (d) The gas expands freely into the larger volume.
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temperature Ti . 
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with vacuum 
above. 

The membrane
is broken, and 
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freely into the 
evacuated 
region.

at its initial position by an external agent such as a hand. When the force holding the 
piston is reduced slightly, the piston rises very slowly to its final position shown in Fig-
ure 20.7b. Because the piston is moving upward, the gas is doing work on the piston. 
During this expansion to the final volume Vf , just enough energy is transferred by 
heat from the reservoir to the gas to maintain a constant temperature Ti.
 Now consider the completely thermally insulated system shown in Figure 20.7c. 
When the membrane is broken, the gas expands rapidly into the vacuum until it 
occupies a volume Vf and is at a pressure Pf . The final state of the gas is shown in 
Figure 20.7d. In this case, the gas does no work because it does not apply a force; no 
force is required to expand into a vacuum. Furthermore, no energy is transferred 
by heat through the insulating wall.
 As we discuss in Section 20.5, experiments show that the temperature of the ideal 
gas does not change in the process indicated in Figures 20.7c and 20.7d. Therefore, 
the initial and final states of the ideal gas in Figures 20.7a and 20.7b are identical  
to the initial and final states in Figures 20.7c and 20.7d, but the paths are different. 
In the first case, the gas does work on the piston and energy is transferred slowly to 
the gas by heat. In the second case, no energy is transferred by heat and the value of 
the work done is zero. Therefore, energy transfer by heat, like work done, depends on 
the particular process occurring in the system. In other words, because heat and work 
both depend on the path followed on a PV diagram between the initial and final states, 
neither quantity is determined solely by the endpoints of a thermodynamic process.

20.5 The First Law of Thermodynamics
When we introduced the law of conservation of energy in Chapter 8, we stated that 
the change in the energy of a system is equal to the sum of all transfers of energy 
across the system’s boundary (Eq. 8.2). The first law of thermodynamics is a spe-
cial case of the law of conservation of energy that describes processes in which only 
the internal energy5 changes and the only energy transfers are by heat and work:

 DE int 5 Q 1 W (20.10) �W First law of thermodynamics

5It is an unfortunate accident of history that the traditional symbol for internal energy is U, which is also the tra-
ditional symbol for potential energy as introduced in Chapter 7. To avoid confusion between potential energy and 
internal energy, we use the symbol Eint for internal energy in this book. If you take an advanced course in thermody-
namics, however, be prepared to see U used as the symbol for internal energy in the first law.

Heat Q is transferred to the gas, and negative work is done on the
gas by the environment.
(Equivalently, the gas does positive work on its surroundings.)



Heat transfer also depends on the process
This process also happens at constant temperature, and has the
same start and end points, (Vi ,Pi ) to (Vf ,Pf ): 20.5 The First Law of Thermodynamics 603

Figure 20.7  Gas in a cylinder. (a) The gas is in contact with an energy reservoir. The walls of the cylinder are perfectly insulating, but the 
base in contact with the reservoir is conducting. (b) The gas expands slowly to a larger volume. (c) The gas is contained by a membrane in 
half of a volume, with vacuum in the other half. The entire cylinder is perfectly insulating. (d) The gas expands freely into the larger volume.
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at its initial position by an external agent such as a hand. When the force holding the 
piston is reduced slightly, the piston rises very slowly to its final position shown in Fig-
ure 20.7b. Because the piston is moving upward, the gas is doing work on the piston. 
During this expansion to the final volume Vf , just enough energy is transferred by 
heat from the reservoir to the gas to maintain a constant temperature Ti.
 Now consider the completely thermally insulated system shown in Figure 20.7c. 
When the membrane is broken, the gas expands rapidly into the vacuum until it 
occupies a volume Vf and is at a pressure Pf . The final state of the gas is shown in 
Figure 20.7d. In this case, the gas does no work because it does not apply a force; no 
force is required to expand into a vacuum. Furthermore, no energy is transferred 
by heat through the insulating wall.
 As we discuss in Section 20.5, experiments show that the temperature of the ideal 
gas does not change in the process indicated in Figures 20.7c and 20.7d. Therefore, 
the initial and final states of the ideal gas in Figures 20.7a and 20.7b are identical  
to the initial and final states in Figures 20.7c and 20.7d, but the paths are different. 
In the first case, the gas does work on the piston and energy is transferred slowly to 
the gas by heat. In the second case, no energy is transferred by heat and the value of 
the work done is zero. Therefore, energy transfer by heat, like work done, depends on 
the particular process occurring in the system. In other words, because heat and work 
both depend on the path followed on a PV diagram between the initial and final states, 
neither quantity is determined solely by the endpoints of a thermodynamic process.

20.5 The First Law of Thermodynamics
When we introduced the law of conservation of energy in Chapter 8, we stated that 
the change in the energy of a system is equal to the sum of all transfers of energy 
across the system’s boundary (Eq. 8.2). The first law of thermodynamics is a spe-
cial case of the law of conservation of energy that describes processes in which only 
the internal energy5 changes and the only energy transfers are by heat and work:

 DE int 5 Q 1 W (20.10) �W First law of thermodynamics

5It is an unfortunate accident of history that the traditional symbol for internal energy is U, which is also the tra-
ditional symbol for potential energy as introduced in Chapter 7. To avoid confusion between potential energy and 
internal energy, we use the symbol Eint for internal energy in this book. If you take an advanced course in thermody-
namics, however, be prepared to see U used as the symbol for internal energy in the first law.

No heat is transferred to the gas, and the gas does no work.

(We cannot represent the path for this process on a P-V diagram.)



Heat transfer also depends on the process



First Law of Thermodynamics
Reminder:

Internal energy, Eint or U

The energy that a system has as a result of its temperature and all
other molecular motions, effects, and configurations, when viewed
from a reference frame at rest with respect to the center of mass
of the system.

1st Law

The change in the internal energy of a system is equal to the sum
of the heat added to the system and the work done on the system.

W + Q = ∆Eint

This is just the conservation of energy assuming only the internal
energy changes.



Summary

• P-V diagrams

Next Test Tuesday, May 5 (? TBC), on Ch19, 20.

Homework Serway & Jewett:

• Read chapter 20 and look at the examples.


